SmMsc

SUCCESS BY DESIGN

Austin Design Center

11000 North Mopac Expressway
Stonelake Bldg. 6 Suite 500
Austin, Texas 78759

USB97C223 Software Release Notes
v0.0.0.360

WHQL 1D: 699826
USB-IF TID: 40001353

Updated 09-17-04

The information contained herein is confidential, is submitted in confidence, and is proprietary information of Standard
Microsystems Corporation, and shall only be used in the furtherance of the agreement of which this document forms a
part, and shall not, without Standard Microsystems Corporation's prior written approval, be reproduced or furnished to
others. The information contained herein may not be disclosed to a third party without the consent of Standard

Microsystems Corporation, and then, only pursuant to a Standard Microsystems Corporation approved non-disclosure
agreement.

Standard Microsystems Corporation assumes no liability for incidental or consequential damages arising from the use

of the information contained herein, and reserves the right to update, revise, or change any information in this
document without notice.

USB97C223 Software Release Notes
Page- 2 -

Software Compliance

The software in this release conforms to the following industry flash card specifications. SMSC has tested to the best of its
ability to ensure that this software conforms to these specifications. However, no other warranty is assured, express or implied,
other than provided by SMSC's standard terms and conditions.

SmartMediaTM Electrical Specification Version 1.40
SmartMediaTM Physical Format Specifications Version 1.40
SmartMediaTM Logical Format Specifications Version 1.30
MultiMediaCard System Specification Version 3.31

SD Memory Card Specifications Version 1.1

Memory Stick Standard Format Specification Version 1.40-00
Memory Stick Pro Standard Format Specifications Version 1.01-01
Memory Stick Duo Standard Format Specifications Version 1.10-00
CompactFlash Specification Rev 2.0

Universal Serial Bus Specification Rev 2.0

USB Mass Storage Class, Bulk Only Transport Version 1.0

RBoOooo~Nok,wNE

= o

USB97C223 Software Release Notes

Page- 3 -

Table of Contents
=Y T g T 1 o 5
The NON-VOIALHTE SEOrE DALAcci ettt ettt et s b et be s b e st bt s b etk s b et e be st e st ebe st et ebe s eenesbenbe e nbenene 11
Using Flash ROM 10 StOrethe NV SLOIr€ DAtacccuevuirieieieeeeeeeieseisesestesseseeeesees e stestessesseesseseessessessessessessssssensessessessessennes 11
(UL TaTe R A LT W =S U]] TSP 11
Creating the EEPROM .DAT FilE ...ttt et bbbt aeeh e et e b e se e e be e bt eb e eheeaeenbeseeebesbeebenneennenes 12
Attribute Bit Definitionsand NV SLore Editable ValUES ..ottt e s s 12
THE ATIFTDULES CAlCUIALONttt et b bbbt et e e e e se e e b e e bt eaeeh e e aeem e e sEeebe s bt ebeebeaneeneeneanbeseenbenne e 14
Programming the NV SEOr@ DaLa.......c..coiiiieiiiteieeee ettt b et ae et esbesbesb e s aeehe e e e besbesbeshesae et e nsebeseesbesneeneenes 15
LUN Configuration and 10N SN TNQ......cooueueiirieie ettt sttt se e be e e b e saesbesae e besbesbesbeeseeneeasabeseesbesaeeneenes 17
[1IN I @0 g 1o 0= 1 oo SR 17
oo R =TT oo S 17
Using the USB Drive Manager Application (for Windows XP ONIY)cccviiiieiiiinereceeeeese e eseens 18
LI LTI o TSRS 19
QLI 2 2= To 1 0T T = o PSP 19
USING .dat fIIES W USBDIMooiiice ettt e ettt e e eae e e ese e s e e seestesaeeseeneenteseesbesaeeaeeneeneenteseenrenneans 19
Using the USBDM Application to Perform Device Firmware Upgrade (DFU).......cccooe i 21
Using the OEM .eX€ t0 UPUEIE FITIMIWAEeitiiuieieieeieee ettt ettt st e b e bt st a et e e e se e s b e sbesaesbe e e aneese e besbesbesneeneanes 23
Using Device Firmwar @ UPGrade (DFU) ...ttt et s s b e sbe et s e e e e eesbesbe s bt s st e ne e s abeseesbesaeeneenes 24
L@ QYT ST 24
Files Required fOr DIFU fOF WINOOWS........cuoiuiiiie ittt st be bt ae e e et st e sbesb e sbeebeeaeaneese e besaeebesneeneenes 24
Creating the 128KB DFU Capable Flash Binary “Both.Din"cceeiiiiiie e st 26
Preparing a DeViCe fOr DFU OPEIatioNcovivieeuereeieeesesestesessessesseeseesseseestesaessessesseeseessessessessessessessessssnsessessessessessensenes 27
Choosing a Flash EEProm fOr Y OUI DEVICE.........cceiieiiieieceieeee s s et e aesae sttt e e e se e tesaesaessesseeneeneeneesaessenneenenneens 27
S Lo U OB S o = 0 1T = 27
Performing a Firmware Upgrade with the DFUTest Application(Windows ONlY)ccccovvvvevinineseeeereeese e 28
Creating @ DFU UplOadabl@ Fil@.........ccioeece ettt st st sae s e e e e e seesaesseeneeneeneansesaesrennnenennenns 29
USING The DFULEXE ULHTEY ...ttt sttt e b et ae et e e e e s e e e b e eb e e bt e aeemeanbeseeebesbeeaeeae e e enbeseeebenae e 29
USING The DFULEXE ULHTTY ...ttt et bttt et e e e e s e e e b e eb e e bt ehe e e an b e se e s b e sheeaeeae e e enbeseeebenae e 30
210N Lo T o =N B o W AN o) o) ITor= (o] o HEO TSRO 31
(DAY= @Y= VT PP RSUUTRR 31
Performing a Firmware Upgrade with the DFU_App Application(Mac 10.X ONIY) ...c.cocoiiiiiininineeeeie e 32
VY ar= R (ol L aTe [T U I N o o TSP TRR 32
Using an engineering version of DFU_APP @PPIICAION.ciiiiieiiciciee st see et se e e re s eneennens 32
Creating a customer VErSION OF DUcoioieiie st s sae e s e e e tesbesneene e e enteseesesneenennneneen 33
Using a customer VErSION Of DU AP ..ooueieeieieiisieiesteseeseeseesses e seestesseesesseessesseseessessessesseesssssessessesssesessssnsessessessessensenns 34
Performing a Firmwar e Upgrade with the DFU Application(Mac 9.X ONIY) ...cccocveerecieeiesere e s 35
UsiNg DFU appliCatioN(IMBC 9.X) ..eueieeieiesiisesesteseeseeeesee e sees e ssessessesseesseseensessesaessesseeseessensessessessesseeseessnnsessessenseesenneens 35
LIRS Y S O N TSRS 37
Using the USB97C223 CUSLOM 1CONS PACKAJE.ciiriiriirieeeeie ettt sttt st sttt e et st b e sbe st s se e s e beseesbesaesaeenes 55
Contents of the USB97C223 CUStOM 1CONS PACKAJEeiuirteriiitereeierieste sttt st see et s ae bt sae e e e aeseesbesaesnesnnens 55
Creating the Required SELICON TNi FTTES.... ..ottt bttt et b e s bt sb e e st e ae e e e besaesbesaeeneeneans 55
Manually Installing the Custom 1cons APPlICaETION FIlEScc.oiiiiiie e e s b 57
Creating a Windows Installer for the Custom 1cons ApPliCation FilESco.oii i e 59
Troubleshooting the Custom 1CONS APPLICELIONeiiiiieeeeeres e e sr et e s aesre st sreese e e enaesrenresreereeneenen 59
Using the Production Line Descriptor Update Utility (PLDU) ...cccvciiiiicieecieeseees e seese et sre e s ee e e sre e eneenes 60
(Ol aTo g = D T IR T 60
F RS g o = o I 1O g S 61
Setting Up the PLDU APPIICAIION......cceiiiiieiecteeeeieiesees e steste s e stestesse s e e e sseesaesaessessessessesaessessesssessessessesseessessensessessessensennenns 62
Using the PLDU t0 Update DEVICE DESCIIPLOIS.......eieeeeeereeresiesesiestessesseeseeseessessessessessessessessessessessessessessssssessessessessessessenes 62
Using the Production Line TSt ULIIITY (PLTU)...ccoiiiiiiiieeeeeee sttt st et se et st b bt se e e e e et saesbesneene s 64
Creating the PLTU NI FITE......ciiieieeee et ettt e e £ e se e b e s b e b £ e et e m e e ne e b e sbesbesheeaeeneeneenbeseeebenae e 64
A SAMPIE PLTU TN FITE. ettt st b e et b e bt bt e b e e st e st e e e eh e e aeem e e ee e besbeebeeheeneanbe st e besaesbeenas 65
Setting UP the PLTU APPIICAITONoueiei ittt et e bt be b e s st eae s e e besbesbesbeeaeenseneenbeseesbesaeeneennans 66
USINg the PLTU t0 TSt MUILIPIE DEVICESceeieeetieieeeee ettt st b et b et e e b s b e s bt e b e et e e e st e besaesbesneeneenes 66
Known Issueswith the USB97C223 Production Line ULHTTIES........cccoiiiiiiiiie e s s 67

Using the QuickTest Production Line Read/Writ@ TSt ULIITY ..cvcveeiieere e s 68

USB97C223 Software Release Notes

Page- 4 -

USING the EPRM UPDT .XE ULHITY ...ueiiie ittt st sttt e s e e e e st e st e eseeneenae s entennenrenneennenes 69
USING the ChECKROM .EXE ULIITYeeeeie ettt et es e st e s te st e see st e eneeneene e teseeseeerenneenaeneenteseenrennn 71
Using the Windows XP Special Memory Stick Format REGISITY K@Y ...ocuviieieiiiice et 72
(O T aTo R a = QL= o T L A1 L SO 73
USING the SWAPATNVE ULITITY ..ttt b e bt b a et e st e se e sA et e sheeb e e aeeaeeeE e b e sbeebeebeeneaneeseebeseesbenaas 74
Using the Dos Production Line Utility (DOSPLTU) ..ottt be e ne e e b e s ae s 75
USING the USBO7C 223 WIth LINUX ...cuiieiiieiieiesiee sttt e b ettt sb e s b b e e et e se e b e sbeeb e e hesmeene e s abesaeebesneeneenes 78
Media Tested With the USBO7C223coiieiiiiieiriise sttt ettt et be s be st st et e st b e b e sesbesbe e e senbenensesbenenneaee 79
USBO7C223 Per for Mance BENCHMEAI KS........ooioiieieieie ettt st s b et re b e b sb e s be s aeene e e e beseeebesneeneenes 80
LT oK@ NS T |10 T 0L A 1= o] =P 81
KNOWN FIrMWAr € REIBLEA I SSUBS......cuiueeiiiiiiitiiei sttt ettt bbb e et b e et s b et et e b e b et be st e s ee 82
LC T g1 = OSSR 82

L@ T Y o= OSSOSO PSR 82

S L= Y o= SRS 82

SIME DBVICES: ...ttt sttt sttt ettt ettt bt et b et e st s bt s £ e s b e £ e Rt b £ e R £ e Rt £ e ARt £ e R R4 £ e Re SRt R e A e Rt e b et et Re bRt R e b et b e be e nenbens 82
SD/IMMEC DBVICES:cuteeueeueeeeitesteate sttt st e eeeess e besbesbe s st saeeae e e aaeeseeabesaeeheeheeaeea e e e eabeebeeEeebeeaeehe e s emteseeebeaheeaeeaeensenbeseenbesaenaeas 83

| SSUES NOt REIALEA 1O FITINWVAT €.ttt ettt ettt e s ettt e s et e e e s st e e e s st ae e s ssbes s s sseaessabeeessambaesssabeeassssbeessanbeesssnbanaesssbeness 84

USB97C223 Software Release Notes
Page-5-

Revision History

0.0.0.152:

0.0.0.172:

0.0.0.173:

0.0.0.195:

- ROM Mask 02
- Added support for Memory Stick Pro media.

- Fixed a bug where cards were not being detected on insertion.

- Added an attribute bit to force the 223 to use PIO Mode O for all Compact Flash transfers. This will
significantly reduce the performance of Compact Flash if used, but should allow some non-compliant CF
cards to work with the 223,

- Added Icon Sharing capability to allow more than one media type to share acommon icon. Typical
applications for icon sharing would be devices with multi-card adapters.

- Added a bit in the attribute bytes to turn off Smart Media CIS checking. Thiswill allow the USB97C223 to
work with non-compliant Smart Media cards.

- Added support for MSPro mediaincluding a special M SPro format command.

- Modified the Setlcon application to allow it to display a descriptive label in Windows Explorer when no
mediais present.

- ROM Mask 03
- Modified the firmware to set GPIO4 to an output and drive it low during suspend. This change was required
to meet USB-IF bus powered suspend current requirements.

- ROM Mask 04

Eirmware:

- Fixed abug causing MMC transfersto fail if the host was suspended at any time during the transfer.

- Modified the behavior of GPIO7 to drive an LED by going high when the device isin an unconfigured

or suspended state.

- Fixed a bug causing the device to become unresponsive if MS Pro media was removed during a format
operation.

- Implemented 1-bit ECC correction for Memory Stick media. Cards with 1-bit ECC errors are now readable.
- Fixed the delay time in waiting for the clock to stabilize. It was in the range of 48.3 - 298ms, but has been
corrected to be from 7.2 to 29ms.

- Modified the function of the code such that when VBusis absent or the deviceis suspended, all flash
interfaces are un-powered and set to a high impedance state. Thisisfor battery powered devices, where the
app needs to relinquish control of the flash interface and go to sleep, while the kernel is still not suspended.
- Fixed a bug which caused the 223 to become unresponsive when used with certain hosts after several
reboots.

- Fixed a bug which caused the 223 to draw more than 500uA while suspended when flash cards were
inserted into the device.

- Fixed a bug which caused the media activity LEDs to not initialize properly after resuming from suspend.
- Fixed a bug which caused MS Pro to run at 20MHz rather than the 40MHz.

Applications:

- Modified the KillReg utility to accept more than asingle PID initsini file.

- Included a Windows 98 safe removal utility (98SafeRemove.exe) that detects the plug / unplug of SMSC
USB Mass Storage Devices that utilize the SM SC Windows 98 MSC driver.

- Included a new streamline version of the Production Line Test Utility called “QuickTest”. QuickTest is
substantially faster than the PLTU because it uses the SMSC filter driver to bypass the Windows file system.
The test performs quick read/write tests of up to (4) USB97C223 devices at atime in a production line test
environment.

- Fixed a bug in the Windows 2000 multi-LUN mass storage class driver which caused a blue screen after a
reboot when used with OMI’s EHCI drivers.

0.0.0.212:

0.0.0.215:

USB97C223 Software Release Notes
Page- 6 -

- Exter nal Evaluation Build.

Important Note: Thisrelease includes the final version of the USB97C223 DFU loader “DFU.hex”. This
DFU loader isincompatible with previously released versions of the USB97C223 firmware, but will be
forward compatible with all future releases.

Eirmware:

- Modified the firmware to improve the transfer speeds of certain high-end Lexar Compact Flash cards.

- Fixed a bug in the Compact Flash media identification code, related to identifying the media supported PIO
mode of operation and setting the right mode on the host.

