USB2530 API User Manual

@ MICROCHIP

USB2530API User Manual

MICROCHIP CONFIDENTIAL Page 1

USB2530 API User Manual

Table of Contents

R 101 oo [0 Tox o o USSR 4
2 Legal INFOrmMationc.coviiiiic e 4
K T o PSS PSPR 5
3.1 Device Open / CloSe APIS.......ccciieeiee st 5
3. L1 MChPUSDOPEN ...ttt 5
3.1.2 MChPUSDGEIDEVICE.ccveivreiicie sttt 6
3.1.3 MChPUSDOPENEXL........cviiiiiiiiieiiieiieeee e 7
314 MChPUSDCIOSE.ueeiiicie ettt 8
3.2 FIEXCONNECE AP ... e et 9
3.21 MChpUSDFIEXCONNECTccvveieciecieee e 9
3.3 GPIO Bridging APIS ...c.ooiiiiiiieiiiieeeie ettt 11
3.3.1 MchpUsbGpioConfigurePulldownc.ccccoeveiviieiieieicce e 12
3.3.2 MchpUshGpioConfigurePUUPcccooiiiiiiiniiinieeec e 13
3.3.3 MChPUSDGPIOGELcviivieiiciieeie et 14
3.3.4 MCHhPUSDGPIOSEL......cvieiiiiieiieiieeeie e 15
3.4 XDATA BAQING APIS ..o 16
3.4.1 MchpUshXdataReadcccuriiiiieiiiiiienie e 16
3.4.2 MchpUsbhXAataWTIItEccveiieiiieieiie e 17
3.5 12C Bridging APIS.....ceiieiiiiiiiisiiieeeie e 18
3.5.1 MchpUsbI2CSetConfig.......cccveiieiiiieiicie e 18
3.5.2 MchpUSBI2CGEtCONTIGcoviriiriieiieieieie e 19
3.5.3 MChpUSDI2ZCREAM..........cceeieciiecieee e 20
3.5.4 MChPUSDI2ZCWIIEE....c.eiiiiiiieiieee e s 22
3.6 OTP Bridging APIScceeieiieieee sttt 24
3.6.1 McChpUSDOIPREAM.ceeiviiiiiiiieiiecee s 24
3.6.2 MChPUSDOIPWIILE.cuveiieie et 25
3.7 RAMBIAGING APIS ..o 26
3.7.1 MchpUSBRaMREAcceiieiieeiic e 26
3.7.2 MChpUSBRAMWIITE ...t 26
3.8 SPIBIIAGING APIS..c.oeciiiie ettt 26
3.8.1 MchpUshSPISEICONTIGccuviiiiiiiieieie s 26
3.8.2 MChPUSDSPIWIILE ...t 27
3.8.3 MChPUSDSPIREA ..ot 28
3.9 UART Bridging APIS.....cociieieeeciese et 30
3.9.1 MchpUsbUArtSEtCONTIQcovrieieieieiieie s 30
3.9.2 MchpUSBUAIMWIILE........coeeiiiiecie e 31
3.9.3 McChpUSBUAIREAMcoiiiiiiiiiiiieieee s 32

4 APPENDIX A ettt e 33
4.1 ClaSSES & STIUCTS.....cceeiiieieiiesieeie e e e sre et esreeaeenee e 33
411 struct_DEVICE_INTERFACE_.....ccooiiiiiiiiteeeeeeeee e 33
4.2 TYPEUETS & IMACIOS ...ttt 33
L R |V - Vo o OO U PR O T TUPTOPRPURPTPPROPPN 33
4.2.2 TYPEUETS .. .o 33

MICROCHIP CONFIDENTIAL Page 2

USB2530 API User Manual

423 MCHP_USB_ERRORvviveiereeereeesesesssesessseeesessesessssesessssesessseenes 33

MICROCHIP CONFIDENTIAL Page 3

USB2530 API User Manual

1 Introduction

Originally intended as a replacement for serial and parallel connections on a PC to
connect mice, keyboards and printers, Universal Serial Bus has grown to become a
common interface in many embedded industrial, medical, automotive, and consumer
applications. Microchip's family of versatile, cost-effective, and power-efficient USB
Hub delivers industry-leading data throughput in mixed-speed USB environments.
The USB hub families provide a USB port expansion solution for USB 2.0 and USB
3.0 applications that demand ultra low power and a small footprint without
compromising on performance.

Over the standard USB hub functionality, Microchip hubs support a wide array of
functionalities like GP10 bridging, UART bridging, I°C bridging, etc. With its high
level APIs, USB2530 API enables end customers to realize the full potential of
Microchip USB hubs.

2 Legal Information

Software License Agreement

(c) 2004 - 2014 Microchip Technology Inc.

Microchip licenses this software to you solely for use with Microchip products. The software is
owned by Microchip and its

licensors, and is protected under applicable copyright laws. All rights reserved.
SOFTWARE IS PROVIDED "AS IS" MICROCHIP EXPRESSLY DISCLAIMS ANY
WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL MICROCHIP
BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, LOST PROFITS OR LOST DATA, HARM TO YOUR EQUIPMENT, COST OF
PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES,

ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE
THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR
COSTS.

To the fullest extent allowed by law, Microchip and its licensors liability shall not exceed the
amount of fees, if any, that you have paid directly to Microchip to use this software.
MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR
ACCEPTANCE OF THESE TERMS.

Trademark Information

The Microchip nhame and logo, the Microchip logo, MPLAB, and PIC are registered
trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

PICDEM and PICtail are trademarks of Microchip Technology Incorporated in the U.S.A. and
other countries.

Microsoft, Windows, Windows Vista, and Authenticode are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

SD is a trademark of the SD Association in the U.S.A and other countries

MICROCHIP CONFIDENTIAL Page 4

USB2530 API User Manual

3 API

Usage of these APIs requires that the WinUSB device driver is installed for the
USB2530 internal USB device (5" port) for the USB2534 family of hub being used.
For details on installing the WinUSB driver, please refer to MchpUSB2534API
Release notes.docx Section 7.

3.1 Device Open / Close APIs

This section covers APIs which enable open / close of the handle to the device of
interest. Before issuing any command to the device, the handle needs to be opened
first.

3.1.1 MchpUsbOpen

Prototype:
HANDLE MchpUsbOpen (UINT16 VendorID, UINT16 ProductID)

Devices Supported: USB2534 Family

Description:

This API will return handle to the USB device with the specified USB Vendor ID and
Product ID. If there is more than one USB device with the specified USB Vendor ID
& product ID, handle to the first of such USB device will be returned.

