
 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 1

PD69200M

Dual Core Host / POE

MCU communication

protocol using shared

memory block

Version 4.00

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 2

External Documents Update

1. PD69200_UG_COMM_PROT document was updated to revision 1.21.

a. New commands where added.
b. Save and Restore commands are marked as not valid for PD69200M.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 3

Table of Content
1 Introduction: ... 4

1.1 Purpose .. 4
1.2 Scope: ... 4
1.3 References ... 4

2 Over all description .. 5
2.1 Block Diagram .. 5
2.2 Communication Method: ... 6
2.3 POE Manager communication module Architecture .. 7
2.4 Communication data exchange structure ... 8
2.5 Protocol Version ... 10
2.6 Communication Control Bytes: ... 11
2.7 Communication data exchange structure value settings after system power up 13
2.8 Communication data exchange structure value settings after Steady state 13
(No new communication from Host).. 13
2.9 Read / Write operation sequence description .. 14
2.10 General purpose Read / Write registers ... 17
2.11 Interrupt out to Host .. 19
2.12 Keep alive function ... 21
2.13 DN Frequency ... 21

3 Boot up flow (PowerUp) .. 22
3.1 Dragonite Reset from Host ... 23
3.2 Dragonite Self Reset... 23
3.3 Dragonite Communication Error Counter ... 24

4 Debug Options .. 24
4.1 Dragonite .. 24
4.2 Host Debug Application .. 29

5 Code Delivery .. 34
5.1 Code Delivery ... 34
5.2 CRC Calculation ... 34
5.3 mscc tool ... 35
5.4 AC3x - Aldrin ... 37

Appendix – A – Shared Memory Addresses @ POE DTCM .. 39
Appendix – B – POE Reset influence on protocol flow .. 44
Change Record... 51

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 4

1 Introduction:

1.1 Purpose

The purpose of this document is to describe the communication protocol between a
Host CPU that controls and monitors POE Manager CPU, when both of them share
a memory block for communication. In addition this document describes the
necessary flows that need to be executed on each one of the CPUs to enable this
protocol.

1.2 Scope:

This document is intended for the SW developer, the SW customers and software
QA.

1.3 References

MSCC - PD69200 15 byte communication protocol.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 5

2 Over all description

2.1 Block Diagram

This block diagram describes the connection between the Host and the POE
Manager.

POE Manager

Host CPU

I/O

Module

IRQ_To_Host

Internal Connection

POE DomainHost Domain

External Connection

External DDR Memory

GPIO_0 => SPI_CS

GPIO_1 [spare]

SPI

Module

Miso, Mosi, SCK

DTCM +

Shared

Memory

communication

Array

Reset

Debug

UART
TX, RX

ITCM

MMU

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 6

2.2 Communication Method:

The communication is based on flags that direct the information exchange flow. The

information inside the message is based on 15 byte protocol that is being used in

PD69200 POE manager solution. The concept is that instead of receiving and

transmitting information through UART using an RX/TX fifos of 15 byte, the 15 byte

information is being copied directly (memcopy operation) by each one of the CPUs.

The MO_Byte is used for data flow control, similar to the fifo information size check

that is being used in UART solution. The protocol remains asynchronous half duplex.

In addition to the 15byte protocol transfer, a special debug area was added to

enable customer support debug. The debug area is split to 3 sections – Host / PoE

messages sniffer, PoE dedbug prints, secondary PoE control.

The debug will be described in a dedicated chapter.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 7

2.3 POE Manager communication module Architecture

Fifo

RX

Fifo

TX

Get Message

Start IRQ

Send Message

I2C

IRQ

Receive I2C

Byte

Get I2C Byte to

Sent

UART

IRQ

Receive UART

Byte

Get UART Byte

to Send

Dual core

Shared Memory

communication task

RX_MO_Byte

RX2_MO_Byte

TX_MO_Byte

TX2_MO_Byte

POE Manager Software

Dual core

Shared Memory Debug

communication

RX_Debug_MO

_Byte

TX_Debug_MO

_Byte

POE

Manager

Debug

Note: Message

direction is

illustrated as

Host View

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 8

2.4 Communication data exchange structure

32 bit width array

CPU Type Host Protocol Version Register Host

CPU Type PoE Protocol Version Register PoE

POE_System_Type

POE_App_Alive_Counter

Host_Input_From_POE _General_Reg

Self_RST_Cause Self_RST_Event_Count

Comm_Err_Cntr

Host Input_From_PoE_IRQ_Reg

Host_RST_Cause_DN_Reflection Reserved
Control Descriptor Recovery Descriptor

Host_Output_To_POE

Host_RST_Cause Host_RST_Event_Count

 Interrupt Mux Select

0x000000 TX_MO_Byte

0x000000 DATA Byte0

0x000000 DATA Byte1

||
||

0x000000 DATA Byte14

DN Frequency

0x000000 RX_MO_Byte

0x000000 DATA Byte0

0x000000 DATA Byte1

||
||

0x000000 DATA Byte14

x16 Long

x16 Long

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 9

DN Frequency Report

Size_N TX_Debug_MO_Byte

0x000000 Character #1

||
||

0x000000 Character #N

Size_N RX_Debug_MO_Byte

0x000000 Character #1

||
||

0x000000 Character #N

0x000000 TX2_MO_Byte

0x000000 DATA Byte0

0x000000 DATA Byte1

||
||

0x000000 DATA Byte14

0x000000 RX2_MO_Byte

0x000000 DATA Byte0

0x000000 DATA Byte1

||
||

0x000000 DATA Byte14

Sniffer size

Write Pointer

Read Pointer

x600 Long

x600 Long

x16 Long

x16 Long

x Sniffer
Size Long

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 10

2.5 Protocol Version

Each side will deliver the protocol version that it supports.
Based on the register value, the Host can recognize version mismatch that will
not allow using new communication commands/requests.
Protocol Version Register Host [15..0] – The Host should update this register
with the supported protocol version number, prior to releasing the POE manager
from Reset state. The Host can write and read it’s protocol version. The POE
side can only read this register.

CPU Type Host [31..16] – The Host should update this register with the
expected DN type, prior to releasing the POE manager from Reset state. The
Host can write and read this register value. The POE side can only read this
register.
Existing Valid values:

DN type Register Value Note

ARMv5 0x0000 or 0xFFFF the first DN AC and AC3

ARMv5 with freq
change

0x0001 AC3x

How to test : Host write 0x0001 to the CPU Type Host register and should read back the same value from
CPU Type PoE register. Next the Host should repeat the procedure with a different value.

Protocol Version Register PoE – The Host application can only read this
register. This register is updated by the PoE Manager. The PoE Manager can
read and write this register. The value of this register should be 0xFFFFFFFF
after boot up (Set by the Host), priore to any PoE code execution.