- Modified the code such that when Vbusis removed, the device can be put into suspend if the UDC and
PHY are held in reset. Operation of the 223 is changed so that if Vbusis removed it will suspend and wakeup
only when Vbusis reattached.

- Modified the code to reduce the suspend current to below 500uA when using DFU enabled firmware
(both.bin). Previously in the case where the 223 was DFU enabled and running in the high bank of a 128KB
Flash ROM, GPIO6 (A16) would be driven high while suspended. This was causing the suspend current to
exceed 500uA. The fix implements a bank switching scheme where GPIO6 goes low just before suspending,
and then is driven high again right after a resume from the host.

- Fixed a bug with Memory Stick media surprise removal during aread or write.

- Fixed a bug with Secure Digital media surprise removal during aread or write.

- Added Memory Stick 2 bit ECC error checking.

- Added support for Sony High Speed Memory Stick.

- Added support for the Sony Memory Stick Format Application.

Applications:

- Modified the Setlcon utility (v1.2.0.6) to fix a bug which caused a“No disk in drive’ error message to
appear in Windows XP SP1 under certain conditions.

- Modified the Windows 98 Safe Removal Utility (v1.0.0.4) to display more descriptive error messages when
an error occurs while stopping the device.

- Modified the Attributes Calculator Utility (v.08) to allow both encoding and decoding of attribute values.
Please note that you must have the Microsoft Dot Net framework installed on your PC in order to run the
Attributes Calculator utility.

- Added a Japanese version of the SMSC FormatPro utility to the application software distribution package.

- External Evaluation Build.

Firmware:

- Fixed a bug which caused the activity LED to come on and remain lit when power was applied to a self-
powered 223 device, while the USB cable was detached.

- Fixed a bug which caused the unconfigured LED (GPIO7) to not function correctly under Windows 98 with
certain EHCI drivers.

- Fixed a bug which caused the Secure Digital LED to flash briefly during enumeration.

- Modified the firmware to improve the USB 1.1 performance of the Sony Memory Stick Format application.
- Included a“No EEPROM” version of the firmware with this release. For instructions on using No
EEPROM firmware, please refer to page 6, “Using Flash ROM to Store the NV Store Data.”

Applications:
- Fixed abug in the SMSC FormatPro utility (1.0.0.4) which prevented it from recognizing multiple devices
in Windows 98 and Me.

0.0.0.223:

0.0.0.228:

0.0.0.234:

0.0.0.248:

USB97C223 Software Release Notes
Page- 7 -

- Exter nal Evaluation Build.

Firmware:

- Fixed a bug in the firmware that caused slow enumeration problems on some hosts. This same bug also
caused some WHQL test yellow bangs reported by the field.

- Added an attribute bit to make GPIO1 function as a common media LED.

Applications:

- Modified the QuickTest application (v1.0.0.3) to include a“ Stop Test” button which allows the user to
cancel any testsin progress.

- Included an updated version of the Attributes Calculator (v.09) which adds the new common media LED
bit.

- Modified the software installer to provide multi-language support. The included software installer now
supports the following languages: English, Chinese, Danish, Dutch, French, German, Italian, Japanese,
Korean, Polish, Russian, Spanish, and Swedish.

- External Evaluation Build.

Eirmware:

- Added Full Speed 1-bit ECC error correction for Smart Media cards via a new attribute bit. Previously the
223 was unable to correct 1-bit ECC errors during full speed operation. Please be aware that setting this bit
will result in about a 50% performance drop for Smart Media transfers because of the processor overhead
involved in doing ECC checking in software.

- Fixed abug in self powered operation which caused the activity LED to stay on when D+ and D- were
disconnected but VVBus was present.

- Fixed a bug which caused NV Store updates to occasionally fail with the NO EEPROM version of the
firmware.

- Fixed a bug which prevented the 223 from reading certain Memory Stick cards that contained block errors.

Applications:

- Added two new DOS utilities: EPRMUPDT .exe which is used to program the NV Store, and

CheckROM .exe which is used to verify the firmware revision and check the validity of the NV Store data.

- Included an updated version of the Attributes Calculator (v.10) which adds the new Smart Media full speed
1-bit ECC error checking bit.

- Removed support for Simplified Chinese from the installer.

- External Evaluation Build.

Firmware:

- Fixed a bug with full speed 1-hit ECC error recovery for Smart Media cards.

- Added a small delay to the enumeration time for NO.EEPROM versions of the firmware to correct an issue
where the device could enumerate yellow banged under certain configurations behind full speed hubs.

- Changed the clock frequency for SD cards from 20 MHz to 24 MHz.

- Added a new attribute bit (Byte 2, bit 7) to alow the device to skip the status byte check in the extra data
areafor Smart Media cards. This speeds up the map rebuilding process which corrects the hiccupsin MPEG
playback on SM cards. Warning: Setting this bit makes the device non-compliant with the Smart Media
specification.

- Fixed a bug which caused LUN ID stringsto be misreported. This only occured under certain LUN
configuration and icon sharing schemes when media was inserted at the time of enumeration.

Applications:

- Modified the KillReg utility (v1.0.0.4) to work with all operating systems. No an OEM can call KillReg at
the beginning of an installation to eliminate residual device entries from the registry.

- Modified the Attributes Calculator (v.11) to add the new attribute bit (Byte 2, bit 7). Also added an attribute
definitions filter for the USB97C224.

-External Evaluation Build

Firmware:

0.0.0.249:

0.0.0.304:

USB97C223 Software Release Notes
Page- 8 -

- Smart Media 1 bit ECC errors were not handled properly depending on location in block. This has been
corrected in this release.

-Thisfirmware provides afix for the LUN ID string that was being misreported when an MMC card was
inserted at the time of enumeration.

Additional mapper code changes to improve compliance and reliability were added as below:

- Fixed an issue in Memory Stick so that when the device starts writing from the first sector of ablock (e.g.,
xX00H,xx20H, xx40H), the Update Status of the destination physical block remains set.

- The exit condition on the search for alternate blocks, for Memory Stick was incorrect and is now fixed.

- Fixed 1 and 2 bit ECC error on the second or later page in Memory Stick.

Fixed issue on Memory Stick such that if an ECC error was on the last page of a split, but not the last page of
axfer, thiswould cause the fmc_xfer to become unresponsive, until the host issued a USB reset.

Applications:
- No application changes were made for this release.

-External Evaluation Build
Firmware:

- Changed firmware to determine write protect status before attempting to pre-erase blank blocks when
building a zone map. This caused Memory Stick to report “CRC Error” on media even after the write protect
switch was moved to the unlocked position if Memory Stick media was originally inserted with the media
locked.

Applications:
- No application changes were made for this release.

-External Evaluation Build
Firmware:

- Added support for the ST 93C66-W EEPROM.
- Added firmware extensions for the new USBDM utility which is used for DFU firmware upload and
descriptor updates.

Applications:

- Modified the DosPLTU utility (v1.4) to add LUN info on error messages for RW tests so that the user
would know which LUN failed the tests.

- Released theinitial version of the USBDM application (v1.0) which is used for DFU uploads and descriptor
updates, as well as for creating consumer DFU updates in a single distributable exe. See the section of this
document entitled “Using the USB Drive Manager Application” for more details.

- Modified Setlcon.exe (v1.2.0.8) to enable dynamic icon supprt. Dynamic icon support allows the OEM to
display adifferent icon for each mediatype (CF, SM, SD, MMC, MS, MSPRO) and for each media state
(either media inserted, or no media present.) This version of Setlcon isfully backwards compatible with
previous versions and their associated ini files. See the section of this document entitled “Using the
USB97C223 Custom |con Package” for more details.

- Modified the 98SafeRemoval Utility (v1.0.0.5) to prevent the app window from popping up during
initialization.

- Updated the USB97C223 Software Installer to add dynamic icon functionality and the updated
98SafeRemoval utility.

0.0.0.322:

0.0.0.323:

USB97C223 Software Release Notes
Page-9-

-External Evaluation Build
Firmware:

- Fixed alogic error in code that checks for M S protected blocks.

- Removed firmware support for the SMSC M S Pro format utility.

- Added a new attribute bit, “ Attach on card insertion / Detach on card removal” which forces the device to
either attach or detach depending upon the presence or absence of media.

- Made several code space optimizations to reduce overall code size.

- Added support for 256MB Smart Media.

- Implement M ode Sense Page 5 and VVendor Page Support to comply with USB Boot Device specification
(as yet unpublished.)

- Made several firmware changes to fully comply with the Memory Stick specification.

- Fixed abug with MS surprise removal in Linux.

- Fixed some issues with the CE pull-up resistor on CF and SM and corrected the sequence of eventsin the
power-up/down macros for all media.

- Changed the read_format_capacity function to support the SCSI-mmc2 specification. Thisimplementation
isapplicable to all mediatypes.

- Fixed abug in end user DFU code. When reading the NV Store using the new dfu commands, the residue
was not being decremented. Since the SMSC drvlib.dll ignores the residue mismatch, this had no noticeable
effect, however to be fully compliant with the specification, the change was made.

Applications:

- Modified the DosPLTU utility (v1.5) to add support for EHCI and OHCI host controllers.

- Modified the USBDM application (v1.004) to include support for creating end-user DFU executables
(OEM .exe) that will upgrade firmware versions prior to 300. Please note use must be using external flash in
order to upload new firmware with DFU.

- Modified the USBDM application (v1.004) and the Attribute Calculator (v.15) to include support for the
new attribute bit, “ Attach on card insertion / Detach on card removal” which forces the device to either attach
or detach depending upon the presence or absence of aflash card.

- Updated the Cardreader Software Installer (v2.5) to include the Microsoft Hotfix for Windows XP (SP1).
This hotfix corrects the Setlcon issue where icons would not be properly updated until a card was either
inserted or removed. Note that this hotfix will be included in Microsoft’ s upcoming Windows XP (SP2)
update. It can also be downloaded from Microsoft’ s website via Windows Update (KB 833998).

- Modified Setlcon (v1.2.1.1) so that it no longer auto arranges the icons on the user’ s desktop.

-External Evaluation Build

Firmware:

- Fixed a bug that prevented some MMC cards from being accessed.

Applications:

- Changed the Card Reader Software installer (v2.6) included in the DFU and Driver Package to remove the

M S Hotfix 833998 for Windows XP. This hotfix is now available from the Microsoft Windows Update site.
SMSC will continue to provide an installer that includes the hotfix as a separate download (~25 MB).

0.0.0.360:

USB97C223 Software Release Notes
Page - 10 -

-External Evaluation Build

Firmware:

Fixed a bug with the firmware not responding on an embedded host during a media surprise removal
Fixed abug with SM_CE pull-up being enabled after power up and resume from suspend. To meet xD
specification thisinternal pull-up should be disable, so removed enabling of this pull-up from firmware
Fixed an issue with BIOS booting from Memory Stick Pro by changing the media identification process
for MS Pro

Fixed abug with MS Pro failing to enumerate rarely after a surprise removal of the USB cable during a
format.

Time-out values for Smart Media have been adjusted to comply with version 1.20 of xD specification.
Added afix to properly identify the capacity for SD cards with > 512 byte block length (2GB SD card).
Improved the detection of MS-Pro cards. This solved an issue with MacOS 9.X where the MS Pro was
not being correctly identified on the first insertion.

Initialized lun data medium_type code to O (default medium type/currently mounted medium type) in
initialize controller function for SD, SM, CF, and Nand. Some BI1OSs don't like uninitialized random
data for medium type.

Initialized rdt to k_successin dfa_lun_mode_sense() before use. rdt was checked w/o being set to a
value when k_mode_page flexible _disk (page 5) is requested. rdt was being initialized only for vendor
page and all page requests. Thiscaused SM LUN to stall mode sense 10 page 5 request.

Fixed Memory Stick response to Mode Sense 6 and 10. Sony specific codesfor MS, MSPro, and MS-
ROM should be returned only for Vendor Page 20 only.

Change to C3 feature so that the device can operate without requiring a pull-up on GPIO5 when SD
LUN is not used (compiled out or disabled by user via LUN configuration)

Fixed Memory Stick's response to Mode Sense 6/10 with page code 3Fh (or 05h)

Applications:
- Changed the Card Reader Software installer (v2.7) to fix icon relocation bug on certain PCs.

The Non-Volatile Store Data

USB97C223 Software Release Notes

Page- 11 -

The NV Store is user modifiable data that is stored in an EEPROM and used by the device during operation. Some of the
values that can be modified in the NV Store data include the serial number, VID/PID, Manufacturers ID String, Product ID
String, LUN ID Strings, the modifiable device desciptors such as bmAttributes and MaxPower, number of LUNs, LUN
order, and other modifiable bytes which customize the operation of the USB97C223.

The NV Store data is programmed into the device using atext file “EEPROM.DAT”, which contains the bytes of data that
are written to the EEPROM. A complete list of the user modifiable datain the EEPROM.DAT fileisincluded in this
document. (See the section entitled “ Sample EEPROM.DAT File")

SMSC provides a utility to program the NV Store data called “DFUTest.exe”. The procedure for using the DFUTest Utility
to write the NV Store data is described in the following paragraphs.

Using Flash ROM to Store the NVStore Data

If you are using external flash you can, as a cost reduction measure, eliminate the need for a serial eeprom in your device by
using the SST39VF010 Flash ROM, and the “NO EEPROM” version of the USB97C223 firmware. The NO EEPROM
firmware uses a portion of the memory storage area in the SST39VF010 Flash to hold all of the NV Store data. Currently, the
SST39VF010 is the only chip supported by the NO EEPROM firmware. If you have a requirement to use another flash, please
contact SMSC Sales to inquire about adding support for your chip.

Note: The USB97C223 contains internal masked ROM program code. If you are running the 223 from internal ROM code, you
must use an external eeprom to store the NV Store data (V1D/PID/Manufacturer and Product 1D Strings, Attribute Bytes, etc.)

Using the DEUTest Utility

To usethe DFUTest utility to create the eeprom.dat file and program the USB97C223 device, the following files are required:

The DFU application- (dfuTest.exe)
Thedriver library- (drvlib.dil)

The DFU driver- (smscdfu.sys)

The DFU ingtallation inf- (smscdfu.inf)

Rl A o

Before using the DFUTest application, you must add a
VID/PID entry for your device to the “smscdfu.inf” file.
Thisisrequired for the DFU driver swap to occur properly.

To start the dfuTest application, simply double click the
“dfuTest.exe” executable. Once the application starts, you
will see the user interface on theright.

To create the eeprom.dat file which will contain the data to
be programmed in the non-volatile store area, select
“Tools’ > “DAT Editor” >“New File” from the
application menu.

Bt 5psi Desonptor Update | Firmseare Update for

Tioiks Abrok

Chick: e asfton bashoas e i
e frished updsing ol devices

Thizt woll ragicis tha nalive

ks Muks Shodage Dl
Dorveer.

Rlesiore windoss Direer

Frarrat HAKND Flagh
Click in fomat WAKD Flagh dive

Ersse My Foamiat Do

[T Enac sk befose |omatieg

EEPRDIM FLASH Desonpiors Updste
Ok bo ugdabe e device's desriptons

L pedsii Db

[fudo ircremend perigl e

Fuamweasin Lipdaia
Chick: 8o updabe b dewice’s Fimmaans.

gt Firvrwsne: |

'E:&l

USB97C223 Software Release Notes

Creating the EEPROM.DAT File

Page- 12 -

When creating a new eeprom.dat file in the DFUTest DAT Editor, the dialog to the right appears. All fields should be filled out
completely, and the file should be saved using the “Save” or “Save As’ buttons.