Parameters:

{1 | Parameter Description

IN | VendorID Vendor ID of the USB device of interest
IN | ProductlD Product ID of the USB device of interest
Returns:

A valid device Handle, which needs to be passed on to other APIs for interaction with
the device

NULL if no device with the specified vendor ID & product ID is present in the
system.

Sample:

HANDLE hDevice;
hDevice = MchpUsbOpen (0x0424, ©x2530);

if (hDevice != NULL)
{

MICROCHIP CONFIDENTIAL Page 5

MchpUSB2534API%20Release%20notes.docx
MchpUSB2534API%20Release%20notes.docx

USB2530 API User Manual

// Interact further with the device

3.1.2 MchpUsbGetDevice

Prototype:
MCHP_USB_ERROR MchpUsbhGetDevice (UINT16 VendorID, UINT16 ProductID,
OUT DEVIO * DevicePaths)

Devices Supported: USB2534 Family

Description:

This API will return a list of device paths for those USB devices specified in the USB
Vendor ID and Product ID parameters.

Note: A DevicePath list will be created based on the number of USB devices present
in the system with the specified VendorID & ProductID. Please refer DEVIO
structure for details of the entries.

The caller is responsible to free the memory for the list of device paths allocated in
this function. The memory is allocated using

Parameters:

% Parameter | Description

IN VendorID Vendor ID of the USB device of interest

IN ProductID Product ID of the USB device of interest

OUT | DevicePaths | List of device paths with the specified VendorID & ProductID

dNoOfDevices member will contain the number of entries in
the list

DevicePath member contains the null terminated wide char list
of device symbolic names. This member is internally used by
the API library & needs to be treated as Reserved from the
caller perspective

Returns:
Mchp_Error_Success — if the operation succeeded. The caller is responsible to call
GlobalFree (DEVIO->DevicePath) after all interactions with the device is completed.

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

MICROCHIP CONFIDENTIAL Page 6

USB2530 API User Manual

Sample:

DEVIO stDEVIO;

// get the list of device paths for VID = 0x0424 & PID = 0x2530
MCHP_USB_ERROR result = MchpUsbGetDevice(0x0424, 0x2530, &stDEVIO);

if(result == MCHP_Error_Success){
// stDEVIO. dNoOfDevices contains the number of list entries

/] ...

// To free the memory, use the GlobalFree function.
// dNoOfDevices contain the number of devices in the
// list containing the symbolic names of the devices.

unsigned int num_of_devices = stDEVIO.dNoOfDevices;
for (int i=0; i < num_of_devices; i++)

{
// Free the individual WCHAR* entries in the list
GlobalFree(stDEVIO.DevicePath[i]);
stDEVIO.DevicePath[i] = NULL;

}

// Free the pointer to the list of WCHAR* entries
GlobalFree(stDEVIO.DevicePath);
stDEVIO.DevicePath = NULL;

3.1.3 MchpUsbOpenExt

Prototype:
HANDLE MchpUsbOpenExt (INT DevPathindex, UINT32 Timeout, DEVIO*
DevicePaths)

Devices Supported: USB2534 Family
Description:
This API will return a handle to the device, specified at DevPathIndex, within the

device path list of DevicePaths structure.

Parameters:

{1 | Parameter Description

IN | DevPathIindex | The index within the device path list in the DevicePaths

structure

IN | Timeout Reserved for Future use

IN | DevicePaths | List of device paths obtained by calling MchpUsbGetDevice
function.

MICROCHIP CONFIDENTIAL Page 7

USB2530 API User Manual

Returns:
On success returns a handle to the device pointed in the list

On failure the function returns a NULL.

Sample:

DEVIO stDEVIO;

// get the list of device paths for VID = 0x0424 & PID = 0x2530
MCHP_USB_ERROR result = MchpUsbGetDevice(0x0424, ©x2530, &stDEVIO);

if (result == MCHP_Error_Success){
//stDEVIO is already populated from above call
HANDLE hnd = MchpUsbOpenExt(0x02, 0, &stDEVIO);
If (NULL != hnd) {
// Handle for the 2™ device entry in the list received

}

3.1.4 MchpUsbClose

Prototype:
MCHP_USB_ERROR MchpUshClose (HANDLE DevID)

Devices Supported: USB2534 Family

Description:
This API will close the handle for the device specified by DevID.

Parameters:

{1 | Parameter | Description

IN | DevID Handle to the USB2530 device which needs to be closed

Returns:
Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

The function returns MCHP_Error_Invalid_Device_Handle if the device handle did
not match an entry of the open devices list maintained by the library.

Sample:
MICROCHIP CONFIDENTIAL Page 8

USB2530 API User Manual

HANDLE hDevice;
hDevice = MchpUsbOpen (0x0424, ©x2530);

if (hDevice != INVALID_HANDLE_VALUE)
{

// Interact further with the device
/]l ...
// Done with the device, close handle
MCHP_USB_ERROR result = MchpUsbClose(hDevice);
if(result == MCHP_Error_Success){

// Close handle was successful

}

3.2 Flexconnect API

Flexconnect refers to the feature in Microchip USB hubs, wherein the upstream port
swaps its role with downstream port 1 and also vice versa at run time.

3.2.1 MchpUsbFlexConnect

Prototype:
MCHP_USB_ERROR MchpUsbFlexConnect (HANDLE DevID, UINT16 Config)

Devices Supported: USB2534 Family

Description:
This API will issue Flex Connect command to the device.

Parameters:

{1 | Parameter | Description

IN | DeviD Handle to the USB2530 device to which flexconnect command
will be issued

IN | Config Passed as is in wValue field of the Flexconnect SETUP command.
See below for the detailed description of different bits

Config bit field encoding:

Bit 7 6 5 4 3 2 1 0
CHNG | £y

Field | PIN STATE | DIS_P5 | DIS_P4 | DIS_P3 | DIS_P2 | DIS_PL | RFU
FUNCT

Bit 15 14 13 12 11 10 9 8

Field | Mustbe | DCP_E | VBUS_ HDD |HDD | HDD

MICROCHIP CONFIDENTIAL

Page 9

USB2530 API User Manual

[settol [N | RESET | | | TMR[2] | TMR[1] | TMR[0] |

DCP_EN:

1 — All disabled ports, while in Flexconnect mode, will output the Universal DCP
handshake on DP and DM according to the Battery Charging configuration registers.
0 — In all disabled ports, the DP/DM lines will revert to the default disabled state,
regardless of Flexconnect mode.

DIS_P1 - Disables downstream port 1 during the next enumeration

DIS_P2 - Disables downstream port 2 during the next enumeration

DIS_P3 - Disables downstream port 3 during the next enumeration

DIS_P4 - Disables downstream port 4 during the next enumeration

DIS_P5 - Disables downstream port 5 during the next enumeration. If port5 is
disabled (UDC), then no more commands can be issued to the UDC until it is re-
enabled via VSM.