Protocol Version Added features

0x0001 Initial protocol features

0x0002 Additional support for sniffer, secondary interface and
Dragonite interrupt mask register (Control Dragonite IRQ
to Host output)

0x0003 Adding descriptor

0x0004 Adding DN type support

How to operate with MSCC tool: [file shard_mem.c --> function int Initshard_mem(void)]

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 11

2.6 Communication Control Bytes:

The data exchange between the two CPUs is based on polling and updating a
communication control fields, located in the shared memory area. The data
exchange structure is split into 2 sections. One for 15 byte data exchange and
the 2nd for debug information exchange. The control fields are defined
accordingly.

• TX_MO_Byte is used for transmitting data from the Host to the POE

Manager. The allowed values of this byte are:
 0xA0 – Host Ownership.
 Host can update the 15 byte information.
 The information is not valid for POE manager.
 0x0A – POE Ownership.
 Host sent a message to the POE manager and the information is
 valid for the POE Manager. Host is not allowed to change the data
 as long as the value of this byte is 0x0A.
 0xFF – Init value (Set by the Host as part of boot up sequence),
 will be updated by POE to 0xA0, after POE release from reset.
 The data structure information is not valid.

How to test : The Host should set an unsupported value (0xBB). The PoE is expected to change the
value to 0xA0 and increment the communication error counter.
The Host should verify the described PoE behavior.

• RX_MO_Byte is used for receiving data from the POE Manager, by the Host.
The allowed values of this byte are:
 0xB0 – Host Ownership.
 Host can Read the 15 byte information.
 The information is valid and was replied from the POE manager.
 The POE manager cannot update the information as long as the
 value of this byte is 0xB0.
 0x0B – POE Ownership.
 Host read the last message and the area is ready for new reply
 from the POE manager. The host is not allowed to read data as
 long as the byte value is 0x0B.
 0xFF – Init value (Set by the Host as part of boot up sequence),
 will be updated by POE to 0x0B, after POE release from reset.
 The data structure information is not valid.

How to test : The Host should set an unsupported value (0xAA). The PoE is expected to change the
value to 0x0B and increment the communication error counter.
The Host should verify the described PoE behavior.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 12

Note: During system power up, communication data exchange structure bytes must be
configured by the Host to 0xFF, prior to releasing the POE manager from Reset.

 How to operate with MSCC tool:
[file shard_mem.c --> function int Get_shard_mem_msg(char *buff, int size, long type, long *read_size)
and int Send_shard_mem_msg(char *buffer, long sizeofmsg, int type)]

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 13

2.7 Communication data exchange structure value settings after
system power up

All data exchange structure area bytes must be filled with 0xFF by the host, after
power up, prior to releasing the POE manager from reset.
When the POE manager is out of reset it will start executing its Application will
update the communication control bytes and the relevant protocol registers.
As long as the ownership registers do not contain the exact host ownership value,
the host is not allowed to use the structure data.
In addition, as long as POE Application is executing the watch dog counter
“POE_App_Alive_Count” will be advanced.
If the PoE application is not running from any reason, the “POE_App_Alive_Count”
will stop counting.

2.8 Communication data exchange structure value settings after
Steady state

(No new communication from Host)

TX_MO_Byte is set to “Host Ownership” (Ready for new message from Host).
RX_MO_Byte is set to “POE Ownership” (Ready for new reply from POE).

Protocol Version Register Host: != 0xFFFFFFFF

Protocol Version Register PoE: != 0xFFFFFFFF

POE_System_Type

POE_App_Alive_Counter: = Counting

Host_Input_From_POE _General_Reg

Self_RST_Cause: = Last Self_RST_Event_Count

Comm_Err_Cntr

 Host Input_From_PoE_IRQ_Reg

Host_RST_Cause_DN_Reflection Reserved

Control Descriptor

Host_Output_To_POE

Host_RST_Cause: = Last Host_RST_Event_Count

 Interrupt Mux Select

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 14

2.9 Read / Write operation sequence description

2.9.1 Host Read/Write flow

Host Read

RX_MO_Byte = 0xB0

Host read RX_MO_Byte

No

Yes

Read exit

Host Copy shared

memory RX area

structure 15 byte

protocol information

Host set RX_MO_Byte to 0x0B

Host Write

Host Update shared

memory TX area

structure with 15 byte

protocol information

TX_MO_Byte = 0xA0

Host set TX_MO_Byte to 0x0A

Host read TX_MO_Byte

Write exit

Yes

No

How to operate with MSCC tool:

[file shard_mem.c --> function int Get_shard_mem_msg(char *buff, int size, long type, long *read_size)
and int Send_shard_mem_msg(char *buffer, long sizeofmsg, int type)]

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 15

2.9.2 POE_Manager Read/Write flow

POE Manager Write support

TX_MO_Byte = 0x0A

POE_Manager set

TX_MO_Byte to 0xA0

Read TX_MO_Byte

Yes

No

POE_Manager copy shared

memory TX area structure with 15

byte protocol information to internal

TX QUE

POE_Manager copy it’s

internal Reply QUE

information to the shared

memory RX area structure

RX_MO_Byte = 0x0B

Yes

Reply QUE

contain a message

Yes

Read exit

No

No

Write exit

POE Manager Read support

Read RX_MO_Byte

POE_Manager set

RX_MO_Byte to 0xB0

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 16

2.9.3 Host Full Transaction Flow with POE Manager

Host Read operation

Host write operation for new message

POE Reply Message Empty or

Not Ready

Host Read operation for new reply

Host New Transaction

Host Ready for new message

Yes

No

Wait 10mSec

POE Reply Message Empty or

Not Ready
Analyze Old Message

To clear old reply If

exist. (Generally

due to self reset).

No

Yes

Note: Please refer to 15 byte communication protocol description document

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 17

2.10 General purpose Read / Write registers

There are 3 x 32 bit registers for general purpose use, simulating I/O controls
and reflecting POE_IRQ register.

1. Host_Output_To_POE – Read/Write register from host to POE manager.
The POE manager will poll the value of this register. This register is a read
only by POE.
Bit 0 of this register will be used for Disable ports operation, instead of the
existing input xDisable_Ports in the generic PD69200.

How to test : Clear the Bit (‘0’), the PoE ports are OFF,Set Bit to ‘1’, PoE ports are ON.

Host_Input_From_POE _General_Reg - Read only register by Host from
POE manager. The Host will poll the value of this register. The POE can
perform Read/Write operations on this register.
Bit 0 – SystemOK_Pin:
This register bit is used for reflecting the inverted value of xSystem_status
pin, instead of the existing output in the generic PD69200.
This bit will be set to 1 when the PD69200 is ready for communication and
Vmain is inside the defined valid range.

Bit 1 – Message Ready:
This register bit is used for reflecting Message Ready, instead of the existing
I/O in the generic PD69200.
When a reply message is written to the shared memory and it is valid for
Host, this bit will be set. The bit will be cleared when MO flag returns to the
Dragonite.

How to test : test by sending a Message and not read the answer. Read this bit,then read the Message
and read this bit.

Bit 2 Fan_Control: This register bit is used for Fan Control, instead of the
existing output in the generic PD69200. This bit will be set to ‘1’ when the
temperature of one of the PD69208 devices in the system will go higher then
thermal alarm threshold.