Attribute Bit Definitions and NVStore Editable Values

2:1. VID- Vendor ID (2 bytes): Unique for every vendor. Assigned by the USB Implementers Forum.

3:2. PID- Product ID (2 bytes): Unique to the product. Assigned by the Vendor.
Attributes (4 bytes): Only the 1% and 2™ Bytes are used. The correct attribute value for your device can be determined using the

3.

“Attributes Calculator” utility provided by SMSC. The hit definitions are as follows:

Byte 1, bit 0: Smart Media Timing (Not used for the USB97C223)
1- NAND flash chips will use the slower, smart media compatible r/w
cycletime. Thisis the recommended setting.
0 - NAND flash chips will use the faster 50ns r/w cycle timing for chipsthat are
capable.
Byte 1, bit 1: Enumerate asHard Drive or Removable M edia (Not used for the
USB97C223)
1 (default) - NAND flash hard drives always enumerate as removable media.
0 - NAND flash hard drives enumerate as removable disks when write protected,
and as fixed disks when not write protected.
Byte 1, bit 2: Behavior of GPIO 5 (Note: Thisbit must be set if you are using Byte 3, bit O,
Attach on card insert / Detach on card removal.)
1- Use GPIO5 as an SD card insert indicator.
0 (default) - Use GPIO 5 as a High Speed indicator.
Byte 1, bit 3: Behavior of iSerial bytein device descriptor
1 - Always report iSeria as zero in the device descriptor.
O(default) - Report non-zero iSerial in device descriptor if serial number isvalid.
Byte 1, bit 4: Usethe Inquiry Manufacturer and Product 1D Strings
1 — Usethe Inquiry Manufacturer and Product 1D Strings.
0 (default) - Use the USB Descriptor Manufacturer and Product ID Strings.
Byte 1, bit 5: Set the state of the activity LED when suspended, regardless of itsidle state.
1-Theactivity LED GPIO is set to High when suspended.
O(default) - The activity LED GPIO is set to Low when suspended.
Byte 1, bit 6: Reverse SD Card Write Protect Sense

TLE 1] sl
o o e
Beiil Bas Rend el

PO [I [ol omom

Lot i b T A

i g |

Sy Ty [TLE

[y =] [— -

Finkeh ¥ P~

[FTIS—— Bk e] 0 . D (30

[P T8 s |

NN m o=

P ——
g m

gty Py Y S [T
[T T E——

¥ I and o [T L BT
EIE Y

i m) B FT WLaE

P P T HALE H R [w

asiii | ¥

|-

1 - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP islow
0 (default) - SD cards will be write protected when SW_nWP islow, and writable when SW_nWP is high

Byte 1, bit 7: Make SD Cards Write Protected Always (Read Only)

1 - SD cards will always be write protected, regardless of the state of the card's write protect switch
0 (default) - SD cards will only be write protected when the write protect switch on the SD card is engaged

Byte 2, bit 0: Smart Media CIS Checking

1 —Ignore CIS check for Smart Mediato allow the USB97C223 to work with non-compliant cards.

O(default) — Enforce Strict CIS checking for Smart Media cards.
Byte 2, bit 1: Idle processing (Not used for the USB97C223)
1 —idle processing on. Device will perform required erase operations while idle.

O(default) — idle processing off. Device will wait until awrite is received before doing required erase operations.
Byte 2, bit 2: Compact Flash Compatibility M ode (Note: This bit should no longer be used. It was originally added to allow
compatibility with off brand Compact Flash cardsthat the 223 was misidentifying. This bug has subsequently been fixed,

eliminating the need to use this compatibility bit.)

1 — Compact Flash will operatein slow PIO-0 mode only.

O(default) — Compact Flash will operate at the fastest mode the card reports it can support.
Byte 2, bit 3: Change the Device Responseto a Get Status Command

1 - Device will report itself as SELF POWERED in response to a GET STATUS from the host.
O(default) — Device will report itself as BUS POWERED in response to a GET STATUS from the host.

USB97C223 Software Release Notes
Page- 13 -

Attribute Bit Definitions (cont.)

»

o

10.

11.

12.

13.
14.

15.

16.

Byte 2, bit 4: Change the USB Version the Device Reportsto the Host (Warning: Setting this bit will result in the device being
non-compliant with the USB 2.0 specification.)
1 - Devicewill report itself as USB version 1.1 in the bcdUSB device descriptor.
O(default) — Device will report itself as USB version 2.0 in the bcdUSB device descriptor.
Byte 2, bit 5: Usea Common Media Insert / Media Activity LED.
1 - The activity LED will function as acommon media inserted/media access LED.
O(default) — The activity LED will remain in itsidle state until mediais accessed.
Byte 2, bit 6: Perform Software 1-bit ECC Error Correction on Smart Media.
1 —Thedevice will perform Full Speed 1-bit ECC error correction in software for Smart Media transfers. Please be warned that
setting this bit will result in approx. 50% transfer performance drop for Smart Media due to the processor overhead required to do
ECC checking in software.
O(default) — The device will not correct 1-bit ECC errors during full speed Smart Media transfers.
Byte 2, bit 7: Bypass Status Byte Check for Smart M edia Cards.
1 - The device will bypass the Smart Media status byte check in the extra data area, speeding up the map building process. Caution:
Setting this bit makes the design noncompliant to the Smart Media specification.
O(default) — The device will not bypass the Smart Media status byte check. (Smart Media spec compliant).
Byte 3, bit 0: Attach on Card Insert / Detach on Card Removal. (In order to usethisbit, you must also set Byte 1, bit 2 and use
GPIO5 asacard insert indicator.)
1 - The device will attach to the host when mediais inserted and detach from the host when mediais removed.
O(default) — The device will aways remain attached while powered, regardless of the presence or absence of media.
Byte 3, bit 1: Reserved.
This bit is reserved and should aways be set to “0".
All other bitsand bytes arereserved and should be set to 0.

Language I D (2 bytes): 0409 is the Language Code for English. Other language codes may be found in the USB 2.0 specification.
Serial Number (12 Hex Digits M ax): Unique to each device. The serial number can be up to 12 hex digits, written in the eeprom.dat
file as unicode.
Manufacturers String (28 Characters M ax): Used to hold a descriptive manufacturer string.
Product ID String (28 Characters M ax): Used to hold a string to identify the product. The user will see this string during the USB
enumeration process in Windows.
Format Signature- Do not change. For the USB97C223, this should remain “atal”.
bmAttributes (1 byte)- Per USB Specification.

80 — Device is bus powered.

CO —Deviceis self powered.
M axPower (1 byte)- Per USB Specification. Do not set this value greater than 100mA.

01-2mA

31-98mA
GPIO 0/1 LED Blink Interval (1 byte)- Programmablein 10msintervals. Hi bit indicatesidle state: 0-Off, 1-On. The remaining bits
are used to determine the blink interval up to amax of 128 x 10ms.
GPIO 0/1 Blink After Access Time (1 byte)- This byte is used to designate the number of seconds that the GPIO 0 LED will continue
to blink after a drive access. Setting this byte to “05” will cause the GPIO 0 LED to blink for 5 seconds after a drive access.
LUN ID Strings (7 bytes each)- There are four LUN 1D strings corresponding to LUNs 0,1,2 and 3.
Inquiry Manufacturer (8 Bytes) and Product (5 Bytes) ID Strings: If bit 4 of the 1% attribute byte is set, the device will use these
strings in response to a USB inquiry command, instead of the USB Descriptor Manufacturer and Product ID Strings.
Number of Iconsto Display, CF Lun#, MSLun #, NAND Lun #, SD/IMMC Lun #, SM Lun # These bytes are used to specify the
number of LUNSs the device exposes to the host. These bytes are also used for icon sharing- Assigning more than one LUN to asingle
icon. (See the section of this document entitled “LUN Configuration and Icon Sharing.”)
NAND Profile (2 Bytes): (Not used for the USB97C223) Thisiswhere the NAND performance profile is specified for controllers that
useit.

USB97C223 Software Release Notes
Page- 14 -

The Attributes Calculator

SMSC provides asmall utility called the Attributes Cal culator which can be used to calcul ate the attribute val ues for your
device. In order torun the utility, you must have the latest Microsoft NET framework installed on your PC. The NET
framework can be obtained through a normal Windows Update, or you can download it manually from the Microsoft website
at: http://msdn.microsoft.com/netframework/downl oads/howtoget.aspx . To use the utility, simply select each of the Attribute
byte tabs and check the boxes for the bits you want to use. The attribute bytes are calculated in real-time and displayed at the
top of the application. If you hover the mouse pointer over any of the bits, a complete definition and option summary is
displayed on the right. Y ou can also use the Attributes Calculator to decode attribute byte values. When you type a value into
the field for any of the attribute bytes, the corresponding attribute bits are displayed in the tab control below.

el
— Attribute Byte Yalues Filter by Chip: Im 'l

Byte 1 Byte 2 Byte 3 Byte 4
|00 [00 |00 |00

— Attribute Hex ¥alue

0x00000000

Attribute Byt 1 | Attribute Byte 2 | Attribute Byte 3 | Attribute Byte 4

—Attribute Byte 1

[~ Use Slow MAMD Flash Media Timing
[T Enumerate MAMD device az Remaovable Media
[Use GPIOS az an S0 Card Inzert Indicator

™ Report iSenal Byte as Zero in Device Descriptor Options:

[Use Inguiry Manufacturer and Product ID Stings
[Setthe Activity LED GPID to High 'when Suspended
[~ Beversze 5D Card “Write Protect Sense

[Make SD Cards “Wiite Protected Alvays

Programming the NVStore Data

Once the eeprom.dat file has been created with the DFUTest application, you
are ready to program the NV Store data into your device.

Press the “ Update Descriptors’ button on the DFUTest application to program the
NV Store data. A dialog like the one on the right will appear. Enter the current
VID/PID/DID for the device, browse to the path of each of the three required files,
and select “OK”. The operation will report completion once the data has been
programmed.

Note that if you are using the DFUTest application in a production line
environment to program multiple USB97C223 devices, you can check the box on
theright titled “ Auto increment serial number.” This will increment the serial
number each time adevice is programmed, ensuring that all serial numbers
remain unique. Once you have completed programming the NV Store data, press
the “Restore Windows Driver” button to unload the DFU driver and load the
Windows mass storage class driver.

USB97C223 Software Release Notes

Fick e s e e
ot ey e

Tomi ol mebde W mir
o e W8 L e [
Faa

Faatnad AL Pl
Dot g AR Pt e

Page - 15 -

CIFRLad LA i [acemacss, L ey
Dk S o B e b 4

I

B L e =

[E= SN
L b s B i | Wil

T Tumd [5 it F |
T L o ol il ¥l
] |
T T =i
i
e ki Pl] []
ol L
| |
Pl i
l =
Py i "[oailid
| B j
. 1] | awE I
s
T
Tk ddami
ik iy ey b — DIFELs 1AL rnces. |innwre
" e - peimey o drere [P T
'I--l-n—-:--.rEh
| A " | o |- e ;
"'_"-_"'__I B e e)
Formad IUALT My ¥ mme | pram

[RER e SRR

Arsar b b [wem

T g R e e

i |

T ¥ s o vy

[I

Sample EEPROM .DAT File

USB97C223 Software Release Notes

Page - 16 -

Below is an example of the contents of the “EEPROM.DAT” file, displayed herein columnar format for clarity’s
sake. For each of the string descriptors, the first byte is the length of the descriptor including the length byte itself. The next
byteisthe “03" String ID, followed by the string itself. For example, the string “SMSC” would be “0A 03 53 00 4D 00 53 00
43 00 00 00". Note that “OA” isthe length, followed by “03” the String 1D, and then the SMSC string in Unicode, terminated

with the NULL character “00".

1A // length of serial
03 // string descriptor type
30 // unicode serial number string descriptor

24/ vid lo

04 // vid hi

FC // pid lo

20 // pid hi

04 // langid length

03 // descriptor type: string

09 // langid lo

04 // langid hi

OA /I unicode manufacturer's string descriptor

00 // attributes lo word lo byte
00 // attributes lo word hi byte
00 // attributes hi word lo byte
00 // attributes hi word hi byte
00 // password

80 // bmAttribute - 0xCO (Self) or 0x80 (Bus) only
30 // bMaxPower - 1 <= bMaxPower <= 0x31

05 // GPIO 0 LED blink interval in mult. of 10msec - hi bit indicates idle state: 0-off, 1-on

05 // number of seconds to keep GPIO 0 LED blinking after access

43 /[ascii, not null terminated, logical lun 0 id string
46 /ICF

53 /IMS

4D /ISM

53 // ascii, not null terminated, logical lun 4 id string
44 //SD/IMMC

FF // max number of luns

FF // CF lun number

FF /[MS lun number

FF // SM lun number

FF // SD/IMMC lun number

FF // NAND lun number

FF // reserved - to set clock speed - edit manually
FF // NAND profile hi byte

FF // NAND profile lo byte

FF // reserved - fpga, pwr_mgmt flags - edit manually
FF // reserved

61 // signature

74

61

31

LUN Configuration and | con Sharing

LUN Configuration

LUN (Logical Unit Number) isthe term given to each available media
type in the USB97C223. The USB97C223 has atotal of 4 LUNs available
for use: Compact Flash, Memory Stick, Smart Media, and Secure
Digital/Multimedia Card. OEMs can specify the number and order of
LUNSs exposed to the user by setting 5 bytesin the NV Store data. (See the
section entitled “Using the DFUTest DAT Editor”).

Example: The example on the right shows the correct settings for a 223
device that exposesiconsfor MS, SM and CF in that order. Note the
following bytes:

Number of Iconsto Display: “03” (The user will see 3 icons)
MSLUN # “00” (Memory Stick will be the 1% icon displayed)

SM LUN # “01" (Smart Mediawill be the 2™ icon displayed)

CF LUN #: “02" (Compact Flash will be the 3% icon displayed)
SD/MMC LUN # “FF” (Aniconfor SD/MMC will not be displayed)

Note: LUN numbering always starts at “00”.

| con Sharing

In addition to LUN configuration, the USB97C223 can be further
customized to allow more than one LUN to share an icon. This
functionality would most likely be used for devices that contain multi-card
adapters (adapters that can read more than one type of card.) So if you
wanted to use a“5-in-1" or a“6-in-1" adapter, the USB97C223 could be
configured to only display a single icon to the user, rather than an icon for
each individual mediatype. Alternatively, if you wanted to use a“4-in-1"
adapter for Memory Stick, Smart Media, Secure Digital and Multimedia
Card, but have a separate adapter for Compact Flash, you could configure
the USB97C223 to display 2 icons to the user (one for the 4-in-1 adapter
and one for the Compact Flash) as shown in the example on the right.