Port disable/ enable feature assumes physical port only. The port remap register will
be derived from the ROM defaults (will not consider modifications made in OTP/
SMBuUS)

FLEX _STATE

The required Flexconnect state of the hub upon the next attach.

1 — Turn on Flexconnect

0 — Turn off Flexconnect

CHNG PIN FUNCTThis bit is valid only if FLEX_STATE is 1.

Case 1: CHNG PIN FUNCT =0->EN_FLEX_ MODE =1
1. OCS1_N = Initiate Hub Enumeration, Low = Hub enters a low power
state. High = Hub attempts to enumerate with upstream port (PORT1)
2. PRTCTL1 = Pulled high and has over current capabilities.
3. VBUS DET = Don’t care
4. SUSPEND = Downstream port (Port 0) port power control and OCS
detection.

Case 2: CHNG PIN FUNCT =1->EN_FLEX_MODE =0
1. OCS1_N = Don’t care (I am not sure this is the case if EN_ FLEX MODE =
0)
2. PRTCTL1 = Downstream port (Port 0) port power control and OCS detection
3. VBUS_DET = Initiate Hub Enumeration, Low = Hub enters a low power
state. High = Hub attempts to enumerate with upstream port (PORT1)
4. SUSPEND/ PIOO = Don'’t care.

HDD TMR — The Host Disconnect Detect Timer, this is the time the firmware waits
at most for the host to arrive after entering FLEX state, after which un-flex
automatically.

000 = No auto unflex on timeout

001 =10ms

MICROCHIP CONFIDENTIAL Page 10

USB2530 API User Manual

010 = 100ms
011 =500ms
100 = 1s

101 =5s

110 =10s
111 = 20s
Returns:

Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

Sample:

HANDLE hDevice;
hDevice = MchpUsbOpen (0x0424, ©x2530);

if (hDevice != INVALID_HANDLE_VALUE)
{

*

Prepare the bit field for flexconnect configuration
Bit 15 to be set to 1

Bit 6 is set for enabling FLEX_STATE

This denotes the required Flexconnect state of the
hub upon the next attach.

1 - Turn on Flexconnect

@ - Turn off Flexconnect

* X X ¥ X ¥ ¥

*/
UINT16 Config = 0Ox8040;

// Issue a fleconnect command to the opened device
if(hDevice!=NULL){
resut = MchpUsbFlexConnect(hDevice, Config);
if(resut==MCHP_Error_Success){
// Flexconnect was successful

}

3.3 GPIO Bridging APIs

This section enumerates the APIs that facilitate low level control of GPIO pins in
Microchip USB hubs. User can configure the direction, pull up / down, read data &
write data to any GPIO. Note that some of the GP1O may be already assigned to other
functions, which may need to be reassigned by the user by calling
MchpUsbXdataRead & MchpUsbXdataWrite API (to write different registers) before
calling these APIs.

MICROCHIP CONFIDENTIAL Page 11

USB2530 API User Manual

3.3.1 MchpUsbGpioConfigurePulldown

Prototype:
MCHP_USB_ERROR MchpUshGpioConfigurePulldown (HANDLE DevID,
DWORD dwGPIOMaskHi, DWORD dwGPIOMaskLo, BOOL bEnablePulldown)

Devices Supported: USB2534 Family

Description:

This API enables or disables the pull down for the specified GPIO lines. The GPIO
mask is a 64 bit value with the higher order bits (63-32) mentioned in the
dwGPIOMaskHi and the lower order bits (31-0) mentioned in dwGPIOMaskLo.

Parameters:
{1 | Parameter Description
IN | DeviD Handle to the USB2530 device for which the GPIO lines

will be pulled down

IN | dwGPIOMaskHi | Mask of bits in the order PIO63:P1032. The bits which are
set select the specific PIOs for this function to operate

IN | dwGPIOMaskLo | Mask of bits in the order PIO31:PI100. The bits which are
set select the specific PIOs for this function to operate

IN | bEnablePulldown | TRUE : Enables pull down
FALSE : Disables pull down

Returns:
Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

The function returns MCHP_Error_Invalid_Device Handle if the device handle did
not match an entry of the open devices list maintained by the library.

Sample:

HANDLE hDevice;
INT nGPIOState;

hDevice = MchpUsbOpen (0x0424, ©x2530);

if (hDevice != INVALID_ HANDLE_VALUE)

{
// Put PIO7, PIO10 & PIO41 in input mode
MchpUsbGpioGet (hDevice, 7, &nGPIOState);// nGPIOState is ignored
MchpUsbGpioGet (hDevice, 10, &nGPIOState);

MICROCHIP CONFIDENTIAL Page 12

USB2530 API User Manual

MchpUsbGpioGet (hDevice, 41, &nGPIOState);

// Enable Pulldown for PIO7, PIO10 & PIO41
MchpUsbGpioConfigurePulldown (hDevice, 0x00000200, 0x00000480);

}
3.3.2 MchpUsbGpioConfigurePullUp

Prototype:
MCHP_USB_ERROR MchpUshGpioConfigurePullUp (HANDLE DevID, DWORD
dwGPIOMaskHi, DWORD dwGPIOMaskLo, BOOL bEnablePullup)

Devices Supported: USB2534 Family

Description:

This API enables or disables the pull up for the specified GPIO lines. The GPIO mask
is a 64 bit value with the higher order bits (63-32) mentioned in the dwGPIOMaskHi
and the lower order bits (31-0) mentioned in dwGPIOMaskLo.

Parameters:
{1 | Parameter Description
IN | DevIiD Handle to the USB2530 device for which the GPIO lines

will be pulled down

IN | dwGPIOMaskHi | Mask of bits in the order PIO63:P1032. The bits which are
set select the specific PIOs for this function to operate

IN | dwGPIOMaskLo | Mask of bits in the order PIO31:PI100. The bits which are
set select the specific PIOs for this function to operate

IN | bEnablePullup TRUE : Enables pull up
FALSE : Disables pull up

Returns:
Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

The function returns MCHP_Error_Invalid_Device_Handle if the device handle did
not match an entry of the open devices list maintained by the library.