How to test : Set thermal alarm threshold to 10degC while the product in room temperature by using
relevant 15 byte protocol command. Verify that the bit is set. Return to 125degC and verify that the bit is
cleared.

Bit 3 Int_Out:
This register bit is used to reflect Int_Out (When interrupt event is reported
and enabled), instead of the existing output (xInt_Out) in the generic
PD69200.

How to test : testing this bit by enable the interrupts using relevant 15 byte protocol command.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 18

generate PoE event like disconnecta port.
Verify the the bit is set.
Read the 15 byte system status and verify that the bit is cleared.

2. Host Input_From_PoE_IRQ_Reg
The Host will poll the value of this register. The POE can perform Read/Write
operations on this register.
The value is a reflection of the IRQ register which defined at the 15 BYTE
protocol document.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 19

2.11 Interrupt out to Host

2.11.1 Interrupt out I/O to host
The dragonite can generate an Interrupt to the Host (See block Diagram).
The interrupt is a logical ‘1’ pulse generated by the DN software with time
duration of about 25nSec.
The interrupt cause can be read in Host_Input_From_POE_General_Reg.
When one of the bits in this register is set and “Interrupt Select Mux” was set
to the relevant option, an IRQ pulse will be generated by the Dragonite.

2.11.2 Interrupt Mux Select
Read/Write register enables the host to select one of the causes that will
toggle IRQ_To_Host signal.

Value Selection Note

0x00000000 Disable Output is not active always ‘0’

0x00000001 SystemOK_Pin Output = High pulse

0x00000002 Message Ready Output = High pulse

0x00000003 Fan_Control Output = High pulse

0x00000004 Int_Out Output = High pulse

0xFFFFFFFF Disable Output is not active always ‘0’

Other Values Reserved Do not use

Note: The IRQ will be operate only if the Protocol version is set to 2 or higher.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 20

2.11.3 Host interrupt flow

Host POE_Manager_IRQ call

Initiate 15 byte protocol

interrupt read request

Disable

POE_Manager_IRQ input

RTI

Host received

15 byte interrupt data from the

POE_Manager

No

Enable POE_Manager_IRQ input

Yes

IRQ_To_Host

was set by POE

Manager

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 21

2.12 Keep alive function

The Host low level driver should check that the POE manager is alive,
recommended in case of communication timeout, by monitoring POE application
alive counter.

PoE_App_Alive_Counter
The counter is incremented by the Dragonite FW.
If the counter is halted for minimum 100mSec, it means that the POE manager was
stopped working properly and a Dragonite Reset is required.

How to test :
In regular DN operation verify that the conuter value is incremented.
hold the DN Reset and verify that the counter is halted on the same value .

2.13 DN Frequency

AC3x device supports DN frequency change.
The DN module do not have a frequency configuration register or any register
information about it’s working frequency.
Previous AC3 devices where set up with fix operating frequency of 200MHz.
To support the new AC3x with variable frequency, new registers were added to the
shared memory register map.

DN Frequency – The Host shell write to the DN its operating frequency. If the value
doesn’t match the actual DN frequency that was set by H.W the PoE SPI frequency
will be wrong and may lead to communication failures with the PD69208 devices.

DN Frequency Report - The DN report to the Host which frequency the DN choose
to work.
If both registers values do not match, it indicates that the DN FW did not find any
suitable SPI frequency divider to work with. The Host must change the DN frequency
and restart the DN.

Note: The registers value is in Hz.

Example: 250MHz = 250000000 = 0x0EE6B280

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 22

3 Boot up flow (PowerUp)

Init Dragonite Registers

Hold Dragonite at Reset

1. Dragonite SW download to ITCM

2. Set entire DTCM area to 0xFF

1. Init shard Memory based on power up definitions.

2. Disable Dragonite IRQ input at the Host.

3. Set Dragonite IRQ_to_Host output to ‘1’.

4. Set DN Frequency Register .

Release Dragonite from

Reset

 AC3 wait until Dragonite ready

(with timeout),

by polling Message Ready bit

Dragonite Boot Up

Init DN Driver

Boot Up End

Dragonite Update shard

Memory area, Based on

reset cause registers

value

For more details see 15

byte communication

protocol document

Copy recovery Data to the

saved descriptor

Host Checks ITCM CRC.

mscc_tool -e

mscc_tool -t

mscc_tool -f filename

mscc_tool -c

mscc_tool -u filename

mscc_tool -p or -n

check DN Frequency Report

register.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 23

3.1 Dragonite Reset from Host

Host_RST_Cause Host_RST_Event_Count

This register set is used to inform the POE software about the reason that the host
decided to reset the POE MCU. The event counter is 16 bit a free running
incremental counter that needs to be incremented one step on each reset event.
After POR the event counter value should be set by the host to 0xFFFF.

The Host_RST_Cause is 16 bit defined by specific number for each event type.

• POR – 0xFFFF

• POE Not responding – 0x0001

• Application request – 0x0002

• Communication errors – 0x0003

• Host Application Reboot – 0x0004

• Undefined cause – 0x1000

• ETC …

The value of this register should be updated by the Host on each reset event before
Dragonite is taken out of reset. The Dragonite will clear the value of this register
after read. The host is not allowed to write any value to this register while the
Dragonite in not held in reset state.

3.2 Dragonite Self Reset

Self_RST_Cause Self_RST_Event_Count

This register set is used to inform the Host about the reason that the POE decided to
generate a self-reset. The event counter is 16 bit a free running incremental counter
that needs to be incremented one step on each reset event. After POR the event
counter value should be set by the host to 0xFFFF.

The Self_RST_Cause is 16 bit defined by specific number for each event type.

• POR – 0xFFFF (Set by host as part of memory init after POR)

• Reserved – 0x0001

• Internal Watch Dog reset – 0x0002

• Other reason described in communication protocol – 0x0003

• External reset – 0x0004

• Undefined cause – 0x1000

• ETC …
How to test : testing by generate DN reset. Release the reset, read 0x0004 and verify that the counter
value was increment . Repeat several times.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 24

3.3 Dragonite Communication Error Counter

Comm_Err_Cntr

This Register counts up whenever an unknown ownership value is recognized.
When such error is being detected the Dragonite update the ownership value based
on reset values.

How to test : Testing by generate communication error from host like worng RX_MO_BYTE etc, this value need
to be increment
How to operate with MSCC tool:
 [file shard_mem.c --> function long save_recover_to_file(char *filename, int backup)]

4 Debug Options
The shared memory protocol contains additional areas to enable PoE debug.
This functionality is necessary since the Dragonite is part of the Host silicon and
there is no option to connect external equipment to analyze Host and PoE data
exchange or to add external debug control. In addition there is no UART at the
Dragonite. Secondary UART is available only at the Host (See block diagram 2.1)
For proper debug, sections 4.1, 4.2 and 4.4 must be implemented in both sides
(Host and Dragonite).
The debug is designed in such way that messages will go through the Host
secondary UART to the Dragonite shared memory. The Host must enable this UART
for debug and implement a Debug application that will use it.