Example: The example on the right shows the correct settings for a 223
device that exposes 2 icons: 1 for (CF) and 1 for (MS, SM and SD/MMC)
in that order. Note the following bytes:

Number of Iconsto Display: “ 02" (The user will see 2 icons)
CF LUN # “00” (Compact Flash will be the 1% icon displayed)

MSLUN # “01"
SM LUN #: “or” } (These mediawill all share asingle icon)
SD/MMC LUN #: “01”

USB97C223 Software Release Notes

Page- 17 -

Fis:

DAT e

Wil iDwjld2e B fafFC ke 0w [JO000OCD

Language Il [w]0473 Gdnl Mo (|77TITTIIINIT

Parndychue Shing |SME0

Frodudt Slhang IL'S.B.EFIllh Vs Dlavica

Fomust Sgrashss: || 951 -

Fisichs For Fparead “mial™
b 30 Birk intervat 505 Bink Dunation: 07
bty [30 =] L0 [a0 W5

Lund i |EH— L3 D T
|rpsiy W aredfactuses: 1D Siing |'s.-.1§|:

Iy oot 1) Sy fLizE z
[Fumd: DT MSLenE: 0o

SOMHC N e [FF SM Len B (e

PUSID Frolle: D [Fer HAHD HDH: s [FF

=]

Femrban of lcarz
i Dl

Sesn | Exd

File
DT ki
WID: De[42 AD: e[T0FC stinbebes: 0e [200D0000
Language I [w] 1425 Sead by (| TTPTIITINNTT
Mirwibactue Shing [SMAC
Product Stang IL‘EB}FIllh'\-h:l.n:llm
Fozarasd Gagrodias |dn| '-|

Fisiicke P W parvasd “miy)™
bMaFoee (k30 Birkinterst 5[5 Bink Dunation: (107
e Bl w0 wmefes
w2 i FH pea D SO0
| ey M o achisess 1D 5ying |'5.-.1'E|:

Irapirp Paodiae] 10 Siengr §jzg -

Pmbe & loarz — —
u:mm-'-_ Fle#: [0 M5 LanE: Dy

ECUMHE B e [0 S e B Dt
MEMD Frclle D [ForF HAHDHD H: O [fF
| Save I

Siwe Bip | Esdl

USB97C223 Software Release Notes
Page- 18 -
Using the USB Drive Manager Application (for Windows XP Only)

The USB Drive Manager (USBDM) application can be used to perform all of the same functions that DFUTest performs, plus
some additional functions such as creating end-user firmware updates contained within asingle, easily distributable exe, and
having the ability to instantly read the NV Store data from the device without the need for a driver swap.

Note: In order to use all of the features of the USBDM program, you must use a firmware version 300 or later. Firmware
versions after 300 include support for the SCSI pass through commands required for USBDM to retrieve NV Store data from
the device.

Note: The USBDM Application is supported in Windows XP only.

Getting Started:

T T P e — M=l

To start the USB Drive Manager application, simply

M B e el

double click on the “USBDM .exe” executable. Once N - A LY

the application opens you will see the screen shown g er— —— 3
below. The version of this application can be seen
from this view. =1
l]'g-: fiamdard Mlarsapsrrms Caorperatian
LUSB Drive Manager
Trerews LiodEw - Des .._._ iy FEIIY SCTTIEATT R
e - 5
| =
Fras. B

The USBDM Toolbar

m USB Mass Storage Class Drive Manager

)

Erase

~a
" ‘_1 = Fmt | DFU

I I u

File Edit ©Options ‘iew Help
B A |

The toolbar buttons shown above are displayed at the top left hand side of the application. Starting from left to right, they
perform the following functions:

Button 1: Refresh Drive List Button 5: Format Drive (Not Used With 223)
Button 2: Load .dat file Button 6: Upload Firmware

Button 3: Save .dat file Button 7: Copy

Button 4: Erase Media (Not Used With 223) Button 8: Paste

*|f you do not see these buttons displayed, go to “View” in menu bar and make sure there is a check next to the “ Toolbar”
option.

Thelnfo Tab

Theinfo tab is displayed whenever a USB mass
storage class device is attached to the host while
USBDM isrunning. Thistab displays the key
fieldsin the NV Store data for the device. Note:
Unless the device contains the SMSC USBDM
firmware extensions which are found in firmware
versions 300 and higher, most of the data fields
will display INVALID.

Attach a device containing the USBDM firmware
extensions (firmware versions 300 or higher) to the
PC viaaUSB cable. The USB Drive Manager
application will read the NV Store data for this
deviceif there exists valid data. It will display
information for each drive that is available on the
device. The example to the right has information
for Drive F, Drive G, Drive H, and Drivel. You
can toggle between the information for each of
these drives by single clicking on the Drive entry

under the “USB MSC Device” folder on the left side of the application.

Note: The detach button seen on this tab will momentarily detach the target device from the system.

The Branding Tab

The Branding tab is used to write vendor specific
data to the NV Store. Programmable fields include:
Vendor ID, Product ID, Language ID, Product String,
Manufacturing String, and Serial Number String.
Any of thisinformation can be changed on the
device. Once you have entered the information for
your device, click on the “Update Now” button to
program the NV Store.

Vendor ID: Unique for every vendor. Assigned by
the USB Implementers Forum.

Product 1D: Unique to product. Assigned by vendor.
Language | D: 0409 is the Language Code for
English. Other Language Codes may be found in the
USB specification.

Product String: 28 characters max. Used to identify

USB97C223 Software Release Notes

o s Y e s e e

e

Page- 19 -

g = L

LR OO Ve M

2 e R

&

o i
—

[E)

5
g T
liwsit
s

Trarallsg Copligmuine

1 B g ncrmanes

I @ AT Em

Pl Lelmils

i My

15 mediin i

the product. This string will be used during the USB enumeration process in Windows.
Manufacturing String: 28 characters max. Used to identify the manufacturer.

Serial Number: 12 hex digits max. Must be unique to each device.

Using .dat files with USBDM

The Load .dat file button can be used to populate these fieldsfrom avalid .dat file. After clicking the Load .dat file button, you
will be prompted to specify a .dat file. Once the .dat file has loaded, the text fields will be updated to reflect the datain the .dat
file. Any changes made to the text fields can also be saved into a .dat format using the Save .dat file button at the top of the

application.

USB97C223 Software Release Notes
Page - 20 -

The Configuration Tab

The Configuration tab contains all of the other

R Fe o e | L B A

NV Store programmeable fields not found in the e
Branding Tab. et B i) NS
4 "I'__ " Inle Newwdeg Ceilguialen -
The Configuration Tab is where you set: i ! Lesus
1) The NV Store signature which is always S e L
“ATAL” for the USB97C223 S A L s Ly
2) Theattribute bits I et e h Cttwaa o
3) TheLUN assignments s (AT et | 1 1 gy
4) TheLUNIDs easmmeisyromaniny o S R e bt S
5) NAND Profile (Not Used for USB97C223) ol Ve el | Y oo s B e 1
6) Miscellaneous settings such as the USB sy _——
descriptors bMaxPower and bmAttribute e SR i 35 i
s M =i VT Fy
These user programmable fields are described in ;
detail in the following paragraphs. o am

Signature: The signature should remain set to ATAL for USB97C223.

Attribute Bits: The attribute bits are used to customize the functionality of the USB97C223 firmware. A complete list of all
programmable attribute bits and their function islisted in the section of this document entitled “ Attribute Bit Definitions and
NV Store Editable Values.” In the image shown below “Make SD Card Write Protected Always’ is the only option selected.
Placing a check to the left of an option sets an attribute bit. If the box is unchecked, the attribute bit will be cleared.

LUN Configuration: The LUN configuration section is where you program
LUN assignments and ID strings. The first editable field isthe “# of iconsto
display.” Thisiswhere the user can specify how many icons he or she would

LUK Confgaatzn

|FF H of oo be Ciplag

like to appear in Windows Explorer. If thisfield is set to “FF”, the program |FF Conpact Fi = L
assumes that you are using the default value of “04” and will display icons for [FF blermon Stick pEi LLw -IE
CF, MS, SM, and SD. If thisfield is any other value besides “FF”, you must [FF Smai Mo SH LUBIHZ -ID
specify the LUN# assignments in the boxes below starting with LUN 00 and [FF Smoums DigeabMME [SDHHD omis3-i
going to (# of Iconsto Display -1). Note that more than one interface (CF, [FF mamm & [FFFF HAKD Fiokls

MS, SM, or SD) can share a LUN. Thisiscalled Icon Sharing, and isused in

applications where the device utilizes a combo socket and the OEM wishesto

have only a singleicon displayed for one or more interfaces. For more information, see the section of this document entitled
“LUN Configuration and Icon Sharing.” Remember L UN numbering always starts at 00.

The configuration to the right directs the firmware to show three LUN’sin the

order of CF, SD/MMC, and SM. Note that Memory Stick is not enabled in LU Coeliganton
this configuration. |52 8 offoome o Displey

I':'-'I Crompaci Flath [cF LR - 1D
Of Iconsto Display: 03 [FF Wemmy Sk w3 TN
Compact Flash (1¥ LUN): 00 0F 5wl Wik ED LLWHZ 1D
Memory Stick (Wl” not dISpIay) FF |:i G o [il B TR LUMED - 1D
Smart Media(Z"d LUN) 02 [¥F puawr < [FFFF HAKD Paaila

Secure Digital/MMC (3 LUN):01

USB97C223 Software Release Notes
Page- 21 -

Misc. Settings: The Misc. Settings section is used to program the other o os
miscellaneous NV Store editable values. They are: e

1)

2)

3)

4)

| 05 Bk Interend
2| [0 Bk Cinstion
bM axPower (1 byte): Per USB specification. Do not set this value [baais
greater than 100mA
Blink Interval (1 byte): Programmable in 10msintervals. Hi bit
indicates idle state; 0—Off, 1-On. The remaining bits are used to
determine the blink interval up to amax of 128 x 10 ms.
Blink Duration (1 byte): This byteis used to designate the number of seconds that the GPIO 0 LED will continue to
blink after adrive access. Setting thisbyteto “05” will cause the GPIO 0 LED to blink for 5 seconds after a drive
access.
bmAttribute (1 byte): Per USB Specification.
80 - Deviceis Bus Powered
CO0 — Deviceis Self Powered

Using the USBDM Application to Perform Device Firmware Upgrade (DFEU)

The following files are needed to perform a device firmware upgrade with the USBDM application:

grwNpE

The USBDM application executable (USBDM.exe)

The device code (both.bin) *M ust be preprogrammed in the device flash in order to accept DFU
A HEX to BIN converter (hex2bin.exe)

Utility to add the .dfu suffix (dfu.exe)

The updated firmware image. Stepsto create this file are explained below (fmc.dfu)

A firmware update can only be done using this application if avalid both.bin file is already programmed onto the device. See

the section of this document entitled “ Creating the 128KB DFU Capable Flash Binary ‘both.bin’” for steps on how to create
the both.bin file.

Creating the .dfu File:

The .dfu fileisa DFU uploadable firmware image. It is essentially USB97C223 firmware converted to binary format using the
hex2bin.exe utility, with a DFU suffix appended to it. For information on creating the .dfu file, please see the section of this
document entitled “Creating a DFU Uploadable File”. Please note that the USBDM application uses the device ID field (DID)
to check firmware version information. The DID field should be filled with the major and minor firmware version (for this
example, v3.00, the DID would be 0x0300).

This procedure can be completed using a simple DOS batch file:

hex2bin -165534 fmc.hex fmc.bin
dfu fmc.bin -did 0x0300 -pid 0x223A -vid 0x0424
ren fmc.bin fme.dfu

USB97C223 Software Release Notes
Page - 22 -

Updating the Firmware;
To perform afirmware update, click on the “Upload Firmware” button at the top of the application. Fim
Y ou will then be prompted to select the .dfu file that you wish to Find * dfu fils and click "Dpn®,

upload to your device. Navigate to the .dfu file (if it is not already poack iy [1 DFU Tt Appkeaon +| ~ & EI
listed in the current folder) and click open. -

Film narmm T

Filam of g il B Lol

Rowary i vt

Y ou will see apop up box on your screen that displays the status of the firmware upload. This status will cycle through
“Waiting for DFU Driver to Load”, “ Switching to DFU Mode”, “Uploading New Firmware”, “Validating New Firmware”, and
“Firmware Upload Successful”. Once the loading is complete you will be prompted to unplug the device and reattach it to
continue (or to restart the host if the device isinternally mounted).
Once the device is reattached, the device will enumerate and the
information for the updated firmware will be loaded into the USB
Drive Manager application. ‘g o DL Do B Lo

Jic 50% 100%

Using USB Drive Manager to Create a Consumer Firmware Update Executable

USBDM can be used to create a very simple, easy to use, easy to distribute firmware update that OEMs can give to their
customersto allow firmware upgrades. To create the executable, you only need two files:

1. The Drive Manager application (USBDM .exe)
2. The updated firmware image. (fmc.dfu)

Note: Ensurethat the DID set in the DFU file matchesthe Major and Minor firmwarerevision.

Simply drag and drop the .dfu file on the USBDM.exeicon in h.!%ﬁ-qmﬁﬂmﬂ.ﬂ
Windows. Y ou will see a popup box asking if you would like to e —_———
create an OEM consumer version of the DFU application. Click yes
and the application will build the consumer firmware update N s ey) A
executable. The executable will be given the default name of

“OEM.exe”. You can rename this file to whatever you like. Thisis
thefile that is distributed to the customer to allow firmware
upgrades. = |

Note: Thetarget device must be preprogrammed with avalid
“both.bin” fileto allow firmwar e upgrades.

USB97C223 Software Release Notes
Page - 23 -

Using the OEM.exe to Update Firmware

The OEM executable icon is shown to the right.

1) Double click on this executable to begin updating the firmware in your target device.

2) You will be prompted to attach a supported USB device.

Firwvmss | incnds Ireraricre

This prompt also displays which firmware version the executable will
use to update your device. For thisexample, Firmware Version 3.00 is
used.

Al a nuppaied LIS devios and chck o

Frresars Varmon 308

3) Connect your device(if not connected already) and click
“Continue”. £l Timsanin

Note: This application allows consumers to make firmware updates to their device provided that 1) avalid both.bin fileis
already programmed on the target device and 2) the firmware that they are attempting to upgrade to is equal to or newer than
the firmware version already on the device. This application will not allow an update to a version of firmware that is older than
what is currently on the device. You will be asked if you would like to update your device firmware, click “yes’ to verify the
update and the application will begin to update your device.

The application will show the status of the update. It will cycle
through “Waiting for DFU Driver to Load”, “Switching to DFU
Mode”, “Uploading New Firmware”, “Validating New ming fos [FL Dirver 2 Lasd

Firmware”, and “Firmware Upload Successful”.
% 50% 1005

4) The USB Drive Manager application will prompt you to either reboot your

computer (if an internal USB device was updated) or unplug the device and —

plug it back in (if an external device was updated). H them o s e vl L0 e, planem
pebanl yiir cowpuber, T Dok, pleais
unpig e deros and Dl € bk m
o oG

|

After thisis completed, you will see the device status pop up
return with the message “The Update Completed Successfully”.

The firmware is now updated on your device. The Lidais Conplelsd Siiocesshil
e ———
& 5% 133%

USB97C223 Software Release Notes
Page - 24 -

Using Device Firmware Upgrade (DFU)

Important Note: The version 212 release of the USB97C223 firmware includes the final version of the DFU loader
“DFU.hex”. This DFU loader isincompatible with previously released versions of the USB97C223 firmware, but will be
forward compatible with all future releases. In order to have DFU firmware upgradeability for any 223 device going forward,
you must use the version 212 DFU |oader.