Sample:

HANDLE hDevice;
hDevice = MchpUsbOpen (0x0424, ©x2530);

if (hDevice != INVALID_HANDLE_VALUE)

MICROCHIP CONFIDENTIAL Page 13

USB2530 API User Manual

{
// Programmer knows that PIO3 & PIO8 are already in input mode
// Enable Pulldown for PIO3 & PIO8
MchpUsbGpioConfigurePullUp (hDevice, 0x00000000, 0x00000108);
}

3.3.3 MchpUsbGpioGet

Prototype:
MCHP_USB_ERROR MchpUsbGpioGet (HANDLE DevID, INT PIONumber, INT*
Pinstate)

Devices Supported: USB2534 Family
Description:
This API gets the state of the specified GP1O pin. The direction of the GPIO pin

referred in PIONumber is set to IN in this function.

Parameters:

% Parameter | Description

IN DevID Handle to the USB2530 device

IN PIONumber | The GPIO pin number from which to read the pin state

OUT | Pinstate 0 = Pin state is High
1 = Pin state is Low

Returns:
Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

The function returns MCHP_Error_Invalid_Device Handle if the device handle did
not match an entry of the open devices list maintained by the library.

Sample:

HANDLE hDevice;
INT nPIO3State, nPIO8State;

hDevice = MchpUsbOpen (0x0424, ©x2530);

if (hDevice != INVALID_HANDLE_VALUE)

{
// Read the pin state of PIO3 & PIO8
MchpUsbGpioGet (hDevice, 3, &nPIO3State);
MchpUsbGpioGet (hDevice, 8, &nPIO8State);
}

MICROCHIP CONFIDENTIAL Page 14

USB2530 API User Manual

3.3.4 MchpUsbGpioSet

Prototype:
MCHP_USB_ERROR MchpUshGpioSet (HANDLE DevID, INT PIONumber, INT
Pinstate)

Devices Supported: USB2534 Family

Description:
This API sets the state of the specified GPIO pin with the state mentioned in Pinstate.
The GPIO pin direction is set to OUT in this function.

Parameters:
{1 | Parameter | Description
IN | DevID Handle to the USB2530 device
IN | PIONumber | The GPIO pin number from which to read the pin state
IN | Pinstate 0 = Set pin state to High
1 = Set pin state to Low
Returns:

Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

The function returns MCHP_Error_Invalid_Device_Handle if the device handle did
not match an entry of the open devices list maintained by the library.

Sample:

HANDLE hDevice;

hDevice = MchpUsbOpen (0x0424, ©x2530);

if (hDevice != INVALID_HANDLE_VALUE)

{

// Set PIO3=1 & PI08=0
MchpUsbGpioSet (hDevice, 3, 1);
MchpUsbGpioSet (hDevice, 8, 0);

MICROCHIP CONFIDENTIAL Page 15

USB2530 API User Manual

3.4 XDATA Bridging APIs

This section lists the APIs that enable read / write of register space in Microchip USB
hubs.

3.4.1 MchpUsbXdataRead

Prototype:
MCHP_USB_ERROR MchpUshXdataRead (HANDLE DevID, WORD
StartAddress, INT BytesToRead, BYTE* InputData, INT* ActualBytesRead)

Devices Supported: USB2534 Family
Description:
This function reads a specified number of bytes mentioned in BytesToRead starting

from the StartAddress.

Note: The caller function should allocate enough memory mentioned by the
BytesToRead field before passing the InputData pointer to the function.

Parameters:

% Parameter Description

IN DevID Handle to the USB2530 device

IN StartAddress Start address to read from (in the XDATA space)

IN BytesToRead Number of bytes to read

OUT | InputData Pointer to the buffer where data from XDATA registers
will be stored. Caller must allocate memory for the buffer
to accommodate the number of bytes to be read.

OUT | ActualBytesRead | Holds the number of bytes actually read.

Returns:
Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

Sample:

/*
* Obtain a valid hDevice USB2530 device handle
*

*/

MICROCHIP CONFIDENTIAL Page 16

USB2530 API User Manual

unsigned char buff[512]
unsigned int ActualBytesRead

{e};
9;

MCHP_USB_ERROR result = MchpUsbXdataRead(hDevice,
0x3000, // Read configuration registers from 3000-31FF
512,
buff,
&ActualBytesRead);

if(resut==MCHP_Error_Success){
// XData read was successful

}

3.4.2 MchpUsbXdataWrite

Prototype:
MCHP_USB_ERROR MchpUsbXdataWrite (HANDLE DevID, WORD
StartAddress, INT BytesToWrite, BY TE* OutputData, INT* ActualBytesWritten)

Devices Supported: USB2534 Family
Description:
This function writes a specified number of bytes mentioned in the BytesToWrite

parameter starting from the StartAddress.

Note: The caller function should allocate enough memory mentioned by the
BytesToWrite field before passing the InputData pointer to the function.

Parameters:

% Parameter Description

IN DevID Handle to the USB2530 device

IN StartAddress Start address to read from (in the XDATA space)

IN BytesToWrite Number of bytes to read

IN OutputData Pointer to the buffer containing data to write to XDATA
registers.

OUT | ActualBytesWritten | Holds the number of bytes actually written.

Returns:
Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

Sample:
/*
* Obtain a valid hDevice USB2530 device handle

MICROCHIP CONFIDENTIAL Page 17

USB2530 API User Manual
*/

unsigned char byBCConfigPortl;
unsigned int ActualBytesWritten = 0;

// Enable downstream Battery charging for Port 1
byBCConfigPortl = 0xD7;

MCHP_USB_ERROR result = MchpUsbXdataWrite(hDevice,
0x413C,
1,
&byBCConfigPortl,
&ActualBytesWritten);

if(resut==MCHP_Error_Success){
// XData write was successful
}

3.5 12C Bridging APIs

Microchip USB hubs facilitate USB-12C bridging through USB control point of the
embedded USB device (5™ port). This section explains the relevant high level APIs.

3.5.1 MchpUshbl2CSetConfig

Prototype:

MCHP_USB2530API_API MCHP_USB_ERROR MchpUsbI2CSetConfig (
HANDLE DevID, BOOL Enable, INT ClockRate)

Devices Supported: USB2534 Family

Description:

This function enables or disables 12C pass-through and the clock rate of the 12C
Master device.

Note: The clock rate parameter is not used and is always 62.5 KHz.

Parameters:

{1 | Parameter | Description

IN | DevID Handle to the USB2530 device

IN | Enable TRUE : Enable 12C pass-through
FALSE : Disable 12C pass-through

IN | ClockRate | Reserved for Future use

Returns:

MICROCHIP CONFIDENTIAL Page 18

USB2530 API User Manual

Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

Sample:

/*

* Obtain a valid hDevice USB2530 device handle

* Enable I2C Pass Thru

*/

MCHP_USB_ERROR error = MchpUsbI2CSetConfig(hDevice, TRUE, NULL);
if(error != MCHP_Error_Success) {

// I2C Pass Thru enable succeeded

}
3.5.2 MchpUsbIl2CGetConfig

Prototype:

MCHP_USB2530API_API MCHP_USB_ERROR MchpUshI2CGetConfig (
HANDLE DevID, BOOL* Enable, INT* ClockRate)

Devices Supported: USB2534 Family

Description:

This function gets the configuration state like whether 12C pass-through is enabled or
not and the clock rate of the 12C Master device.