How to operate with MSCC tool:

[file rx.c --> function int check_message_to_gui(void)]
[file tx.c --> function int check_message_from_gui(void)]

4.1 Dragonite

4.1.1 Sniffer

The sniffer enables to see messages transfer between the Host and DN. The
implementation imitates the operation of sniffing equipment for communication lines.

Note: The sniffer is not working for debug interfaces

How to operate with MSCC tool:

[file rx.c --> function void run_sniffer(void)]

4.1.1.1 Sniffer FIFO

The FIFO contains a Header and in addition can contain 15 byte TX/RX message
information or Descriptor information for more complex data reports or both types.
The FIFO Header is used to inform the capabilities (By Version) and monitor the
FIFO activity (By size and counters).

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 25

The FIFO has Write counter and Read counter.
The FIFO size is predefined by sniffer size register (defined by the Dragonite).
The write counter (WC) will be R/W from the DN and Read only from the Host.
The Read counter (RC) will be R/W from the Host and Read only from the DN.
If the difference between RC and WC will be equal to sniffer size it indicates an over
run condition.

FIFO Header

Info Type Upper 16 bit Lower 16 bit
Host
R/W

Direction

FIFO
Header

Version Sniffer Size RO

 Write counter (WC) RO

 Read counter (RC) R/W

FIFO Information

Info Type Control Byte [31..24] Information [23..0]
Host
R/W

Direction

15 Byte
Data

See Following description
bit 7 = 0

Time stamp
(16 bit)

DATA
(8 bit)

RO

Descriptor
See Following description
bit 7 = 1

Descriptor Data Pointer
(24 bit)

RO

Details

Bit 0 – FIFO Overflow
Bits [5..1] - Reserved
Bit 6 – Descriptor is unavailable
Bit 7 – Information Type
 0 – 15 byte data
 1 – Descriptor pointer

Time stamp: Dragonite
timing in steps of 1mSec.

Data: A single byte from a
15 byte protocol message.

Descriptor: A pointer to
Dragonite internal RAM
that stores variable length
information.

RO

4.1.1.2 FIFO management and messages order

The Dragonite is responsible for FIFO writes. When the Dragonite get a 15 byte
received message from the Host ,it writes to the FIFO. When the Dragonite send a
15 byte message it writes to the FIFO, together with message ready signal to the
Host. The message order in the FIFO will be: Host message 1st, Dragonite reply 2nd.
All message bytes will contain time stamping.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 26

The data can also contain a descriptor. A descriptor will appear in the FIFO when
pre-defined debug scenario will occur generating this message.
The Host should contain a special PoE debug application that can read the FIFO
messages and print them to a Debug UART, including time stamping.
At each FIFO write, the Dragonite will increment the Write Counter value. At each
Host read from the FIFO, the Host will increment the Read Counter value.

In case of descriptor in the FIFO, the descriptor is a pointer to a memory with more
data. The host should read the information in the memory according to 4.2.2. 4) and
print the descriptor information.

The memory structure is:

Header Type (16 bit) – For MSCC
use

Size (16bit) – The number of Data longs

 Time stamp (32 bit) – Dragonite timing

Data DATA (32 bit)

 DATA (32 bit)

 DATA (32 bit)

 …

4.1.1.3 FIFO Manage

The Dragonite is responsible to manage the FIFO, check for FIFO errors and write
the information to it. The Host is responsible to read the information from the FIFO
and update the Read Counter. After Dragonite is out of reset it will set write counter
and the read counter to zero (0x0). In addition the Dragonite will set the sniffer size
register (This value defines the FIFO size).
The Sniffer Size range can be 0x1E (30) till 0x1000.
Each value at the FIFO is long.
Before initiating a host read from the FIFO, the Host must verify that write counter
value is bigger than the read counter value by at least 30 Bytes. In addition, it is
recommended to check that a message ready signal was received by the Host.
When the FIFO is in use, the Host should read the FIFO information first and then
increment the read counter.
The Dragonite should write the data first and then increment the write counter.
The write counter & read counter are cyclic up to Sniffer Size.
The Dragonite will set the OVR bit when the distance between the write and read
counters are equal or above the Sniffer size.

4.1.2 Secondary 15 byte control and telemetry

The shared memory contains a main TX/RX 15 byte protocol communication area
between the Host and the Dragonite. Exact additional TX2/RX2 15 byte protocol

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 27

area exists for external control that can bypass the Host or work in parallel to the
Host.
This area is used to check PoE functionality by using external PC applications,
connected through the debug UART.
To enable this functionality the Host must have a special command that can halt any
PoE activity and any Dragonite monitoring. In addition the Host must contain debug
tunneling function that can transmit / receive messages from the debug UART to the
shared memory TX2/RX2 area.

How to operate with MSCC tool:

[file rx.c --> function int run_rx_for_gui(void)]
[file tx.c --> function int handle_tx_15byte_from_gui(char *line)]

4.1.3 PoE manager debug prints

The shared memory contains special string information area, used for debug prints.
It is described in section 0.
To use it, a special Dragonite debug version is required. The debug version will print
out relevant information to enable proper debug.

How to operate with MSCC tool:

[file rx.c --> function int run_rx_debug_text_for_gui(void)]
[file tx.c --> function int HandelDbgemsg_from_gui(char *line)]

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 28

Debug String Print control bytes:

• TX_Debug_MO_Byte is used for transmitting debug control from the Host to
the POE Manager. The allowed values of this byte are:
 0xC0 – Host Ownership.
 Host can update the data information.
 The information is not valid for POE manager.
 0x0C – POE Ownership.
 Host sent a message to the POE manager and the information is
 valid for the POE Manager. Host is not allowed to change the data
 as long as the value of this byte is 0x0C. (Size_N field must be > 0)
 0xFF – Init value (Set by the Host as part of boot up sequence),
 will be updated by POE to 0xC0, after POE release from reset.
 The data structure information is not valid.

How to test : The Host should set an unsupported value (0xBB). The PoE is expected to change the
value to 0xC0 and increment the communication error counter.
The Host should verify the described PoE behavior.

• RX_Debug_MO_Byte is used for receiving debug information from the POE
Manager, by the Host. The allowed values of this byte are:
 0xD0 – Host Ownership.
 Host can Read the debug information.
 The information is valid and was sent from the POE manager.
 The Host need to print the information to the debug UART.
 The POE manager cannot update the information as long as the
 value of this byte is 0xD0. (Size_N field must be > 0)
 0x0D – POE Ownership.
 Host read the last message and the area is ready for new reply
 from the POE manager. The host is not allowed to read data as
 as the byte value is 0x0D.
 0xFF – Init value (Set by the Host as part of boot up sequence),
 will be updated by POE to 0x0D, after POE release from reset.
 The data structure information is not valid.

• Size_N – defines the number of ASCII characters that exist in the debug
 message. (Size_N=0 means no debug info. Size > 1536 is ignored).

How to test : The Host should set an unsupported value (0xAA). The PoE is expected to change the
value to 0x0D and increment the communication error counter.
The Host should verify the described PoE behavior.