Overview

Device Firmware Upgrade (DFU) is the process by which device firmware is updated through a standard USB cable,
eliminating the need to remove, reprogram and replace flash memory. This operation is accomplished by placing special code
into an external flash memory chip at thetimeit isinitially programmed. This code can then later be called upon to essentially
change the USB device into a flash programmable device. Then new firmware can then be uploaded to the device and
reprogrammed into the flash. Once the operation is complete, the device configures itself back to anorma USB device and
begins utilizing the new firmware. Please note that you can not perform a device firmwar e upgrade if you are running
from theinternal USB97C223 ROM code. You must use an external flash if you want to have device firmwar e upgrade
capability.

SMSC’s Device Firmware Upgrade (DFU) package gives manufacturers the ability to easily utilize DFU to
dynamically update the firmware and descriptor information in their devices. Thisalows for in circuit programming of new
device firmware both on the assembly line, and by the end user in the field. This affords both the manufacturer and the end user
agreat opportunity to utilize the feature enhancements and bug fixes of new code immediately once it becomes available.

In order to help Windows customers evaluate the DFU technology, SMSC provides a DFU package that consists of
the DFU driver, device firmware, sample DFU applications and source code, and a DFU driver APl which customers can use
to quickly develop custom DFU applications. SMSC aso provides a DFU package for Mac 10.X and 9.X systems. This
document serves to describe the use of these tools, and the implementation of Device Firmware Upgrade in atypical device
application.

Files Required for DFU for Windows

dfuTest.exe —A sample DFU application which demonstrates the use of the API and the procedure for updating the firmware
and NV Store data.

drvlib.dll —A dynamic link library loaded with “smscdfu.sys” which handles all of the non-DFU specific operations such as
PNP message handling and basic WDM and USB support.

smscdfu.sys -Thisisthe DFU driver which isloaded prior to performing a firmware or eeprom update operation. It is
responsible for handling the DFU specific function calls from the DFU application.

smscdfu.inf —The file responsible for loading the “smscdfu.sys’ DFU driver. The contents of thisfile should never be altered.

eeprom.dat —A text file containing the changeable descriptor information used to update the NV Store. Thisfile can be created
and edited in the DAT Editor (under the Tools menu) in the DFUTest application.

hex2bin.exe -A batch capable utility that converts INTEL HEX, MOTOROLA 'S, or TEKTRONIX HEX filesto Binary
Format.

dfu.exe -A utility used to add, remove, or check for the presence of a DFU file suffix. Any firmware image that isto be
uploaded to adevice via DFU, should contain avalid DFU file suffix.

dfu.hex -The DFU execution code that isinserted into the lower 64kb of a 128kb flash when it isinitially programmed. This
hex fileis converted to a 64kb binary file with the “hex2bin.exe” utility, and then appended to the 64kb “fmc.bin” file to create
the 128kb flash image. (Included with the USB97C223 firmware).

USB97C223 Software Release Notes
Page - 25 -

Files Required for DFU (cont.)

fmc.hex -The USB97C223 device firmware that isinserted into the upper 64kb of a 128kb flash when it isinitially
programmed. This hex file is converted to a 64kb binary file with the “hex2bin.exe” utility, and then appended to the 64kb
“dfu.bin” file to create the 128kb flash image. (Included with the USB97C223 firmware).

fmc.dfu -A firmware image that can be uploaded to the device. Thisfileis created by the user. This document explainsin
detail how to make downloadable DFU images through the use of the “DFU.exe” utility, which appends a DFU file suffix to
the firmware file to be uploaded to the device. (Thisfileis created by the user).

Application Sour ce Code -All of the source code for the dfuTest sample application, as well asthe DFULIB.LIB link library
used to create custom DFU applications.

USB97C223 Software Release Notes
Page - 26 -

Creating the 128KB DFU Capable Flash Binary “ both.bin”

128KB Flash EEPROM

In order to prepare adevice for DFU operation, the flash must be programmed with
both the DFU code, and the normal USB97C223 device code. The device code is
converted to a 64K B binary file, and appended to the DFU code, which has also
been converted to a 64K B binary file. Together they form the 128K B binary file -
which is uploaded to the flash eeprom. When thisfile is uploaded to the flash, the Device
DFU code occupies the lower 64K B block, and the device code occupies the upper 64K Code
64K B block.

In normal operation, a DFU capable USB97C223 device executes only the device 64K DFU
code in the upper 64K B block of memory. This code allowsit to function asa Code
normal USB 2.0 flash media controller. However, when the device is switched to
DFU mode, the DFU code in the lower 64K B block begins executing and the
device ceases to be aflash media device. Essentially, it changes to become an eeprom programming device. In this modeitis
capable of reprogramming the USB97C223 device code in the upper 64KB block of flash memory. Once the operation is
complete, the device switches code execution back to the upper bank and begins operating with the newly updated code. At this
point is ceases to be an eeprom programming device, and returns to being a flash media device.

To create the 128KB DFU capable flash binary file that will initially be programmed into the flash eeprom, you will need two
files:

1) fmc.hex (The device code)
2) dfu.hex (The DFU code)

The “dfu.hex” fileis provided by SMSC, and provides programming support for a limited number of eeproms. The “fmc.hex”
fileisthe standard USB97C223 device firmware. These two files, “dfu.hex” and “fmc.hex,” are both converted to 64KB binary
files with the “hex2bin.exe” utility, and then appended to each other with a DOS copy command. Together they become the
128K B binary file “both.bin”. The procedure for creating “both.bin” is outlined below.

fmc.hex > Efmc.hin\/-
dfu.hex > gdfu.hin > /

Note that this entire procedure can be accomplished easily using a simple DOS batch file:

both.bin

hex2bin -L65536 dfu.hex dfu.bin
hex2bin -L65534 fmc.hex fmc.bin
copy /Y /B dfu.bin /B + fmc.bin /B both.bin /B

USB97C223 Software Release Notes
Page - 27 -

Preparing a Device for DEU Operation

In order to prepare adevice for DFU operation, the flash must initially be programmed with the “both.bin” code. The
“both.bin” file contains both the device code as well asthe DFU code. The DFU code must preexist on the flash in order for it
to be capable of receiving a DFU upload. The DFU code remains dormant in the lower 64KB of memory until it is called upon
to perform a device firmware upgrade operation.

Once the flash has been programmed with the “both.bin” file, it may be inserted into the 223’ s flash socket in
preparation for DFU operation.

Choosing a Flash Eeprom for Your Device

SMSC provides customers the “dfu.hex” file which supports only the SST 39V F010 flash eeprom without any
hardware modification.

The following flash memories (M X29F001, AM 29L V010B, STM 29W010B, and the STM 29F010B) can be used,
but they require that the chip enable remain high for some time after the power is stable to the memory. The 223 is not capable
of providing this power on reset condition. Using these memories has not been shown to be an issue in many cases. However,
lot to lot variation and the flash chip specification require that the reset circuit below be used to ensure absolute compatibility.

W
[+]

U3e

_ﬁ\\\ca WCE FLABSH MEMORY

ICE

If you wish to use another flash in your device, it would most likely require some modification to the existing DFU
code by SMSC to support the electrical characteristics of the new chip. If thisisthe case, please contact SMSC sales to have
the project scheduled.

If you do decide to use another flash egprom, there are a few requirements to look for to make sure it will work with
DFU. First of all it should be 128K B and byte writable. Also, it should have equivalent programming characteristics as the
three supported chips, i.e. block size, erase size, read/write/erase speed, command set, and command address. Provided the chip
meets all of the above requirements, there is a good chance that it will support DFU.

Setting up the Hardware

Either aUSB 1.1 or 2.0 controller may be used for the DFU operation when using Windows operating systems,
however some USB 2.0 host controller drivers such as OMI’s have been found to have defects which prevent DFU from
performing normally. If you are going to use a USB 2.0 host controller, it is recommended that you use Microsoft’s host
controller driversin order to achieve the best results. Once the board is attached and powered up, it should enumerate as a
normal USB flash media controller. When you see the drive icon(s) appear, the device isready. Currently only USB 2.0 may
be used for the DFU operation when using Macintosh operating systems. The following section describes the next step in the
process, which is setting up the software application to perform the DFU.

USB97C223 Software Release Notes

Page - 28 -

Performing a Firmware Upgrade with the DEUTest Application(\Windows Only)
The following files are required in order to perform a device firmware upgrade:

1. TheDFU application- (DFUTeSteXe) Bxupmir Deaonptor Update | Firmssare Updiste for il

2. Thedriver library- (drvlib.dil) Tods About

3. TheDFU driver- (smscdfu.sys) ;

4. TheDFU ingtallation inf- (smscdfu.inf) Chick S bation Eelow when you e

5. The updated firmware image- (fmc.dfu) b e e Chck: fo upiahe et devace’s descnplors

Thit el iacioin the naliee

* Note that if you also want to perform an update of the bt i e Lipidaie Dseriptors
serial egprom, you will need a 6th file, “eeprom.dat”
which contains the descriptor information for the serial Flesors Windoses river] [T Mo incrament serial rube

eeprom. (See the section of this document entitled “The
Non-Volatile Store Area.”

. L. Frarrat MAMND Flazh Farwasin Lpdsia
Before using the DFUTest application, you must add a Chek by Rotm sl HAKID Flash thive Click o tdats tha devica's
VID/PID entry for your device to the “smscdfu.inf” '

file. Thisisrequired for the DFU driver swap to occur

Erasa hacks | Fomat Di Lipedate Fi |
properly. rasE ol W o Fimrasane:

[T Enacok erebihs et loaratiieg
To start the dfuTest223 application, simply double
click the “dfuTest.exe” executable. Once the [
application starts, you will see the user interface on the Ll
right. Pressing either the “Update Descriptors’ or
“Update Firmware” button causes the DFU driver to load. Thisdriver is required for the update to take place. From auser’s
perspective, the drive icon(s) will disappear once the device enters DFU mode. The DFU upload processis not completed until
the “Operation Complete” dialog appears. The application itself does not provide any indication of the progress of the update.
A typical firmware update takes about 1 minute to complete. To unload the DFU driver, press the “Restore Windows Driver”
button. This will restore the Windows mass storage class driver, and allow the device to be operated normally. Note: In order
for the new descriptor information to appear, you must unplug the device, and then plug it back into the host. On attach, the
device will begin using the new datain the NV Store area.

USB97C223 Software Release Notes
Page - 29 -

Creating a DFU Uploadable File

In order for afile to be uploadable viaa DFU operation, it must contain avalid DFU file suffix. The DFU file suffix
contains a CRC of the entire file, a DFU signature, and the VID, PID, and DID for the device to be upgraded. The following
table was extracted from the USB Device Firmware Upgrade Specification (Rev 1.0), and shows the composition of the DFU
file suffix.

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC. (Calculation specified in the
following section).

-4 bLength 1 16 The length of this DFU suffix including
dwCRC.

-5 ucDfuSignature 3 uc The unique DFU signature field.

-8 bcdDFU 2 BCD DFU specification number.

-10 idvVendor 2 ID The vendor ID associated with this file.
Either FFFFh or must match device’s
vendor ID.

-12 idProduct 2 ID The product ID associated with this file.
Either FFFFh or must match device’s
product ID.

-14 bcdDevice 2 BCD The release number of the device
associated with this file. Either FFFFh or a
BCD firmware release or version number.

In the SMSC DFU application, DFU downloadable files are given the extension “.dfu”. Thisis strictly arbitrary; the
files can be of any extension as long as the application is designed to handle them. In order to create your own DFU
downloadable file, you begin with the firmware file that is going to be used to upgrade the device. If the new firmware fileis
not already in binary format, it should be converted to binary using the Hex2Bin utility provided. Once in binary format, the
“dfu.exe” utility isused to append avalid DFU file suffix to the firmware file (See the next section titled “Using the DFU.exe
Utility”). Once the DFU file suffix has been added, you may rename the file with a .dfu extension to indicate that it is DFU
downloadable. The entire procedure for creating the DFU downloadable file is summarized below.

fmc.hex fmc.hin fmc.bin finc.dfu
Firmware . Firmware Firmware DFU
File a2 File —_— File —el2TE e | Downloadable
{Hex Format) {Bin Format) (With DFU Suffix) Firmware

USB97C223 Software Release Notes
Page - 30 -

Using the DEU.exe Utility

The“DFU.exe” utility can be used to add a DFU suffix to afile, or to check for the presence of avalid DFU suffix on
an existing file. If required, the “DFU.exe" utility can also be used to remove a DFU suffix from afile. The“DFU.exe” utility
is run from a command box in Windows.

The usage of DFU.exeis: DFU.exe <filename> [optiong]

To check for the presence of a DFU file suffix: DFU.exe <filename>

To remove a DFU suffix from afile: DFU.exe <filename> -del

To add aDFU suffix to afile: DFU.exe <filename> -did <val> -pid <val> -vid <val>
Example of adding a DFU suffix to “fmc.bin”: DFU.exe fmc.bin -did 0x0300 -pid 0x223A -vid 0x0424

L WINNTS System32h cmd.exe

E:sxdfu

nsage: dfu fname [options]

to check for a suffix use: dfu fname
to remove a suffix nsze: dfu fname —del
to add a suffix use: dfu fname —did val —pid val —wvid val

e.g., dfu myfile —did Bx@182 —pid 2345 —vid 817
sets idDevice BxB182 idProduct BxB72? idlUendor BxBAAF

Once the DFU suffix has been added to thefile, the last step isto give it afile extension that matches the type
expected by your application. The dfuTest223 sample application is programmed to accept DFU uploadable files that have the
“.dfu” extension. Finally, to check and make sure that the file has a valid suffix:

[5] O\ WINNT . System32 cmd

Liwordfu fmc.dfu
idDevice: BxFFFF
idProduct: Bx2BFC
idUendor: BxB424

valid dfu suffix found

R

USB97C223 Software Release Notes
Page- 31 -

Building a DEU Application

SM SC provides the source code for the dfuTest223 sample application, which can be used to template your own
custom DFU applications. However, before devel oping your own application, you should understand the five steps the
application must perform to complete the DFU operation:

Initiate the update

Find the device driver attached to the target device’s VID/PID
Exchange the device' s driver with the DFU driver “smscdfu.sys’
Perform the update

Unload the DFU driver and restore the original device driver.

grwNpE

All of the above steps may be performed through the use of callsto the SMSC DFU API, which is made available to
the application when it islinked to the “dfulib.lib” library. A completelist of all the SMSC DFU API function calls, complete
with descriptions, usage and commentary is available in Appendix 1 of this document, “The SMSC DFU API”.

Driver Overview

The DFU application communicates to the ve e ae
device vialO Control Callsto the DFU driver HrE A
“smscdfu.sys’ as shown in the diagram on the -
right W I0CTLs Exported
' - dome bl PO mdein s
? WO e Lo Wniv el
The “smscdfu.sys” driver handles all of the
DFU specific requests, while it passes all other drulib.dil &) | smscausys
requests, such as PNP message handling and
USB standard traffic, on to the “drvlib.dll” for -
handling. l,
ushd.sy=
i
EHCD.sys
or
UHC D.5vs
or
OHCD.sys
e

| |

Host Controlier “ DFU Device

USB97C223 Software Release Notes
Page - 32 -

Performing a Firmware Upgrade with the DEU App Application(Mac 10.X Only)

*Note: Before attempting to use this DFU application, ensure that your device is set up properly for DFU by
reviewing the section “Using Device Firmware Upgrade (DFU)”

The following files are required in order to perform a device firmware upgrade using Mac 10.X:

The DFU application- (DFU_App)
The updated firmware image- (fmc.dfu)
smsckext.kext

DFU_Drvr.framework
smsctoolslib.framework

agkrwhE

Whereto find DEU App

The 223-installer package will automatically load the DFU application in the hard drive that was selected during the
installation process. Open the Applicationsfolder in this hard drive. Once in the Applications folder open the folder created
during installation called “USB Mass Storage Software”. In this folder you will find a ReadME.txt and aDFU_App icon.
(Note: if your installer package does not include the DFU feature then you will only find a ReadME.txt). The DFU_App.app
may be copied to the desktop if desired for ease of use.