Note: The clock rate is always 62.5 KHz for USB2534 family of devices

Parameters:

% Parameter | Description

IN DevID Handle to the USB2530 device

OUT | Enable A BOOL pointer:
TRUE : 12C Pass-through is Enabled
FALSE : 12C pass-through is Disabled

OUT | ClockRate | An INT pointer that contains clock rate of the 12C Master.
Note: This value is 62.5 KHz for USB2534 family of devices

Returns:
Mchp_Error_Success — if the operation succeeded

Errorcode as defined in MCHP_USB_ERROR or Windows System call error code -
for failure.

MICROCHIP CONFIDENTIAL Page 19

USB2530 API User Manual

Sample:

BOOL PassThruEnable = FALSE;
INT ClockRate = 0;

MCHP_USB_ERROR error = MchpUsbI2CGetConfig(hDevice, // Valid device handle
&PassThruEnable,
&ClockRate);
if(error == MCHP_Error_Success) {
// I2CGetConfig succeeded
// if the PassThruEnable is TRUE I2C Pass thru is enabled

3.5.3 MchpUsbI2CRead

Prototype:
MCHP_USB_ERROR MchpUsbhI2CRead (HANDLE DevID, INT BytesToRead,
BYTE™* InputData, BYTE bySlaveAddress)

Devices Supported: USB2534 Family

Description:
This API performs an 12C read through the 12C pass-through interface of USB2530
device.

Note: A successful 12C EnablePassthrough should be done using
MchpUsbl12CSetConfig API before using this function.

The memory for InputData should be allocated to the size of BytesToRead bytes by
the calling function.

As the firmware acts as a complete pass through for the 12C read / write requests, the
caller should provide the slave address parameter in 12C compliant format as
described in the table below (7 MSBs for address and a value of 1 in bit O for a read
operation).

Slave Address R=1
Bits 716(5/4(3|2]|1 0
Example | 1 (0(1]0(0|0|O0 1
Parameters:
{1 | Parameter Description
IN | DevIiD Handle to the USB2530 device

MICROCHIP CONFIDENTIAL Page 20

USB2530 API User Manual

IN | BytesToRead Length of bytes to read from 12C slave

IN | InputData Pointer to input data buffer to retrieve the bytes read

IN | bySlaveAddress | Slave address from which the read operation is to be
performed

Returns:

Error_Success - Successfully performed the 12C transfer.
Error_I2C_Transfer_Cmd_Failed - 12C Transfer failed.

Sample:
/*
* Enable I2C Pass thru using MchpUsb2530 API;
* Program EEPROM through I2C from starting addr ©
* Disable I2C Pass thru once done
*/

// EEPROM
#define EEPROM_ADDR OxA0

MCHP_USB_ERROR error = MCHP_Error_Success;
BYTE gbyEEPROMBuffer[9];
BYTE byAddr = EEPROM_ADDR;

WORD wOffset = 0;
unsigned char pbyBuffer[1024] = {0};

// Enable pass thru
error = MchpUsbI2CSetConfig(hDevice, TRUE, NULL);
if(error != MCHP_Error_Success) {

// return error;

}

if (wOffset < 256) {
gbyEEPROMBuffer[@] = wOffset;

} else {
gbyEEPROMBuffer[@] = (wOffset - 256);
byAddr |= exe2;
}

// Write the address
error = MchpUsbI2CWrite(hDevice, 1, gbyEEPROMBuffer, byAddr);

if (error == MCHP_Error_Success) {
// Read the value to pbyBuffer
// Append READ bit (@x1) to the slave address
error = MchpUsbI2CRead(hDevice, wDatalLen, pbyBuffer, (byAddr | @xel));

}

// Disable pass thru
error = MchpUsbI2CSetConfig(hDevice, FALSE, NULL);

MICROCHIP CONFIDENTIAL Page 21

USB2530 API User Manual

3.5.4 MchpUsbI2CWrite

Prototype:
MCHP_USB_ERROR MchpUsbI2CWrite(HANDLE DevID, INT BytesToWrite,
BYTE* OutputData, BYTE bySlaveAddress)

Devices Supported: USB2534 Family

Description:
This API performs an 12C write through the 12C pass-through interface of USB2530
device.

Note: A successful 12C EnablePassthrough should be done using
MchpUsbl12CSetConfig API before using this function.

As the firmware acts as a complete pass through for the 12C read / write requests, the
caller should provide the slave address parameter in 12C compliant format as
described in the table below (7 MSBs for address and a value of 0 in bit O for a write
operation).

Slave Address R=0
Bits 716(5/4(3|2]|1 0
Example | 1 |0|1]0(0|0]|0 0

Parameters:

{1 | Parameter Description

IN | DevID Handle to the USB2530 device

IN | BytesToRead Length of bytes to write to the 12C slave

IN | OutputData Pointer to data buffer which contains the data to write to the
slave

IN | bySlaveAddress | Slave address to write the data buffer to.

Returns:
Error_Success - Successfully performed the 12C transfer.
Error_I12C_Transfer_Cmd_Failed - 12C Transfer failed.

Sample:

/*

* Enable I2C Pass thru using MchpUsb2530 API;
* Program EEPROM through I2C

* Disable I2C Pass thru once done

*/

MICROCHIP CONFIDENTIAL Page 22

USB2530 API User Manual

// EEPROM
#define EEPROM_ADDR OxA0

MCHP_USB_ERROR error = MCHP_Error_Success;
WORD wBytesSent Q;

BYTE byNumBytes = 0;

BYTE byAddr = EEPROM_ADDR;

BYTE gbyEEPROMBuffer[9];

// Assumed that this buffer will be filled with data by other calls
unsigned char pbyBuffer[1024] = {0};

error = MchpUsbI2CSetConfig(hDevice, TRUE, NULL);

if(error != MCHP_Error_Success)
return error;

//Program 8 bytes at a time
do

{
//Prepare buffer

byNumBytes = 1;

if((wOffset + wBytesSent) < 256)

{
gbyEEPROMBuffer[0] = (wOffset + wBytesSent);

}

else

{
gbyEEPROMBuffer[@] = (wOffset + wBytesSent) - 256;
byAddr |= exe2;

}

for(BYTE 1 = 0; i < 8; i++)
if((wBytesSent + i) < wDatalLen)

gbyEEPROMBuffer[i + 1] = pbyBuffer[wBytesSent + i];

byNumBytes++;

}
}
error = MchpUsbI2CWrite(hDevice, byNumBytes, gbyEEPROMBuffer, byAddr);
if(MCHP_Error_Success == error)
{

wBytesSent += (byNumBytes - 1);
}
else
{

break;
}
//Allow 1@ms worstcase for EEPROM to do the actual write
Sleep(10);

MICROCHIP CONFIDENTIAL Page 23

USB2530 API User Manual

Jwhile(wBytesSent < wDatalLen);

// Disable pass thru
error = MchpUsbI2CSetConfig(hDevice, FALSE, NULL);

3.6 OTP Bridging APIs

Microchip hubs support configuration of the hub through OTP memory. This section
enumerates the APIs relevant for OTP memory read / program.