Note: During system power up, communication data exchange structure bytes must be
configured by the Host to 0xFF, prior to releasing the POE manager from Reset.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 29

4.2 Host Debug Application

4.2.1 General view

The debug relies on host debug application that will reflect internal data exchange
between the Host and the Dragonite, since the Dragonite is not externally
accessible.
Debug need to be enabled when necessary on the host side. (Dragonite side debug
is constantly enabled).

If JTAG debugger is required there is a need for hardware modifications.
(Relevant documentation need to be supplied by Marvell).

Debug requirements:

1. ”text debug” like console.
2. Access to Dragonite FW using secondary TX/RX interface.
3. Access to shared memory.
4. Connect MSCC GUI to support 1 to 3.
5. Print out the Sniffing information from the shared memory. (The sniffing

information is the 15 byte information at the primary TX/RX interface).
6. Host should be able to log the information from 5.

Host primer

15 BYTE Protocol

DRV

DN DRV

Dragonight

Shared Memory

PoE integration

Tasks

(Temporary)

MSCC GUI

UDP or UART

GPIO out

IRQ in

DN SW

 PoE system overview

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 30

The Host need to run a Thread/Task/process that will communicate with the PC
based GUI and the shared memory.
The GUI is text over UART/UDP.
The access to the shared memory must be atomic operation.

Note: Two tasks access to the same resource without atomic operation is not
 allowed. A read/write operation flowed “lseek” cause errors.

15 BYTE Protocol

DRV

Linux DN DRV

Shared Memory

MSCC GUI

UDP or UART

IRQ in

SM_tx

Wait

SM_rx

IRQ

SM_txSM_rx

HOST

Primer 15 BYTE

 More detailed PoE system overview

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 31

4.2.2 The GUI text protocol flow:

1) Sending 15 BYTE from PC and back(UART/UDP).

The PC send a text data which need to be rip from the prefix ,convert from
text to binary ,send it to the shared memory and vice versa from Host to PC

a. PC in sending to the Host
msg15: 02 00 07 3D 4E 4E 4E 4E 4E 4E 4E 4E 4E 03 04 \r\n

i. the Host need to remove the "msg15: " .
ii. convert the HEX Text to a byte.
iii. The Host need to calculate checksum (if fail drop this msg)
iv. Send the 15 byte to the shared memory via TX2_MO ..

b. the Host sending to the PC (answer)

i. if the host get a 15 BYTE MSG on the RX2_MO take it.
ii. Start msg with "msg15: "
iii. Convert the bytes to a Text mgs (msg15: 03 00 00 3D 4E 4E 4E

4E 4E 4E 4E 4E 4E 03 04\r\n).
iv. Add CRLF.
v. Send it to the PC.

2) Sending a Debug text message from PC and Back:

the Idea is send/receive regular text message but add to it a prefix "dbgmscc:
"

a. dbgmscc: some text message \r\n
b. when Getting a Debug text the host need to rip the "dbgmscc: " and

send it to the shared memory Debug MSG.
c. when there is a Debug MSG at the shared memory – Grab the text

,add the prefix "dbgmscc: " , add suffix CRLF and send to the PC.

3) Access to specific shared memory starting address location in the shared
memory, from external PC.
The necessity of having access from the PC to the shared memory space is
to debug the shared memory information flow between the Host and the
Dragonite.
The debug is based on accessing to a starting address and stream of data
from that starting point. The information is represented in ASCII characters,
delimited by space. A parameter between 2 spaces represents a 32bit value.

a. Write example:
dbgmscc_sim: W 3A8 0B1E 03\r\n
Explanation:

i. Operation – W (Write) + Space delimiter

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 32

ii. Address – 3A8 = 0x000003A8
iii. Data in 32bit – 0B1E = 0x00000B1E (Will be located in address

0x000003A8)
iv. Data in 32bit – 03 = 0x00000003 (Will be located in address

0x000003AC)
v. \r\n = End of message

the host need acknowledge the operation by returning ack
message to the PC
dbgmscc_sim: write addr-3a8: 00000b1e 00000003

.. \r\n

b. Read example:

dbgmscc_sim: R 3A8 0C\r\n
Explanation:

i. Operation – R (Read) + Space delimiter
ii. Address – 3A8 = 0x000003A8
iii. Data length value – 0C = How many 32bit values to read, in this

case 12 values.
iv. \r\n = End of message

The host need to return to the PC the read data from the shared
memory according to the below foremat:

dbgmscc_sim: read addr-3A8: ffffffff ffffffff

ffffffff ffffffff ffffffff 000000a0 00000000

00000000 00000000 00000000 00000000

00000000\r\n

4) Sniffer:
The sniffer usage is to debug the 15byte protocol messages exchange
between the host and the Dragonite.
The host should read the data from sniffer fifo and send it / save it with the
following format. Each extracted value from the FIFO should be tagged using
free running 32bit counter that will be incremented after every read. This will
enable sorting 15 byte messages information after sending it through UDP to
a PC.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 33

In 15Byte case:

sniffmscc: fifo data CNT: counter value data: 8 bit

data TS: time stamp Overflow? NO/YES \r\n

example :
sniffmscc: 0x00012003 CNT:0x0235f004 data: 0x03

TS: 0x0120 Overflow? NO \r\n

In descriptor case:

sniffmscc: descriptor value CNT:counter value HDR:

header value TS: time stamp value DATA: data value ……..
\r\n

example :
sniffmscc: 0x800030d8 CNT:0x0235f002 HDR:

0x00010060 TS: 0x047568af DATA: 0x00000000

0x00000020 ……..\r\n

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 34

5 Code Delivery

5.1 Code Delivery

The POE Application code file will be delivered in Binary format.
The POE application code will be downloaded by the Host and the Host is
responsible to check download success.
In addition, prior to the download, the Host must check that the file is valid and
suitable for the system.
To perform file verification, special pointers for CRC, sys_Type, Product information
and creation date&time where added to the Binary code, at fix locations from the file
end.

Information

Type
Information

Location [Bytes]
Information Structure

CRC File_End - 4 CRC value

System
Type

File_End - 8 Pointer to :
customer_info_data_struct *pcustomer_info_data_struct;

How to test : The CRC functionality can be tested by applying 2 different valid DN code images and 2 different Invalid or
damaged DN codes.

typedef struct

{

 ms_u32 version_number; - struct version

 ms_u32 struct_size; - struct sizeof

 //All vars below are pointers

 ms_s8 *sign_date; - date of generate the version null terminate

 ms_s8 *sign_time; - time of generate the version null terminate

 ms_s8 *chr_array_ptr; - TBD string null terminate

 ms_u16 *software_pn; - this value is the same as in the 15 BYTE communication protocol doc

 ms_u8 *software_build; - this value is the same as in the 15 BYTE communication protocol doc

 ms_u8 *product_number; - this value is the same as in the 15 BYTE communication protocol doc

 ms_u16 *kernel_version; - this value is the same as in the 15 BYTE communication protocol doc

 ms_u8 *salad_param_code; - this value is the same as in the 15 BYTE communication protocol doc