Using an engineering version of DFU App application

[‘_l To start the DFU_App application, simply double click the DFU_App icon.

I
————

1 L] L

The application will open adiaog box, which allows you to browse | = LT

to the desired firmwareimage. Thefile you select must havea .dfu | === e

suffix. Refer to the previous section “Creating a DFU Uploadable = : # s

File” for instructions on how to create thisfile. Once you have | s s =

navigated to the .dfu file that contains the version of firmware you | - o

wish to upgrade to, click open. You must have avalid USB device ¥ s

attached to a 2.0 host controller in order for the firmware upload to S

complete properly. DFU for Mac 10.X is currently only supported -

for use with a 2.0 host controller. - 5 .
(2N =] Dwreice Drmrwars Updais

After opening the file, the firmware upload will begin. The first Pl Lipshta Wi o

screen you will see will verify that you wish to upgrade the firmware G g 7 . 17

of the USB device detected. (Y ou may upgrade to aversion of itcrmes S cavadipen nonta Suds o ity

firmware that is newer than the current firmware on the device, the

same as the version currently on the device, or older than the version

currently on the device.) Click yesif thisisthe upgrade that you T —

want. The application will then detach and reattach the device. You [
may get a pop up message warning you of aremoval of the device.

This message can be ignored. (™ Yes

After the device reattaches, the device will switch to DFU mode and
begin downloading the new firmware. The progress of this upgrade
will be shown on the message box. After the download is complete,
the new firmware will be verified and the message box will display
either a successful firmware update or afailure message.

A typical firmware update takes about 1 minute to complete. Once
the success message is displayed you must unplug and replug the
devicein order to complete the DFU process.

Creating a customer version of DFU

| Dwicn | irmmars Lpdais

USB97C223 Software Release Notes
Page - 33 -

Frimdraie Upiddls HabuCliom

Diimarii ksa ey b Frimiaiv

liprae Frogress

(R R4 Dl Fomvmidia LIpata

Firmeawre Lipsie Imeruriens

Thi lirmrasrs updebs wil iucesoafal,

Pegse ey anil replig i= the device m ooatinee

The engineering version of DFU_App can be used to upgrade firmware or to create a customer version of the DFU_App
application. In order to prepare the DFU_App application for customer use afile named “fmc.dfu” that contains the firmware
required by the customer to be placed in the resource folder of the application. The file must be named “fmc.dfu” in order for

the application to properly recognize it as a customer version.

To navigate to the resource folder, right click on the DFU_App icon. Select
“Show Package Contents” from the drop down menu. There will be only one

Open
GEl e

Color Labed

folder icon displayed in the DFU_App contents. It istitled “Contents’. Double Show Package Conanes

click on the “Contents’ folder.

Move to Trash

[raplicate
Make Allas
Create Archive of “DFU_Apg™

Copy "DFU_App-

[Hsable Folder ACEiorm
Configure Folder Actsans

USB97C223 Software Release Notes
Page - 34 -

The contents folder contains the items shown to the right. Drop afile
named fmc.dfu (that has the firmware you would like the customer version
of DFU_App to contain) into the “Resources’ folder. The next time the
DFU_Appisstarted it will now recognize the fmc.dfu file in the resources =
folder and act as a customer version instead of an engineering version. &
Refer to the previous section “Creating a DFU Uploadable File” for =
instructions on how the create fmc.dfu. .

At any time the fmc.dfu file can be moved from the resources folder and the =

DFU_App will act as an engineering version again, or it can be replaced il
with afile that isloaded with a different version of firmware. ——

Using a customer version of DEU App

The process for uploading firmware using the customer version of DFU_App is extremely similar to the way the firmwareis
uploaded using the engineering version of this application. Theicon for the customer version of DFU_App isidentical to the
engineering DFU_Appicon. The only difference between the engineering version and the customer version is that when the
customer icon is double clicked instead of being prompted to navigate to the dfu file to upgrade to, the first screen the user will
seeisthe prompt verifying that they wish to upgrade. The customer

(R lE] Dwrance | ¥ Uplat
option does not give the option to choose different versions of firmware R
to upgrade to; whichever version was loaded into the fmc.dfu file T R PN
contained in the resource folder is the only upgrade that can be done on ; i
: Fragld wOL SBE DD UPIEE IS DiEA0E ridedie oo o 7
the device. bl b
The only option the customer version gives the user is whether or not TR -

they want to update to the version of firmware stored in the application.

The steps to upload the firmware are identical to the stepsin the

previous section “Using the engineering version of DFU_App” H ves
beginning with the screen shown to the right.

USB97C223 Software Release Notes
Page - 35 -

Performing a Firmware Upgrade with the DFU Application(Mac 9.X Only)

*Note: Before attempting to use this DFU application, ensure that your device is set up properly for DFU by
reviewing the section “Using Device Firmware Upgrade (DFU)”

The following files are required in order to perform a device firmware upgrade using Mac 9.X:

The DFU application- (DFU)

The updated firmware image- (fmc.dfu)

Resource file with standard hard drive icons for four lun device (mscicons)
Resource file with dynamic icons (msciconsx)

Manufacturer specific driver(s) (Manufacturer String_PID i.e SMSC_223a)
Manufacturer String_Shimi.e. SMSC_Shim

ok wNE

Using DEU application(Mac 9.X)

Before using the DFU application the firmware must be loaded into the application itself.
Create avalid .dfu file with the desired firmware and drap ang drop it onto the DFU icon.
(For specific instructions on how to create the .dfu file refer to section “ Creating a DFU
Uploadable File’) Y ou may upgrade to a newer version of firmware, the same version of
firmware, or an older version of firmware

When avalid .dfu file isloaded in the DFU application
amessage box will display that the firmare write was a
success. At this point the firmware is only loaded into B Wrate new firmware to application.
the application, it has not yet upgraded the device. —
After this message box is seen you may begin to use the
DFU application for upgrading the firmware for your device.

1]

To start the DFU process, ensure that you device you wish to upgrade the firmware on is attached to the host e
computer and double click the DFU icon. DFU
[} Drssss ¢ Birmmars Lysdatr

The application will open a dialog box, displays the firmware version that the DFU
application was loaded with. Thisisthe version that will be programmed into your
USB device once you click continue.

KITaCh @ S B S e CCE Dl

[Tmiisha i Frware burian s |

T

After opening the file, the firmware upload will begin. During this process there will be a status dialog box titled “Device
Firmware Upgrade”’. This box will display the steps that are occurring during the upgrade. The final step has the message
“Please Unplug and replug device”. After the device isreplugged the firmware upgrade is complete. A typical firmware update
takes about 1 minute to complete.

USB97C223 Software Release Notes
Page - 36 -

USB97C223 Software Release Notes
Page - 37 -

The SMSC DEU API

The following are the list of functions available through the SMSC DFU API, with descriptions, usage, parameters,
and commentary describing how they should be implemented in the application. The API is made available to the application
by linking to the “dfulib.lib” library at compile time.

Int32 Start_Firmware Update (char* fnane, char* infFile,char* sysFile,
char* drvLFile ulnt16 vid, ulntl1l6 pid, ulntl6 did)

This function allows the updating of the OEM descriptor fields.

Parameters
f name pointer to a conplete path that specifies where
the location of the new firmvare .bin file resides.
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the location of the SMSC DFU .sys driver file
resi des.
drvLFile pointer to a conplete path that specifies where
the location of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
CEM specific .sys driver to be replaced by the SMSC DFU driver. The driver swap is
done is preparation for the next APl call which should follow in sequence. This API
call is Firmwvare_Update.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 38 -

API Functions

Int32 Firmware Update (voi d)

This function allows the updating of the existing application firmare.

Parameters

None

Comments

The function then uses the SMSC DFU driver to initiate a DFU class firmwvare update,
whi ch replaces the existing application firmvare with the new firmvare. After the
firmvare is successfully updated, the APl call End_Firmvare Update can be used to
restore the original application s device driver allow ng normal operation of the
device to continue.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 39 -

API Functions

Int32 End_Firmware Update (char* original Driverl nf Nane)

This function term nates the updating of the application firmvare and restores the
original application device driver.

Parameters

ori ginal Driver | nf Name pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished updating all device firmvare. This function swaps
the DFU driver out of the operating systemand restores the original application
device driver. You can plug in other devices for update BEFORE calling this function
This function serves as the terminating call to updating all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 40 -

API Functions

Int32 Start_Descriptor_Update (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl6 pid, ulntl6 did)

This function allows the updating of the OEM descriptor fields.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resides.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to send a vendor specific command to the device firmare,
instructing it to rewite its OEM descriptor table. Upon the next enumeration, the
new CEM descriptors will be exported

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page- 41 -

API Functions

Int32 Descriptor_Update (char* buffer, ul nt 32 si ze)

This function allows the updating of the OEM descriptor fields.

Parameters

buf f er pointer to a 256 byte buffer that contains
the formatted OEM data fields to update internal descriptors.
This is raw bi nary data.

si ze size of the buffer in bytes (256)

Comments

The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
CEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to send a vendor specific command to the device firmare,
instructing it to rewite its OEM descriptor table. Upon the next enumeration, the
new CEM descriptors will be exported

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 42 -

API Functions

Int32 End_Descriptor_Update (char* original Driverl nf Nane)

This function ternm nates the updating of the OEM descriptor fields and restores the
application driver.

Parameters

ori ginal Driver | nf Name pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished updating all devices. This function swaps the DFU
driver out of the operating systemand restores the original application device
driver. You can plug in other devices to update BEFORE calling this function |ast.
This function serves as the terminating call to updating all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 43 -

API Functions

Int32 Get_Error_String (1 nt32 errorCode, char* buffer)

This function ternmi nates the updating of the OEM descriptor fields and restores the
application driver.

Parameters

error Code the 32-bit signed error code received from any
DFU library function calls.

buf f er a mnimum of 512 byte buffer for string
st or age.

Comments

Call this function to translate an error code received fromthe DFU library, into a
NULL term nated text string. You nust provide 512 bytes of storage for the buffer
par amet er .

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 44 -

API Functions

ulnt32 Get_OS Version (char* osString)

This function returns an operating systemidentification code and string that
specifies which platformthe DFU library is running on.

Parameters

osString a mnimum of 512 byte buffer for string
st or age.

Comments

Call this function to determ ne which operating systemthe DFU library is executing
on. This is autility function that returns a string and code identifier as shown
bel ow. See the dfuDLL.h header file for a conplete list of operating system codes.

#defi ne OS_W NDOWS 95 0x00
#defi ne OS_W NDOAS_950SR2 0x01
#defi ne OS_W NDOAS_NT351 0x02
#defi ne OS_W NDONS 98 0x03
#defi ne OS_W NDON5_98SE 0x04
#def i ne OS_W NDOAS_NT40 0x05
#defi ne OS_W NDOAS_2000 0x06
#defi ne OS_W NDONS_XP 0x07
#defi ne OS_W NDOWNS ME 0x08
#def i ne OS_W NDOWS_NEWNTOS 0x09

#def i ne OS_W NDOWS_NEWCONSUMERCS 0x0a

USB97C223 Software Release Notes
Page - 45 -

API Functions

Int32 UpdateFirmware (char* fname, char* infFile,char* sysFile
char* drvLFile,ulnt16 vid,ulntl16 pid,ulntl6
di d, char* original Driverl nf Nane) ;

This function allows the updating of the device firmvare nodul e.

Parameters

f nanme pointer to a conplete path that specifies where
the location of the new firmvare .bin file resides.

infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.

sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resides.

drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.

vi d vendor | D of the OEM specific device

pi d product 1D of the OEM specific device

did device ID of the OEM specific device

ori ginal Driver | nf Nanme pointer to a NULL term nated string that
describes the file nanme only (not path)
of the INF file used to enunmerate the device
inits original application state (i.e, “usbstor.inf”)

Comments

The function will install the INF file specified, copying the needed driver files to
the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
CEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to initiate a DFU class firmnare update, which replaces the
existing application firmvare with the new firmivare. After the firmvare is
successfully updated, the operating systemis instructed to swap the DFU device
driver with the original application's device driver allow ng normal operation of the
devi ce to conti nue.

The functions returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 46 -

API Functions

Int32 Start_Format_Drive (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl1l6 pid, ulntl16 did)

This function allows swapping the Mass Storage Class driver with SMSCDFU dri ver.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the | ocation of the SMSC DFU .sys driver file
resi des.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU dri ver.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes

Page - 47 -
API Functions
Int32 Format_Drive (ulnt8* Label, BOOL ForceMedi aEr ase)
This function does the formatting of NAND Fl ash Hard di sk drives.
Parameters
Label pointer to a 11 byte buffer that contains
the | abel of the volume. If this paraneter is NULL or points
to an enpty string, then the volume will contain no Labe
i nformation.
For ceMedi aEr ase speci fies whether the Flash nmedia is to be
erased before formatting the drive.
Comments
I f necessary, this function will install the INF file specified, copying the needed

driver files to the Wndows Systemdirectory and initiate a driver swap causing the
W ndows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send SCSI commands to the device firmare
to create a primary DOS partition and format it to a FAT12, FAT16 or FAT32 vol une.
The FAT type is determ ned by the capacity of the drive and cannot be specified by

t he user.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 48 -

API Functions

Int32 End_Format_Drive (char* ori gi nal Dri ver | nf Nane)

This function term nates the fornmat process and restores the original application
driver.

Parameters

ori ginal Driver | nf Nanme pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished formatting all devices. This function swaps the DFU
driver out of the operating systemand restores the original application device
driver. You can plug in other devices to format BEFORE calling this function |ast.
This function serves as the termnating call to formatting all devices. Before
calling this function, the DFU is fully installed and used for each device plugged
in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 49 -

API Functions

Int32 Start_Erase Media (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl6 pid, ulntl6 did)

This function allows swapping the Mass Storage Cl ass driver with SMSCDFU dri ver.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resi des.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU dri ver.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 50 -

API Functions

Int32 Erase_Media (voi d)

This function allows the erasing all valid pages of NAND Fl ash Hard disk drives.

Parameters

None

Comments

I f necessary, this function will install the INF file specified, copying the needed
driver files to the Wndows Systemdirectory and initiate a driver swap causing the
W ndows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send SCSI commands to the device firmare
to erase every valid page on the nmedia, restoring it to an un-witten state.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page- 51 -

API Functions

Int32 End_Erase Media (char* ori gi nal Dri ver | nf Nane)

This function ternminates the erase process and restores the original application
driver.