3.6.1 MchpUsbOtpRead

Prototype:
MCHP_USB_ERROR MchpUsbOtpRead (HANDLE DevID, INT MemoryLocation,
INT BytesToRead, BYTE* OTPBuffer, INT * ActualBytesRead)

Devices Supported: USB2534 Family

Description:

This API reads bytes of data mentioned in the BytesToRead parameter from the OTP
memory region of the USB2530 device starting at address mentioned in the
MemoryLocation parameter.

Note: The memory for OTPBuffer should be allocated to the size of BytesToRead
bytes by the calling function.

Parameters:

% Parameter Description

IN DevID Handle to the USB2530 device

IN MemoryLocation | Start address in OTP from where the read operation starts
IN BytesToRead Pointer to input data buffer to retrieve the bytes read
OUT | OTPBuffer Pointer to the buffer where the data read from OTP

memory region will be stored.

OUT | ActualBytesRead | Pointer where the number of bytes actually read from
OTP Space is returned.

Returns:

Mchp_Error_Success - for operation success

Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

MICROCHIP CONFIDENTIAL Page 24

USB2530 API User Manual

unsigned char buff[1024] = {0};
int ActualBytesRead = 0;

// Read 1KB of OTP starting from offset ©
MCHP_USB_ERROR error = MchpUsbOtpRead(hDevice, // Valid device handle
0x0, // Start address ©
1024, // Bytes to read (<= buffer size)
buff, // OTPBuffer
&ActualBytesRead); // Actual bytes read

if(resut==MCHP_Error_Success){
// OtpRead Succeeded
}

3.6.2 MchpUsbOtpWrite

Prototype:

MCHP_USB_ERROR MchpUsbOtpWrite (HANDLE DevID, INT
MemoryLocation, INT BytesToWrite, BYTE* ConfigData, INT *
ActualBytesWritten)

Devices Supported: USB2534 Family

Description:

This APl writes bytes of data as mentioned in the BytesToWrite parameter to the
OTP memory region of the USB2530 device beginning from the memory location
contained in MemoryLocation parameter.

Parameters:

{1 | Parameter Description

IN DevID Handle to the USB2530 device

IN MemoryLocation Start address in OTP from where the read operation
starts

IN BytesToWrite Pointer to input data buffer to retrieve the bytes read

IN ConfigData Pointer to the buffer where the data read from OTP
memory region will be stored.

OUT | ActualBytesWritten | Pointer where the number of bytes actually read from
OTP Space is returned.

Returns:

Mchp_Error_Success - for operation success

Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

MICROCHIP CONFIDENTIAL Page 25

USB2530 API User Manual
unsigned char buff[1024] = {0};
int ActualBytesRead = 9;
// Program 520 bytes starting at offset 2
MCHP_USB_ERROR error = MchpUsbOtpWrite(hDevice, // Valid device handle
ox2, // Start address 2
520, // Bytes to write (<= buffer size)
buff, // OTPBuffer contains the data to be written
&ActualBytesRead); // Actual bytes read

if(resut==MCHP_Error_Success){
// OtpWrite Succeeded
}

3.7 RAM Bridging APIs
3.7.1 MchpUsbRamRead

This API is a placeholder reserved for future use and currently just duplicates the
functionality of MchpUsbXdataRead API

3.7.2 MchpUsbRamWrite

This API is a placeholder reserved for future use and currently just duplicates the
functionality of MchpUsbXdataWrite API

3.8 SPI Bridging APIs

This section lists all the USB-SPI bridging APIs.

3.8.1 MchpUsbSpiSetConfig

Prototype:
MCHP_USB_ERROR MchpUsbSpiSetConfig (HANDLE DevID, UINT32
EnterExit, UCHAR* IDorMCHP_USB_ERROR))

Devices Supported: USB2534 Family

Description:

This API enables/disables the SPI interface with USB2534. If SPI control register is
not edited by the user then this function would put SPI in default mode i.e, mode0 and
dual_out_en = 0. Speed is dependent totally on the strap options.

Parameters:

MICROCHIP CONFIDENTIAL Page 26

USB2530 API User Manual

{1 | Parameter Description
IN DevID Handle to the USB2530 device
IN EnterExit 1 - Pass thru Enter

0 - Pass thru Exit

OUT | IDorMCHP_USB_ERROR | Reserved for Future use

Returns:

Mchp_Error_Success - for operation success

Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

/*
* Enter SPI Pass thru using MchpUsb2530 API; hDevice is a valid USB2530 device
handle
*/
MCHP_USB_ERROR error = MchpUsbSpiSetConfig(hDevice, 1, NULL);
if (MCHP_Error_Success != error)

{
¥

// SPI Pass thru succeeded

3.8.2 MchpUsbSpiWrite

Prototype:

MCHP_USB_ERROR MchpUsbSpiWrite(HANDLE DevID, UINT BytesToWrite,
UCHAR™* OutputData, UINT wTotalLength)

Devices Supported: USB2534 Family

Description:

This API is a low level SPI pass thru command Write. All commands to the SPI
interface are directed as SPI Pass thru write.

Note: SPI pass thru enter must have been done before executing this API.

Parameters:

{1 | Parameter Description

IN | DevID Handle to the USB2530 device

IN | BytesToWrite | The BytesToWrite is utilized to mention the number of bytes
the SPI flash will return.

IN | OutputData Buffer containing the command/ data to be sent to the device.

IN | wTotalLength | This field is the size of USB command OUT packet being sent
to the firmware.