}customer_info_data_struct

5.2 CRC Calculation
ms_u8 CheckKerenelValid(void)

{

 KernelInfo_t *pKernelInfo;

 ms_u32 crcval=0;

 ms_u32 CRCsize;

 const ms_u32 zero=0;

 crcval = slow_crc32(crcval,(ms_u8 *)0,65533);

 crcval = slow_crc32(crcval,(unsigned char *)&zero,sizeof(zero));

 if (crcval!=*(ms_u32 *)(0x10000-0x4))

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 35

 return FALSE;

 return TRUE;

}

#define uint32_t unsigned long

#define POLY 0x4C11DB7

unsigned long slow_crc32(unsigned long sum, unsigned char *p, unsigned

long len);

unsigned long slow_crc32(unsigned long sum, unsigned char *p, unsigned

long len)

{

 while (len--)

 {

 int i;

 unsigned char byte = *p++;

 for (i = 0; i < 8; ++i)

 {

 unsigned long osum = sum;

 sum <<= 1;

 if (byte & 0x80)

 sum |= 1 ;

 if (osum & 0x80000000)

 sum ^= POLY;

 byte <<= 1;

 }

 }

 return sum;

}

5.3 mscc tool

The mscc tool implement this document specially section 4.
The tool has to three interfaces

1) communicate with DN with or without Linux kernel driver.
2) with the GUI – over UDP (OOB port not from packet professor) or with UART
3) with Queue - using the API example code

mscc tool has several arguments options

Option Description

-t, --reset init and put dragonite into reset

-u, --unreset un-reset dragonite

-s, --sendirq send irq to dragonite

-o, --irqpoll infinite poll for dragonite irq

-r, --read f_off
m_size

read m_size from dragonite(ITCM or DTCM) from f_off
offset

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 36

-w, --write write 32bit to DN memory - address , data , ITCM|DTCM
(0/1) write f_size bytes from f_name to dragonite(ITCM
or DTCM) in f_off offset

-d, --info reads 3 longs from customer info structure. The pointer to
this structure is in ITCM\

-c, --crc execute crc check on the dragonite ITCM code

-p, --run run the bridge program over stty

-n, --net run the bridge program over UDP

-D, --DBUGE run the bridge program over UDP .checking only sniffer
and secondary interface, other mscc_tool check
bypassed

-e, --enable enable DN on NO_KM mode

-f, --download download a FW to the DN

-v print version

-? print help

mscc_tool -n|p

DN DRV

Dragonight

Shared Memory

MSCC GUI

UDP or UART

GPIO out

IRQ in

DN SW

Queue

PoE API

Ex

mscc_tool –p|n

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 37

mscc_tool -D

DN DRV

Dragonight

Shared Memory

MSCC GUI

UDP or UART

GPIO out

IRQ in

DN SW

PoE App

mscc_tool –D

5.4 AC3x - Aldrin

In the Aldrin the mscc_tool need more information to work.
The information is regarding the PCI
need to run a script p-pci.sh
the script generate file name mscc_tool_conf with the parameters for the mscc_tool

/root # cat p-pci.sh
#!/bin/sh -x
grep -i -q msys /proc/cpuinfo
if [$? = 0]; then
 devId=ff:ff.ff
else

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 38

 devId=`lspci|sed -n 's/^\(.*\) Class 0200: 11ab:.*/\1/p'|head -n 1`
 if ["x${devId}x" = "xx"]; then
 devId=ff:ff.ff
 fi
fi

echo pex: $devId
echo pex: $devId > mscc_tool_conf

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 39

Appendix – A – Shared Memory Addresses @ POE DTCM

32 bit width array

Address
Start

DTCM
BASE +
offset

Host R/W
Direction

CPU Type Host
Protocol Version Register

Host
0x0000

R/W

CPU Type PoE
Protocol Version Register

PoE
0x0004

RO

POE_System_Type 0x0008 RO

POE_App_Alive_Counter 0x000C RO

Host_Input_From_POE_General_Reg 0x0010 RO

Self_RST_Cause Self_RST_Event_Count 0x0014 RO

Comm_Err_Cntr 0x0018 RO

Host Input_From_PoE_IRQ_Reg 0x001C RO

Host_RST_Cause_DN_
Reflection

Reserved 0x0020
RO

Control N.A 0x0024 RO

Host_Output_To_POE 0x0030 R/W

Host_RST_Cause Host_RST_Event_Count 0x0034 R/W

 Interrupt Mux Select 0x0038 R/W

0x000000 TX_MO_Byte 0x0050 R/W

0x000000 DATA Byte0 0x0054 R/W

0x000000 DATA Byte1 0x0058 R/W

0x000000 DATA Byte2 0x005c R/W

0x000000 DATA Byte3 0x0060 R/W

0x000000 DATA Byte4 0x0064 R/W

0x000000 DATA Byte5 0x0068 R/W

0x000000 DATA Byte6 0x006C R/W

0x000000 DATA Byte7 0x0070 R/W

0x000000 DATA Byte8 0x0074 R/W

0x000000 DATA Byte9 0x0078 R/W

0x000000 DATA Byte10 0x007c R/W

0x000000 DATA Byte11 0x0080 R/W

0x000000 DATA Byte12 0x0084 R/W

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 40

0x000000 DATA Byte13 0x0088 R/W

0x000000 DATA Byte14 0x008C R/W

DN Frequency 0x0090 R/W

must be 0xffff_ffff
0x0094-
0x009C

Note: The structure order is “Little Endean”.

32 bit width array
 Address Start DTCM

BASE + offset

Host
R/W

Direction

0x000000 RX_MO_Byte 0x0100 R/W

0x000000 DATA Byte0 0x0104 RO

0x000000 DATA Byte1 0x0108 RO

0x000000 DATA Byte2 0x010C RO

0x000000 DATA Byte3 0x0110 RO

0x000000 DATA Byte4 0x0114 RO

0x000000 DATA Byte5 0x0118 RO

0x000000 DATA Byte6 0x011C RO

0x000000 DATA Byte7 0x0120 RO

0x000000 DATA Byte8 0x0124 RO

0x000000 DATA Byte9 0x0128 RO

0x000000 DATA Byte10 0x012C RO

0x000000 DATA Byte11 0x0130 RO

0x000000 DATA Byte12 0x0134 RO

0x000000 DATA Byte13 0x0138 RO

0x000000 DATA Byte14 0x013C RO

 DN Frequency Report 0x0140 RO

FW will put 0xffff_ffff 0x0144-0x014C RO

Size_N TX_Debug_MO_Byte 0x0150
R/W

0x000000 Character #1 0x0154 R/W

R/W

size 0x4b0 [Byte]

 R/W

0x000000 Character #N
R/W

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 41

Size_N RX_Debug_MO_Byte 0x650
R/W

0x000000 Character #1 RO

RO

size 0x4b0 [Byte]