Parameters

ori ginal Driver | nf Nanme pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished erasing all devices. This function swaps the DFU
driver out of the operating systemand restores the original application device
driver. You can plug in other devices to erase BEFORE calling this function |ast.
This function serves as the termnating call to erasing all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 52 -

API Functions

Int32 Start_Descriptor Read (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl6 pid, ulntl6 did)

This function allows swapping the Mass Storage Class driver with SMSCDFU dri ver.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resides.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU dri ver.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 53 -

API Functions

Int32 Descriptor_Read (ul nt 8* buffer, ulnt32* size)

This function allows the reading of device's internal descriptors stored in the
EEPROM

Parameters

buf f er pointer to a 256 byte buffer that will contain
the formatted OEM data fields read fromthe device’'s internal
descriptors. This is raw binary data.

si ze pointer to an unsigned |ong integer that
contains size of the buffer in bytes. Upon successful
conpletion, this will contain the nunber of bytes returned in
the buffer.

Comments

If necessary, this function will install the INF file specified, copying the needed

driver files to the Wndows Systemdirectory and initiate a driver swap causing the
W ndows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send vendor specific commands to the device
firmvare to read it’'s internal descriptors. The data is copied to the specified
buffer.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 54 -

API Functions

Int32 End_Descriptor_Read (char* original Driverl nf Nane)

This function terninates the process of reading the device’'s descriptors and restores
the original application driver.

Parameters

ori ginal Driver | nf Name pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished reading descriptors of all devices. This function
swaps the DFU driver out of the operating systemand restores the origina
application device driver. You can plug in other devices to be read BEFORE cal |l ing
this function last. This function serves as the term nating call to reading
descriptors of all devices. Before calling this function, the DFUis fully installed
and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB97C223 Software Release Notes
Page - 55 -

Using the USB97C223 Custom | cons Package

The USB97C223 custom icons package allows OEMs to assign custom icons to the drives associated with the
USB97C223 flash media controller. This allows the end user to easily distinguish between the different mediatypesin
Windows Explorer. The application works with Windows 98 SE, Windows Me, Windows 2000 and Windows XP (SP1). A
new feature availablein Setlcon versions 1.2.0.7 and | ater is the ability to dynamically change icons based on media state. In
other words, you can specify that one icon appear if there is mediain the reader slot, and another icon appear when there is no
mediain the reader dot. Also, the dynamic icon functionality enables the detection of MM C and M S Pro, alowing the user to
display custom icons for those media types as well.

Contents of the USB97C223 Custom | cons Package

The USB97C223 Custom I cons Package consists of the following:

Setl con.exe- The custom icon application.

Oem_0424.ini- A sample Windows 98 ini file.

Smsc.ini- A sample Windows Me/2000 ini file.

Sample | cons- The sample icons distributed with this package are for evaluation use only.

Eeprom.dat- A text file containing the changeabl e descriptor information used to update the serial eeprom with the DFUTest
utility.

Creating the Required Setlcon Ini Files

In order for the Setlcon application to work properly, anini file with a specific file name and format must be installed on the

host computer. Theini file tells the Setlcon application which icons are associated with which drives, and provides afull path
to each icon. The following four paragraphs describe the procedure for creating, naming, formatting and installing the ini file
on the host PC.

1) Settingthelni File Name:

Windows 98 SE - The name of theini file should be of the type "Oem_xxxx.ini" where
xxxx isthe VID as a hexadecimal number.

Example: If VID is 0x0424, the ini filename should be "Oem_0424.ini"

Windows M e, 2000 and XP (SP1)- The name of the ini file should be the same as the device's Manufacturer
string, but be no longer than 8 characters. If the Manufacturer string is greater than 8 characters, then only the
first 8 characters of the string should be used. If the Manufacturer string is|ess than 8 characters, then the ini
file should use the entire Manufacturer’s string.

Example: If MFG string is " Standard Microsystems Corp", the ini filename should be " Standard.ini"
Example: If MFG string is"SMSC", the ini filename should be "SMSC.ini"

(Note: The Manufacturer’s string may be set or viewed using the Write223 utility ‘Option 1'. See the
“Programming the Serial EEPROM” section of this document for more details.)

(Note: For Windows Me aone, all blank spaces (" ") in the Manufacturer’s string should be replaced with
under scores ("_") intheini file name.)

USB97C223 Software Release Notes
Page - 56 -

Example: If MFG stringis"SM SC", theini filename for Windows Me should be"S M_S C.ini" and for
Windows 2000, it should be "SM S C.ini"

Creating the Required Setl con I ni Files (Cont.)

2) Setting the Ini Section Name:

Windows 98 SE - The name of the section should be of the type [xxxx] where xxxx is
the PID as hexadecimal number.

Example: If the PID is 0x223A, the ini section name should be [223A]

Windows M e, 2000 and XP (SP1)- The name of the section should be same as thefirst 5 characters of the
Device's Product ID string enclosed in square brackets, including any spaces if present.

Example: If the Product ID string is"223 USB Controller", the section name should be "[223 U]"
Example: If the Product ID string is"223US", the section name should be "[223US]"

Example: If the Product ID string is " 223", the section name should be "[223]"

Example: If the Product ID string is™", the section name should be "[]"

(Note: The Manufacturer’s string may be set or viewed using the DFUTest utility ‘ Read Device'.)

3) Creating the Ini Section Content:

Under the Ini Section name should be atwo line entry for each mediatype. The format for the two line entry
is"Prod=Path\IconName.ico", where "Prod" is the string following the dash (-) in the Disk Drives section of
the Device Manager for that drive (as seen in the screenshot to the right).
Path\lconName.ico is the full path and icon name for the icon to be used

L, pevice Manager

| action view H =&

for that drive. "ProdLABEL=L abel Name" — (A declaration used to alam

display a descriptive label in Windows Explorer for disk volumes with no ERCNTITTE
names) where "ProdLABEL" is the same as "Prod" as explained above TR o
appended with the word "LABEL" and "Label Name" isthelabel that is O T
to be displayed for the corresponding drive. P sC L2 s s

(2 SMSC USBE 2 HS-SD{MMC
- SMSC USE 2 HS-5M
2 WDC WD102BA
¢ @) Display adapters
¥ 45} DVDJCD-ROM drives
-5 Floppy disk controllers
+|- &= Floppy disk drives
-5 IDE ATAATAPI controllers
-7 Keyboards
- Mice and other pointing devices
-3 Monitars
B3} Network adapters
£ Ports (COM & LPT)
j-(fj(— Sound, video and game controllers
#-2) Storage volumes
j- System devices

#]-8g Universal Serial Bus controllers

Note: The string length of "Label Name" should be less than 32 characters
and should only contain a pha-numerical characters and special characters
'space’ (' ") and 'under score' ().

Example: CF=\Program Files\Icons\CF.ico

Example: CFLABEL=Compact Flash Drive

Example: SD/MMC= \Program Files\lcons\SDMMC.ico

Example: SD/IMMCLABEL=SDMMC Drive (Notethereisno slash “/")

Important Notes:

1) Thefull path to the icon should be less than 64 characters.

2) Thefile containing theicon should only be an .ico, .dll or .exefile.
3) There should not be any extra spaces before and after the '=" sign

To use the dynamic icon functionality, you also need to add lines for each LUN number and interface type
(i.e. CF, SM, etc.) for both the media present “L# " and media not present “L# NM” states. Please see the
sampleini file that follows for clarification.

USB97C223 Software Release Notes
Page - 57 -
4) Placing the Ini Filein the Correct Location on the Target PC:

In order for the custom icon application to work correctly, theini file must be placed in one of the Windows
System directories, depending on which operating system is being used. Those directories are:

Windows 98 SE - "Windows\System"
Windows M e - "Windows\System"
Windows 2000 - "Windows\System32"

Windows XP (SP1) - "Windows\System32"

Manually I nstalling the Custom | cons Application Files

In order to perform a manual installation of the custom icons application files, the following steps should be

performed:

1. Copy the Setlcon.exe fileto alocation on the target computer’s hard drive. (i.e. “ C:\Program
Files\Icons\Setlcon.exe™)

2. Copy theicon filesto alocation on the target computer’s hard drive. (i.e. “ C:\Program Files\Icons\”).

3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.

String: Setlcon Value: C:\Program Files\Icons\Setl con.exe

4. Copy theini fileto the appropriate Windows System directory on the host PC. (See the previous section
“Creating the Ini Files’ for details.)

5. Manually start the Setlcon.exe application by double clicking it, or ssimply reboot the host PC. The entry

placed in the registry during Step 3 will automatically start the application after the PC is rebooted.

USB97C223 Software Release Notes
Page - 58 -

A Samplelni File

[223 U]

CF=C:\Program Files\Icons\CF.ico
CFLABEL=Compact Flash Drive

M S=C:\Program Files\Icons\M S.ico
MSLABEL=Memory Stick Drive
SM=C:\Program Files\Icons\SM.ico
SMLABEL=Smart Media Drive
SD/MMC=C:\Program Files\Icons\SDMMZC.ico
SD/MMCLABEL=SDMMC Drive

LO_CF=\Program Files\SM SC\Cf.ico
LO_CFLABEL=Compact Flash Drive
LO_NM=\Program Files\SM SC\cf-gray.ico
LO_ NMLABEL=Compact Flash Drive

L1 MS=\Program Files\SM SC\Ms.ico

L1 MSLABEL=Memory Stick Drive

L1 MSPR=\Program Files\SM SC\M sPro.ico
L1 MSPRLABEL=Memory Stick Pro Drive
L1 NM=\Program Files\SM SC\ms-gray.ico
L1 NMLABEL=Memory Stick Drive

L2 _SM=\Program Files\SM SC\Sm.ico

L2 SMLABEL=Smart Media Drive

L2 NM=\Program Files\SM SC\sm-gray.ico
L2 NMLABEL=Smart Media Drive

L3 _SD=\Program Files\SM SC\Sd.ico

L3 SDLABEL=SD MediaDrive

L3 _MMC=\Program Files\SM SC\Mmc.ico
L3 MMCLABEL=MMC MediaDrive
L3_NM=\Program Files\SM SC\sdmmc-gray.ico
L3 NMLABEL=SDMMC MediaDrive

USB97C223 Software Release Notes
Page - 59 -

Creating a Windows I nstaller for the Custom | cons Application Files

Using an automated installer is the preferred method for installing and setting up the Custom I cons application to run
on an end user’s PC. As part of the USB97C223 Custom Icons Application Package, a sample Windows installer isincluded
which demonstrates a practical example of using a Windows installer to install, setup and run the Custom Icons application. To
use the installer, smply run it and then reboot the host PC once the installation is complete. When the reboot is complete, the
custom icons for the 223 should appear in Windows Explorer.

Important Note: Theini filesthat are installed by the SMSC provided installer are hard coded to match SMSC’s
VID/PID, Manufacturer String, and Product ID String. The EEPROM.DAT file that isincluded with the software distribution
contains the required data, and should be used to program evaluation boards to be used with the installer. Otherwise theini files
will not match the datain your board, and the icons will not appear. In general, to create a Windows Installer you should
configureit to do the following:

1. Copy the Setlcon.exe fileto alocation on the target computer’s hard drive. (i.e. “ C:\Program
Files\Icons\Setlcon.exe™)

2. Copy theicon filesto alocation on the target computer’s hard drive. (i.e. “ C:\Program Files\Icons\”).
3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.
String: Setlcon Value: C:\Program Files\Icons\Setl con.exe

4. Configuretheinstaller to do a conditional installation depending on the operating system, to copy the ini
files to the appropriate Windows System directory. (See the section “Creating the Ini Files’ for details.)

5. Configure theinstaller to run the “ Setlcon.exe” application once the install is complete. Alternatively,
you could force the user to reboot the PC.

Troubleshooting the Custom | cons Application

| ssue: Cause:
After installing the Custom Icons application and 1) If you used the custom installer it islikely that the contents of your serial eeprom do not
rebooting, the custom icons do not appear. match theini files that are installed with the installer. Read the section “Programming the

Serial EEPROM” and use the Write223 utility to program the eeprom to match SMSC's
VID/PID, Manufacturers String, and Product 1D String for the 223. An EEPROM.DAT
file with thisdatais included in the Setlcon software release for your convenience.

2) If you created your own ini files and installed the application files manually, the causeis
most likely an incorrectly named or formatted ini file. Refer to the section “ Creating the
Ini Files’ and double check to make sure that the ini files are correctly named, formatted,
and placed in the proper location.

3) Check to seethat the “ Setlcon.exe” application is running by checking the Processes tab in
the Task Manager.

After installing the Custom Icons application the Unplug the USB cable and then reattach it. Icons are only displayed when the device is attached with

drives still show the original icon. the Setlcon application running. If this does not correct the problem, try the troubleshooting steps
above.

In Windows XP (SP1) the custom icons do not Thisisabug in Windows XP. Microsoft has developed afix (KB823293). Software installersv2.5

appear after areboot of the host. However if the and later automatically install thisfix (requires reboot).

USB cableis detached and reattached, or mediais
either inserted or gected, the icon(s) appear.

In Windows XP, the drive medialabel is not Thisisaknown issuein Windows XP. As aworkaround, you can either hit F5 to refresh the label, or
updated when a card isinserted. remove and reinsert the media.

USB97C223 Software Release Notes
Page - 60 -

Using the Production Line Descriptor Update Utility (PLDU)

Purpose: The PLDU is used to update device firmware and/or device descriptors such as the VID/PID, Manufacturer and
Product ID stringsin a production line environment using Windows 2000 (SP3) only. The utility features a simple interface
that displays success or failure of the programming operation in graphical form using either a green box with a checkmark
(PASS), or ared box with an “X” (FAIL). The PLDU is capable of programming one device at atime and takes approxi mately
12 seconds to complete.

Features:
Firmware update.
Descriptor (256 byte EEPROM) update.
Read descriptor (256 byte EEPROM) data from device.
GUI editor to edit and create DAT files.
Graphical and Text status display.
Automatic serial number increment after every descriptor update.
Break up of serial number to YY-MM-DD-S-SN format where
YY - Year (2 digits)
MM - Month (2 digits)
DD - Day (2 digits)
S - Station number (1 digit)
SN - Serial number (5 digits)

NogakwdpE

Creating the PLDU ini File

Before using the PLDU you must create or edit an ini file. A sampleini fileis shipped with the PLDU application which can be
modified for your setup. The ini file should contain the following lines:

DFUVID =VID
Thisisthe VID (Vendor ID) of the device whose descriptor / firmware is to be updated. The VID is specified as afour
digit hexadecimal number.

DFUPID =PID
Thisisthe PID (Product ID) of the device whose descriptor / firmware isto be updated. The PID is specified as afour digit
hexadecimal number.

DFUDID =DID
Thisisthe DID (Device ID) of the device whose descriptor / firmware is to be updated. The DID is specified as a four
digit hexadecimal number.

INF = path to Smscdfu.inf

Specifies the full path to the * Smscdfu.inf’ file that is to be used during swapping of Mass storage class driver to the DFU
driver. Thisinf file must contain aVID and PID entry for the device you are programming, or the DFU driver swap will
not execute and the operation will fail. An example entry for adevice with aVID of “0424" and aPID of “223A" is:

%Smsc.DFU.Desc% = SMSCDFU.Install, USB\VID_0424& PID_223A
Y ou should change the values above in bold to match the VID and PID of your device.

SY S = path to Smscdfu.sys
Specifies the full path to the ‘ Smscdfu.sys’ DFU driver.

DLL = path to Drviib.dll
Specifies the full path to the ‘Drvlib.dIl’ file that is to be used during swapping of the mass storage class driver to the
SMSC DFU driver.

DFUFILE = Path to DFU file
Specifies the full path to the DFU file that is used for firmware update.