MICROCHIP CONFIDENTIAL Page 27

USB2530 API User Manual

Returns:

Mchp_Error_Success - for operation success

Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

/*

* Enter SPI Pass thru using MchpUsb2530 API;

* hDevice is a valid USB2530 device handle;

* Send a read JDEC ID command through a pass thru write
Exit SPI pass thru once done

*

*/

// JEDEC ID read op-code is Ox9F; Refer SPI Opcocdes in PAS for further details
BYTE abyjedecid_cmd[] = {@x9f};

*
i Issue Read jedec id command via pass thru write
*
MéHP_USB_ERROR error = MchpUsbSpiWrite(hDevice, 1, &abyjedecid_cmd[0], 4);
if(MCHP_Error_Success == error)
¢ // Pass thru write succeeded
Qéhﬁb;bSpiSetConfig(hDevice, @, NULL); // Exit pass thru
}

3.8.3 MchpUsbSpiRead

Prototype:

MCHP_USB_ERROR MchpUsbSpiRead(HANDLE DevID, UINT BytesToRead,
UCHAR* InputData, UINT wTotalLength)

Devices Supported: USB2534 Family

Description:
This APl is the low level SPI pass thru command read.

Note: SPI pass thru enter must been done before executing this API.

Parameters:

{1 | Parameter Description

IN | DevID Handle to the USB2530 device

IN | BytesToRead | The BytesToRead is utilized to mention the number of bytes the
SPI flash will return for the pass thru command

MICROCHIP CONFIDENTIAL Page 28

USB2530 API User Manual

IN | InputData Buffer used to store the data received from the device.

IN | wTotalLength | This field is the size of USB command OUT packet being sent
to the firmware

Returns:

Mchp_Error_Success - for operation success

Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

* Enter SPI Pass thru using MchpUsb2530 API;

* hDevice is a valid USB2530 device handle;

* Send a read JDEC ID command through a pass thru write

* Read the jedec id from the response buffer using pass thru read
* Exit SPI pass thru once done

typedef struct tagJEDECID
{
BYTE byManufacturer;
BYTE byMemoryType;
BYTE byDeviceld;
char szPartNumber [20];

BYTE byValidationMask;
} JEDECID;

// JEDEC ID read op-code is Ox9F; Refer SPI Opcocdes in PAS for further details
BYTE abyjedecid_cmd[] = {@x9f};
BYTE abyjedecid_rsp[10] = {0};

/*

* Issue Read jedec id command via pass thru write

*/

MCHP_USB_ERROR error = MchpUsbSpiWrite(hDevice, 1, &abyjedecid_cmd[@], 4);

// Read the ID
error = MchpUsbSpiRead(hDevice, 4, &abyjedecid_rsp[0], 4);

If (MCHP_Error_Success == error)
{
// SPI read succeeded
// Byte @ in the response buffer is the response for opcode Ox9F. So
// 1ignore.
// byte 1 is the manufacturer, byte2 memory and is based on the JEDECID
// struct provided above
/...
MchpUsbSpiSetConfig(hDevice, @, NULL); // Exit pass thru

MICROCHIP CONFIDENTIAL Page 29

USB2530 API User Manual

3.9 UART Bridging APIs

This section lists all the USB-UART bridging APIs.

3.9.1 MchpUsbUartSetConfig

Prototype:
MCHP_USB_ERROR MchpUsbUartSetConfig(HANDLE DevID, UINT32
BaudRate, BOOL StopBits, BOOL ParityEn, BOOL ParityOdd)

Devices Supported: USB2534 Family

Description:
This API enables the UART device and sets the baud rate for serial communication.

Note:
Non-standard baud rates different from the ones specified here are also possible.
Make sure that the other paired sender/receiver also uses the same baud rate.

Parameters:

{1 | Parameter | Description

IN | DevIiD Handle to the USB2530 device

IN | BaudRate | Baud rate to be set. Suggested standard values are 600, 1200,
2400, 4800, 9600, 19200, 38400, 57600, 115200.

IN | StopBits Not Applicable. Included for Compatibility. Set value to NULL.

IN | ParityEn Not Applicable. Included for Compatibility. Set value to NULL.

IN | ParityOdd | Not Applicable. Included for Compatibility. Set value to NULL.

Returns:

Mchp_Error_Success - for operation success

Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

/* Obtain a valid device, hDevice, through a call to one of device handle open
APIs. Then set baud rate to 9600 */

MCHP_USB_ERROR error = MchpUsbUartSetConfig(hDevice, 9600, 0, 0, 0);
if (error == MCHP_Error_Success) {

// Baud rate set to 9600
}

MICROCHIP CONFIDENTIAL Page 30

USB2530 API User Manual

3.9.2 MchpUsbUartWrite

Prototype:

MCHP_USB_ERROR MchpUsbUartWrite (HANDLE DevID, UINT32
BytesToWrite, UCHAR* OutputData)

Devices Supported: USB2534 Family

Description:
This API transfers data through serial port to the connected serial peripheral.

Note:
Set Baud rate using MchpUsbUartSetConfig API before calling this API.

Parameters:

{1 | Parameter Description

IN | DevID Handle to the USB2530 device
IN | BytesToWrite | Length of bytes to transfer from serial
port

IN | OutputData Pointer to output data buffer which
contains the data to transfer

Returns:

Mchp_Error_Success - for operation success

Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

/* 1. Obtain a valid device, hDevice, through a call to one of device handle
open APIs.

2. Then set baud rate to 9600

3. Transmit some data*/

unsigned char transmit_data[512] = {@}; // OutputData

// Some function that would fill random data
RandomFillData(transmit_data);

unsigned int bytes_to_write = 512;
if (ERROR_SUCCESS == MchpUsbUartWrite(hDevice, bytes_to writeto_write,

transmit_data)) {
// UART write success

}

MICROCHIP CONFIDENTIAL Page 31

USB2530 API User Manual

3.9.3 MchpUsbUartRead

Prototype:
MCHP_USB_ERROR MchpUsbUartRead(HANDLE DevID, UINT32 BytesToRead,
UCHAR* InputData)

Devices Supported: USB2534 Family
Description:

This API synchronously receives data through serial port from the connected serial
peripheral

Note:
Set Baud rate using MchpUsbUartSetConfig API before calling this API.

This API call is a blocking one and will not return until it receives the specified
number of bytes.

The calling function should allocate memory for the InputData buffer as mentioned in
the BytesToRead parameter.

Parameters:

% Parameter Description

IN DevID Handle to the USB2530 device

IN BytesToRead | Length of bytes to transfer to the
serial port

OUT | InputData Pointer to input data buffer which
contains the data to transfer

Returns:

Mchp_Error_Success - for operation success
Errorcode (defined in MCHP_USB_ERROR or Windows System call error code) -
for failure

Sample:

/* 1. Obtain a valid device, hDevice, through a call to one of device handle
open APIs.