 RO

0x000000 Character #N
RO

32 bit width array
 Address Start DTCM

BASE + offset

Host
R/W

Direction

0x000000 TX2_MO_Byte 0x0b04 R/W

0x000000 DATA Byte0 0x0b08 R/W

0x000000 DATA Byte1 0x0b0c R/W

0x000000 DATA Byte2 0x0b10 R/W

0x000000 DATA Byte3 0x0b14 R/W

0x000000 DATA Byte4 0x0b18 R/W

0x000000 DATA Byte5 0x0b1C R/W

0x000000 DATA Byte6 0x0b20 R/W

0x000000 DATA Byte7 0x0b24 R/W

0x000000 DATA Byte8 0x0b28 R/W

0x000000 DATA Byte9 0x0b2c R/W

0x000000 DATA Byte10 0x0b30 R/W

0x000000 DATA Byte11 0x0b34 R/W

0x000000 DATA Byte12 0x0b38 R/W

0x000000 DATA Byte13 0x0b3C R/W

0x000000 DATA Byte14 0x0b40 R/W

Note: The structure order is “Little Endean”.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 42

32 bit width array
 Address Start DTCM

BASE + offset

Host
R/W

Direction

0x000000 RX2_MO_Byte 0x0b44 R/W

0x000000 DATA Byte0 0x0b48 RO

0x000000 DATA Byte1 0x0b4C RO

0x000000 DATA Byte2 0x0b50 RO

0x000000 DATA Byte3 0x0b54 RO

0x000000 DATA Byte4 0x0b58 RO

0x000000 DATA Byte5 0x0b5C RO

0x000000 DATA Byte6 0x0b60 RO

0x000000 DATA Byte7 0x0b64 RO

0x000000 DATA Byte8 0x0b68 RO

0x000000 DATA Byte9 0x0b6C RO

0x000000 DATA Byte10 0x0b70 RO

0x000000 DATA Byte11 0x0b74 RO

0x000000 DATA Byte12 0x0b78 RO

0x000000 DATA Byte13 0x0b7C RO

0x000000 DATA Byte14 0x0b80 RO

Note: The structure order is “Little Endean”.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 43

32 bit width array
 Address Start DTCM

BASE + offset

Host
R/W

Direction

version Sniffer Size 16 bit 0x0B84 Ro

Write Counter 16

bit
0x0B88

RO

Read Counter 16

bit
0x0B8C

R/W

Control Time stamp (16 bit) DATA 8 bit 0x0B90 RO

Control Time stamp (16 bit) DATA 8 bit RO

Control Descriptor RO

Control Time stamp (16 bit) DATA RO

Control Descriptor RO

Control Time stamp (16 bit) DATA RO

Control Time stamp (16 bit) DATA RO

Control Time stamp (16 bit) DATA RO

Control Time stamp (16 bit) DATA RO

Control Time stamp (16 bit) DATA RO

Control Time stamp (16 bit) DATA RO

Control Time stamp (16 bit) DATA RO

Note: The structure order is “Little Endean”.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 44

Appendix – B – POE Reset influence on protocol flow

Normal Operation

Expected Init conditions before new message
from Host:
TX_MO_Byte = Host Ownership
RX_MO_Byte = POE Ownership

Host POE

Sample RX_MO_Byte: Sample TX_MO_Byte

If (Host Ownership)

{ Host Reads RX Shared Memory OLD message,
 Set RX_MO_Byte to POE Ownership } Sample TX_MO_Byte

If (POE Ownership) {continue following steps}

Sample TX_MO_Byte

Host copy data to TX Shared Memory Sample TX_MO_Byte

TX_MO_Byte = POE Ownership (By Host)

 Sample TX_MO_Byte

Sample RX_MO_Byte
POE Manager copy TX Shared Memory to POE
TX Fifo

 Set TX_MO_Byte to Host Ownership

 POE Manager prepares message reply

 POE Message is copied into the POE TX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

Sample RX_MO_Byte POE Ready for new message from Host

Host Reads RX Shared Memory message

Set RX_MO_Byte to POE Ownership

Host Ready for new message

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 45

POE Reset during Host write

Expected Init conditions before new message
from Host:
TX_MO_Byte = Host Ownership
RX_MO_Byte = POE Ownership

Host POE

Sample RX_MO_Byte: Sample TX_MO_Byte

If (Host Ownership)

{ Host Reads RX Shared Memory OLD message,
 Set RX_MO_Byte to POE Ownership } Sample TX_MO_Byte

If (POE Ownership) {continue following steps}

Sample TX_MO_Byte

Host copy data to TX Shared Memory Sample TX_MO_Byte

TX_MO_Byte = POE Ownership (By Host) POE Reset (Reset Cause != POR)

 Sample TX_MO_Byte

Sample RX_MO_Byte POE Manager Ignores TX Shared Memory

 Set TX_MO_Byte to Host Ownership

POE Manager prepares system status message
reply

 POE Message is copied into the POE RX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

Sample RX_MO_Byte POE Ready for new message from Host

Host Reads RX Shared Memory message

Set RX_MO_Byte to POE Ownership

Host Ready for new message

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 46

POE Reset during reply preparations

Expected Init conditions before new message
from Host:
TX_MO_Byte = Host Ownership
RX_MO_Byte = POE Ownership

Host POE

Sample RX_MO_Byte: Sample TX_MO_Byte

If (Host Ownership)

{ Host Reads RX Shared Memory OLD message,
 Set RX_MO_Byte to POE Ownership } Sample TX_MO_Byte

If (POE Ownership) {continue following steps}

Sample TX_MO_Byte

Host copy data to TX Shared Memory Sample TX_MO_Byte

TX_MO_Byte = POE Ownership (By Host)

 Sample TX_MO_Byte

Sample RX_MO_Byte
POE Manager copy TX Shared Memory to POE
TX Fifo

 Set TX_MO_Byte to Host Ownership

 POE Manager prepares message reply

 POE Reset (Reset Cause != POR)

Sample RX_MO_Byte Sample TX_MO_Byte

POE Manager prepares system status message
reply

 POE Message is copied into the POE RX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

Host Reads RX Shared Memory message POE RX fifo copy to RX Shared Memory

Set RX_MO_Byte to POE Ownership Set RX_MO_Byte to Host Ownership

Host Ready for new message POE Ready for new message from Host

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 47

POE Reset after reply preparations #1

Expected Init conditions before new message
from Host:
TX_MO_Byte = Host Ownership
RX_MO_Byte = POE Ownership

Host POE

Sample RX_MO_Byte: Sample TX_MO_Byte

If (Host Ownership)

{ Host Reads RX Shared Memory OLD message,
 Set RX_MO_Byte to POE Ownership } Sample TX_MO_Byte

If (POE Ownership) {continue following steps}

Sample TX_MO_Byte

Host copy data to TX Shared Memory Sample TX_MO_Byte

TX_MO_Byte = POE Ownership (By Host)

 Sample TX_MO_Byte

Sample RX_MO_Byte
POE Manager copy TX Shared Memory to POE
TX Fifo

 Set TX_MO_Byte to Host Ownership

 POE Manager prepares message reply

 POE Message is copied into the POE RX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

 POE Reset (Reset Cause != POR)

 Sample TX_MO_Byte

Sample RX_MO_Byte
POE Manager prepares system status message
reply

 POE Message is copied into the POE RX fifo.

 Sample RX_MO_Byte

Sample RX_MO_Byte POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

 POE Ready for new message from Host

Sample RX_MO_Byte

Host Reads RX Shared Memory message

Set RX_MO_Byte to POE Ownership

Host Ready for new message

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 48

POE Reset after reply preparations #2

Expected Init conditions before new message
from Host:
TX_MO_Byte = Host Ownership
RX_MO_Byte = POE Ownership

Host POE

Sample RX_MO_Byte: Sample TX_MO_Byte

If (Host Ownership)

{ Host Reads RX Shared Memory OLD message,
 Set RX_MO_Byte to POE Ownership } Sample TX_MO_Byte

If (POE Ownership) {continue following steps}

Sample TX_MO_Byte

Host copy data to TX Shared Memory Sample TX_MO_Byte

TX_MO_Byte = POE Ownership (By Host)

 Sample TX_MO_Byte

Sample RX_MO_Byte
POE Manager copy TX Shared Memory to POE
TX Fifo

 Set TX_MO_Byte to Host Ownership

 POE Manager prepares message reply

 POE Message is copied into the POE TX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 POE Reset (Reset Cause != POR)

Sample RX_MO_Byte Sample TX_MO_Byte

POE Manager prepares system status message
reply

 POE Message is copied into the POE RX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

Sample RX_MO_Byte POE Ready for new message from Host

Host Reads RX Shared Memory message

Set RX_MO_Byte to POE Ownership

Host Ready for new message

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 49

POE Reset after reply preparations #3

Expected Init conditions before new message
from Host:
TX_MO_Byte = Host Ownership
RX_MO_Byte = POE Ownership

Host POE

Sample RX_MO_Byte: Sample TX_MO_Byte

If (Host Ownership)

{ Host Reads RX Shared Memory OLD message,
 Set RX_MO_Byte to POE Ownership } Sample TX_MO_Byte

If (POE Ownership) {continue following steps}

Sample TX_MO_Byte

Host copy data to TX Shared Memory Sample TX_MO_Byte

TX_MO_Byte = POE Ownership (By Host)

 Sample TX_MO_Byte

Sample RX_MO_Byte
POE Manager copy TX Shared Memory to POE
TX Fifo

 Set TX_MO_Byte to Host Ownership

 POE Manager prepares message reply

 POE Message is copied into the POE RX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

Sample RX_MO_Byte POE Reset (Reset Cause != POR)

Host activity is interrupted Sample TX_MO_Byte

POE Manager prepares system status
message reply

 POE Message is copied into the POE RX fifo.

 Sample RX_MO_Byte

Host Reads RX Shared Memory message Sample RX_MO_Byte

Set RX_MO_Byte to POE Ownership

Host Ready for new message

 Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

Shared memory contains Old message that was
not read POE Ready for new message from Host

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 50

POE Reset during Host read

Expected Init conditions before new message
from Host:
TX_MO_Byte = Host Ownership
RX_MO_Byte = POE Ownership

Host POE

Sample RX_MO_Byte: Sample TX_MO_Byte

If (Host Ownership)

{ Host Reads RX Shared Memory OLD message,
 Set RX_MO_Byte to POE Ownership } Sample TX_MO_Byte

If (POE Ownership) {continue following steps}

Sample TX_MO_Byte

Host copy data to TX Shared Memory Sample TX_MO_Byte

TX_MO_Byte = POE Ownership (By Host)

 Sample TX_MO_Byte

Sample RX_MO_Byte
POE Manager copy TX Shared Memory to POE
TX Fifo

 Set TX_MO_Byte to Host Ownership

 POE Manager prepares message reply

 POE Message is copied into the POE RX fifo.

Sample RX_MO_Byte Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

Sample RX_MO_Byte POE Ready for new message from Host

Host Reads RX Shared Memory message POE Reset (Reset Cause != POR)

Set RX_MO_Byte to POE Ownership Sample TX_MO_Byte

Host Ready for new message
POE Manager prepares system status message
reply

 POE Message is copied into the POE RX fifo.

 Sample RX_MO_Byte

 POE RX fifo copy to RX Shared Memory

 Set RX_MO_Byte to Host Ownership

Shared memory contains additional message
that was not read POE Ready for new message from Host

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 51

Change Record

Rev Date Responsible
Person

Description of Change

Draft 1.0 30/06/2013 Alon F Initial Release.

Draft 1.1 23/09/2013 Alon F Add Protocol version, Reset cause, I/O registers,
POE Watch dog counter, Protocol control Reset
scenarios, Add full host communication flow,
update control bytes description.

Draft 1.2 27/01/2014 Alon F 1. Protocol description update Based on
remarks from readers.

2. No POE Boot Code. Boot Up is Host
responsibility.

3. POE_Boot_WD_Count was removed.
4. Keep alive explanation was updated.
5. Boot up flow update.
6. Appendix A table update.

Draft 1.3 10/07/2014 Alon F 1. Add Comm_Err_Cntr field in the shared
memory protocol.

2. Add CRC algorithm.
3. Add pointers for version information.

Draft 1.4 10/12/2014 Roni B. 1. fix pointer version
2. add a testing method for the protocol

Draft 1.5 10/12/2014 Roni B. 1. fix pointer version

Draft 1.6 25/02/2015 Roni B 1. add IRQ
2. change IRQ to MSG ready

Draft 1.61 26/02/2015 Alon F Headre and footer where added.

Draft 1.7 8/6/2015 Roni B Adding sniffer

Add secand interface of 15 Byte

Draft 1.8 8/7/2015 Roni B Adding internal WD timer stamp

Update Self_RST_Cause

Draft 1.85 10/1/2016 Roni B Add Mask on the shared memory

Rel 2.00 17/02/2016 Alon.F 1. Add Debug.
2. Add host interrupt control.
3. Update descriptions with how to test

explanation.
4. Increment protocol revision to 2.

 PD69200M Shared Memory Communication Protocol CDCA159494

Microsemi Corporation Copyright © 2017 Page 52

Rel 2.01 29/05/2016 Roni B. Add descriptor to the sniffer

Rel 2.02 6/6/2016 Roni B Fix in following subjects:
1. RX_MO_Byte – value
2. RX_Debug_MO_Byte – value
3. dbgmscc_sim – upgrade explanation
4. sniffer – adding host counter

Rel 3.00 12/12/2016 Roni B 1. Add descriptor for R feature.
2. Add 4 bit enter R mode request.
3. Add 4 bit enter R done reply.
4. Power up flowchart update.
5. DB structure section 2.13 was added.
6. Protocol version was incremented to 3.

Rel 3.01 22/1/2017 Roni B 1. Update General purpose Read / Write
registers Bits 4-7

Rel 3.02 6/2/2017 Roni B 1. Add enter R mode flow

Rel 3.03 15/3/2017 Roni B 1. Add mscc_tool

Rel 3.04 22/3/2017 Roni B. 1. Add Aldrin script

Rel 4.00 2/4/2017
14/08/2017

Roni B
Avi, Alon

1. Add AC3x frequency
2. Description fixes