2. Then set baud rate to 9600

3. Receive some data*/

unsigned char ReadBuffer [120] = {0};

MICROCHIP CONFIDENTIAL Page 32

USB2530 API User Manual

MCHP_USB_ERROR error = MCHP_Error_Success;
int receiveSize = 100; // <= sizeof ucInput

if (ERROR_SUCCESS == MchpUsbUartRead(hDevice, receiveSize, ReadBuffer)) {
// UART read success

}

4 APPENDIX A

4.1 Classes & Structs

4.1.1 struct _DEVICE_INTERFACE_

typedef struct DEVICE INTERFACE {

DWORD dNoOfDevices; /*1< Number of devices */

WCHAR **DevicePath; /*1< List of device instance paths */
} DEVIO, *PDEVIO;
Devices Supported: USB2534 Family

Description:
This structure holds the number of devices and their device paths
4.2 Typedefs & Macros

4.2.1 Macros
#tdefine MCHP_USB2530API_API declspec(dllimport)

4.2.2 Typedefs
typedef struct _DEVICE_INTERFACE_ DEVIO

typedef struct _DEVICE_INTERFACE_* PDEVIO

typedef enum tagMCHP_USB_ERROR MCHP_USB_ERROR

4.2.3 MCHP_USB_ERROR

Description:

This list of errors is defined in the enum tagMCHP_USB_ERROR which can be found
in the McpUSBInterface.h header file distributed along with the library.

MICROCHIP CONFIDENTIAL Page 33

USB2530 API User Manual

The following are the errors, their values and descriptions.

| MCHP USB ERROR Value | Description
1 | MCHP_Error_Success 0x0000 | Operation Success
MCHP_Error_Device_Not | 0x0001 | The specific device was not found
2 | Found
MCHP_Error_Invalid_Arg | 0x0002 | Argument passed to the API is invalid
3 | ument
MCHP_Error_Invalid_De | 0x0003 | Device handle passed to the API is not
4 | vice Handle valid
MCHP_Error_WinUSBAP | 0x0004 | API of the winusb library failed
5 | |_Fail
MCHP_Error_ApiNotSup | 0x0005 | This particular API is not supported for
6 | ported this hub family
7 | MCHP_Loadbinfail 0x1000 | Could not load the binary file
8 | MCHP_ReadBackFailed 0x1001 | Reading from SPI flash failed
9 | MCHP_WorongFileSize 0x1002 | File size did not match
MCHP_SpiPassThruWrite | 0x1003 | SPI pass through write command failed
10 | Failed
MCHP_SpiPassThruEnter | 0x1004 | SPI Pass thru Enter command failed
11 | Failed
MCHP_SpiNoDevice 0x1005 | SPI flash could not be detected or not
12 present
13 | MCHP_SpiCancelDI 0x1006 | SPI Cancel Download
MCHP_SpiProgrammingf | 0x1007 | SPI flash programming failed
14 | ailed
MCHP_SpiPassThruExitF | 0x1008 | SPI Pass thru Enter command failed
15 | ailed
MCHP_SpiPassThruRead | 0x1009 | SPI pass through read command failed
16 | Failed
MCHP_SpiFlashWrongDe | 0x100A | Unsupported SPI flash detected
17 | vicelD
MCHP_SpiFWCompareFa | 0x100B | SPI flash read back and compare failed
18 | iled with programmed binary
MCHP_SpiOpenEraseSig | 0x100C | Open Erase signature bin file failed
19 | FileFailed
MCHP_SpiReadEraseSigF | 0x100D | Read Erase signature bin file failed
20 | ileFailed
MCHP_SpiSRAMProgFai | 0x100E | SRAM programming failed
21 | led
MCHP_SpiEraseSignature | 0x100F | SPI_ERASE_4KBSECTOR command
22 | Failed failed. Applicable for USB5734 only
MCHP_SpiChipEraseFaile | 0x1010 | Chip Erase command failed
23 |d

MICROCHIP CONFIDENTIAL

Page 34

USB2530 API User Manual

MCHP_Error_I2C_Passthr | 0x2000 | Cannot enable 12C Pass thru interface
24 | ough Enter Cmd_Failed
MCHP_Error_I2C_Passthr | 0x2001 | Cannot disable 12C Pass thru interface
25 | ough Exit Cmd_Failed
MCHP_Error_I2C_Transf | 0x2002 | 12C Transfer failed
26 | er Cmd_Failed
MCHP_Error_I12C_Max_S | 0x2003 | 12C MAX Size Error
27 | ize_Error
28 | MCHP_SMBPortOpenErr | 0x3000 | SMBus port open error
29 | MCHP_SMBBitRateErr 0x3001 | Bitrate error
30 | MCHP_SMBDatalLenErr | 0x3002 | Data length error
31 | MCHP_SMBWriteErr 0x3003 | SMBus write access failed
32 | MCHP_SMBReadErr 0x3004 | SMBus read access failed
33 | MCHP_SMBCloseErr 0x3005 | SMBus close error
MCHP_Error_OTP_Invali | 0x3000 | Invalid buffer size
34 | d_BufferSize
MCHP_Error_ UART_Bau | 0x4000 | Communication at the specified baud rate
35 | drateErrorPercentTooHigh will be error prone
MCHP_Error_ UART _Set | 0x4001 | Cannot set USB2534 UART registers,
36 | Regs probably command failure
MCHP_Error_ UART_PC_ | 0x4002 | Transmit failed without transmitting any
37 | To_Device SentOBytes data
MCHP_Error_ UART_PC_ | 0x4003 | Transmit failed after transmitting some
38 | To_Device Failed data
MCHP_Error UART_Rx_ | 0x4004 | Receive failed due to buffer overrun,
39 | Buffer_Overrun reduce baud rate
MCHP_Error UART_RxF | 0x4005 | Receive failed due to unexpected Rx FIFO
40 | IFO_Status _Unexpected status
MCHP_Error UART_Rx | 0x4006 | Receive failed since worker thread creation
41 | Thread Creation_Failed failed
MCHP_Error UART_Rx_ | 0x4007 | UART Rx is pending due to asynchronous
42 | Pending mode
MCHP_Error UART_Rx_ | 0x4008 | UART receive aborted as per user request
43 | UserAbort
MCHP_Error UART_Rx_ | 0x4009 | UART Receive command failed by the
44 | Command_Failed firmware
MCHP_Error UART_Rx_ | 0x400A | Receive failed without receiving any data
45 | 0_Bytes
MCHP_Error_OTP_Check | 0x5000 | Check OTP command failed
46 | Fail
47 | MCHP_Error_Undefined | OXFFFF | Unknown error occurred

MICROCHIP CONFIDENTIAL

Page 35

USB2530 API User Manual

MICROCHIP CONFIDENTIAL Page 36