M SCINFNAME = Mass storage class I nf name
Specifies the name of the original Mass storage class driver’s INF file name. Thisis used while swapping the DFU driver
back to the original MSC driver.

USB97C223 Software Release Notes
Page - 61 -

A Sample PLDU ini File

DFUVID =0424

DFUPID =223A

DFUDID = FFFF

INF = C:\Dfufiles\Smscdfu.inf
SYS = C:\Dfufiles\Smscdfu.sys
DLL = C:\Dfufiles\Drvlib.dll
DFUFILE = C:\Dfufiles\Fmc.dfu
MSCINFNAME = Usbstor.inf

y

i There can be spaces before and after the ‘=" (equals) sign, but the total number of characters per line
(including spaces) should be LESS THAN (<) 255.

ii. All the paths specified above should be valid, as the application will make sure that those files do exist in
their respective paths. If apath is not valid, then the application would display a corresponding ERROR
message and terminate itself.

iii. Device Firmware Upgrade is currently not supported with the USB97C223.

USB97C223 Software Release Notes

Page - 62 -
Setting Up the PLDU Application
e 1
1. First attach a USB97C223 device to the host. To start the PLDU | SHE H+mpanr
application, simply double click “DescUpdt.exe” executable. The [Srmrra v
application will prompt you to select the location of theini file.
[P .} :_u;....._|
Mo st [mFim | = B[| o
T O i mtorm
2. Provided theini file contains the correct path to the key filesonthe mEEEEEEE—TTT— T =
local machine, the main program dialog opens. Here you are given P
two options: Thisshomtun b et T Tl e B e DA
i [P0 iy P g
a Update Descriptors- Updates NV Store data such a |
VID/PID, Manufacturer and Product ID strings from the
“EEPROM.DAT” file, .
b. Update Firmware- Updates the device firmware using a e
DFU update file with the .dfu extension.
Using the PLDU to Update Device Descriptors
1. Thefirst operation that should be performed on a USB97C223 EHE’ s
device coming off the production line is to update its descriptors. = i s
To do this, press the “Update Descriptors’ button on the main
dialog above. For the first device only, the application will prompt
you to select the EEPROM.DAT file that will be used to program
the descriptors. Once the EEPROM.DAT file has been selected the
program will swap the mass storage class driver for the SMSC Hesss [rar T]
DFU driver. LTI ey =-—ry I
T O i mtorm
. CEECTT
2. Oncethe DFU driver swap has completed, the
programming dialog appears. At this point the station is e - § Eremes RPN P————
. . vimin [=e =] vmEan o aen [T WD "
3etup and ready to begin programming USB97C223 AT Y i A i
evices. __;'1__' ~ I) J
R e b
Tk I3 Viemam "l
R o [T
fa =N N o L [ol oteor 4
e e el — Jans I_
i B i [twdi [wam [T
sl o - 1] .- 1
Lanbog T T T TE PR (1 TV TR
Ladd I D [l MLl m [T T]
e U e A8 TTH) wiasrs wl it v o
g Bl 1 FLesn i -
L Pt | EF_ = Ll e e =

DR | l-f'_ T O

lobve L0 P | o Do | ey e | |

Using the PLDU to Update Device Descriptors (Cont.)

3. To program the first device, the operator simply presses
the “Update Device” button. Once the Update Device
button is pressed, the application saves al of the datain
the editable fields (the fields with a white background)
including the serial number, to the EEPROM.DAT file.
After that, all of the 256 bytes of data contained in the
EEPROM.DAT fileis programmed into the device. The
operation takes about 12 seconds to complete. Provided
the programming was successful, the EEPROM Update
Dialog displays a green box with ablack checkmark and
reports success. At this point the user simply detaches the
device and reattaches the next device to be programmed.
The PLDU automatically updates the EEPROM.DAT file
to the next unique serial number.

4. Once al devices have been programmed, the user selects the “Exit”

button to return to the main dialog.

USB97C223 Software Release Notes

Page - 63 -

il

ey e Bl Y

IrmrnE DA

e

(B =1 O = BT LR I-[.mnl [F T I-| AR |:||
iy oy [T L B
[L (T ey Py ey Puciud |
B i il il i (] ot B T T T R [53
Uitk F-3 Vs "l
B e e,]
Ty r:1 S [T ——. |_ [T
fe =l =l sl s My g
b |_
il b il T ‘. e . -
e s [P | i | wam |
< - _ irrpan
T o e B [g | el
L & [T v TE PIEY CLAT™S SRS
Latd LA i [l Milns W [CTF R ™
= M I e AR T ww s &l wat e ool
g 0 L £ il Wi -
- B T
LT] |:|.F' [T] 1T =T e pp— H
et W e w7 e g |
| ||.l-I.u|-u| Aol i | | .
AETr— =
Tegrarmm ooy
1 el _iis o i 1 Vi il il B i ol
matw [PP s P — iy
| n-lll.n'-ll i Tt |
I

USB97C223 Software Release Notes
Page - 64 -

Using the Production Line Test Utility (PLTU)

Purpose: The PLTU application is used to test the basic functionality of USB97C223 devices in a production line environment
using Windows 2000 (SP3) only. The application creates a subdirectory on the mediafor each LUN, copiesa ‘Test File' to the
subdirectory, deletes the 'Test File, and then deletes the subdirectory.

Features:
1. Capable of testing 5 devices with 4 LUNs each simultaneoudly.
2. After testing, the application cleans up the registry entries involving the OEM's VID, PID, Inquiry MFG and Product
strings.
3. Graphical and Text status display of test results.
4. GUI editor to edit and create ini files.

Creating the PLTU ini File

Before using the PLTU you must create or edit an ini file. A sampleini fileis shipped with the PLTU application which can be
modified for your setup. The ini file should contain the following lines:

OEMVID =VID
Thisisthe original equipment manufacturer’s VID (Vendor ID) of the device whose descriptor has already been updated.
The‘VID’ is specified as afour digit hexadecimal number.

OEMPID =PID
Thisisthe original equipment manufacturer’s PID (Product I1D) of the device whose descriptor has already been updated.
The‘PID’ is specified as afour digit hexadecimal number.

INQUIRY_MFG = Inquiry MFG String
Thisisthe string returned by the device as part of the Vendor information in the Inquiry data. This can be of maximum 8
characters.

INQUIRY_PRODUCT = Inquiry Product String
Thisis part of the string returned by the device Product information Inquiry data. This can be of maximum 5 characters.

TEST_FILE = path to Test file
Specifies the full path to the file that isto be used during file copy tests.

DEV1 LUNO = Drive Letter
DEV1 LUN1 = Drive Letter
DEV1 LUN2 = Drive Letter
DEV1 LUN3=Drive Letter

DEV2 LUNO = Drive Letter
DEV2 _LUN1 = Drive Letter
DEV2_LUN2 = Drive Letter
DEV2_LUN3 = Drive Letter

DEV3 _LUNO = Drive Letter
DEV3 LUN1 = Drive Letter
DEV3 LUN2 = Drive Letter
DEV3 LUN3 = Drive Letter

DEV4 LUNO = Drive Letter
DEV4 LUN1 = Drive Letter
DEV4 LUNZ2 = Drive Letter
DEV4 LUN3 = Drive Letter

Creating the PLTU ini File (Cont.)

DEV5_LUNO = Drive Letter
DEV5_LUNL1 = Drive Letter
DEV5_LUN2 = Drive Letter
DEV5_LUNS3 = Drive Letter

USB97C223 Software Release Notes
Page - 65 -

These lines specify the Drives that are associated with the multiple LUNSs of the respective devices to be tested. If the
‘Drive Letter’ is not specified for a particular LUN, then it means that the corresponding LUN of that device isNOT to be
tested. If the ‘Drive Letter’ isnot specified for all LUNsfor a particular device, then it means that the entire deviceis

either NOT present or NOT to be tested.

A Sample PLTU ini File

DEV1_LUNO=F
DEV1 LUN1=G
DEV1 LUN2=H
DEV1 LUN3 =1

DEV2 LUNO=J
DEV2 LUN1=K
DEV2_LUN2=L
DEV2_LUN3=M

DEV3_LUNO=N
DEV3 LUN1=0
DEV3 LUN2=P
DEV3 LUN3=0Q

DEV4 LUNO=R
DEV4 LUN1=S
DEV4 LUN2=T
DEV4_LUN3=U

DEV5 LUNO=
DEVS5 LUN1=
DEV5 LUN2=
DEV5 LUN3=

OEMVID =0424
OEMPID =223A
INQUIRY_MFG =SMSC

INQUIRY_PRODUCT = 223
TEST_FILE =C\TEST\IMEG.R01

NOTE:

There can be spaces before and after the '=' sign, but the total number of characters for an entire line (including

spaces) should be less than 255.

USB97C223 Software Release Notes

green box with ablack checkmark to indicate
“PASS’, or ared box with ablack “X” to indicate
“FAIL".

. LE
1] |

Page - 66 -
Setting Up the PLTU Application
1. First attach a USB97C223 device to the host. To start the PLTU oo 25
application, simply double click “TestDevice.exe” executable. The L L Hd+mam
application will prompt you to select the location of theini filewhenitis — *e==en
first started.
esss [Com]
LTV ey r— =| l_—_l
I O i o
. . . [it fm e o R b | P s] bt o 11
Provided theini file contains the correct path to the
key files on the local machine, the main program iy — S 4
dialog opens. The station is now ready to begin PRBNSPR | U - st ntbor s o enind
testing devices. At this point you should attach the Voot i [ERTECT TR TR
devices to be tested and ensure that they have good fermm
media with sufficient free space to hold the file i | [EaEE]
being used for testing. [
law Team
I A BN
£l
Using the PLTU to Test Multiple Devices
Once all of the devices have been attached, the user _
. p ” . [7okt e i R b o Tl P
simply presses the “Start Test” button to begin
testing devices in accordance with the contents of b = — . 3
theini file being used. After the testing has PO ST bkt [5 e i - ekl
completed, the user receives a graphical Vi 1o [ETTETTTREE PR Gl R
representation of the test resultsin the form of a . "
Lk [l | [E T | T

2. Oncethetest has completed, the user should remove all of the tested devices and then attach the next set of devicesto
be tested. Once all of the devices are attached and enumerated (as indicated by the presence of drive iconsin Windows
Explorer), the user repeats step 1 to test the next set of devices.

USB97C223 Software Release Notes

Known | ssues with the USB97C223 Production Line Utilities

Issue:

Workaround:

Status:

The PLDU and PLTU applications are designed to be used
with Windows 2000 (SP3) host systems using the Microsoft
mass storage class driver. While the applications may work
with other operating systems, only Windows 2000 (SP3) is
supported.

N/A

N/A

Some EHCI host controller drivers such as Orange Micro's do
not work properly with the DFU driver swapping performed
by the PLDU and PLTU applications.

We highly recommend that you use the Microsoft supplied
EHCI drivers for the test systems running the PLDU and
PLTU applications.

N/A

The PLTU does not distinguish between general device write
failures and media specific write failures. This meansthat the
test will fail if no media present in the drive, mediaisfull,
mediais unformatted, mediais corrupt, mediaiswrite
protected, etc.. Under such circumstances, the test results do
not reflect the status of the device, but rather the failure of the
media. Hence, it is recommended that the test is performed
again on the device with known good media.

Only use known good mediato perform the PLTU testing.

N/A

Due to caching by the OS, the 10 transfer may not be fully
completed before the test results are displayed by the
application. It is recommended that the user wait for 5 to 10
seconds before disconnecting the devices.

Wait 5-10 seconds after completion of the PLTU tests before
removing the devices from the host.

N/A

In the main dialog window of the PLDU application, when
the "Update Descriptor” or "Update Firmware" is clicked, the
application swaps the Mass storage class driver with the DFU
driver before opening the corresponding dialog box. This
requires that the device be connected before the user can click
on these buttons. If no device is connected, the driver swap
and consequently the update operation will fail.

Make sure that there is a device connected BEFORE
attempting to perform either a Descriptor or Firmware Update.

N/A

In the PLDU application, When the user exits either from the
"EEPROM Update Dialog" or the "Firmware Update Dialog",
the application tries to restore the Mass storage class driver
before exiting the dialog. This requires that the device be
connected while the application exits these dialog boxes. If
the device is removed before the application exits, the
application will prompt for the user to reconnect the device.

Make sure the device is connected to the host before exiting
the EEPROM or Firmware Update dialog screens. A device
must be connected while the DFU driver swap takes place for
the operation to complete successfully.

N/A

USB97C223 Software Release Notes
Page - 68 -

Using the QuickTest Production Line Read/Write Test Utility

The QuickTest utility is astreamlined version of the full Production Line Test Utility discussed previously. QuickTest can test
amaximum of (4) USB97C223 devices at atime, with a maximum of 4 LUNs each. The testing procedureis very smple
involving these only 4 steps:

Writes to media on each LUN starting from LBA 1024
Reads from media on each LUN starting from LBA 1024
Compares the data read against the data written to the media
Updates the status for each LUN in the application

AowbdhPE

Thetesting is performed on all the LUNs of the device serially. However, tests on multiple devices are performed
simultaneously using multiple threads. The QuickTest utility requires the presence of the SMSC password filter driver to send
BULK-ONLY commands, totally by-passing the native file system. On windows 2000 systems, Service Pack 3 should be
installed.

L. Gk Tewl Production Lise Uity (using Blter driver] - |\ Bigd USHY] |
Ire Film T
DEK WD D |I]-i2-l Iy MF i |5u5r Ira Fils |
[arsghOAT met WIS BITCZIAPLT LR wick T st ind
DEM FID- O |2:"'.'-l-5. Incpiny Bead 2R L:ad::'dd-:::_'-:-::l.;; ’ e

s [awiceg |-I P LU |i

Fead /wiits Teal Si n kB [256

LosdnFk | Esnfi |

Tk [rmsic

St Test |
Ewl |

Limitations of the QuickTest Utility:

1. Doesnot distinguish between general device write failures and media specific write failures. This means that the test
will fail if no mediais present in the drive, the mediais full, unformatted, corrupt, write protected, etc.. Under such
circumstances, the test results do not reflect the status of the device. Hence, it is recommended that the test is
performed again on the device with known good media.

2. Thetimetaken to complete the tests depend on the following:

* Test size- Thiscan be from 64KB to 5000KB. The bigger the size, the more time it will take to complete the
tests.

* Number of devices connected- The field "Max Devices' specifies how many devicesto test at once (should
be 1 <= N <= 4). However, it is not necessary that the actual number of devices connected be equal to the
number specified in the "Max Devices' field. For example, the "Max Devices' field can specify 4 but the
actual number of devices connected may be <4 or >4. However, the utility will either test only the actual
number of devices connected or the "Max Devices', whichever is less. Though tests on multiple devices are
performed simultaneously, the time taken for the tests to complete on multiple devices will be alittle more
than that for asingle device.

USB97C223 Software Release Notes
Page - 69 -

Using the EPRMUPDT .exe Utility

EPRMUPDT.exeisaDOS based utility used to write and / or read EEPROM datato / from the USB97C223 device. This
utility is designed to be used by OEMs in a production line environment with as little human intervention as possible.

EprmUpdt Usage:

EprmUpdt [-h[-u] [-V] [-c] [-w"oFileName"] [-r"iFileName"]

-h|-u print help/usage
-v verbose, optional, default is off
-C confirm scanned serial number (last 3 digits) before updating EPPROM

-w"oFileName" name of DAT file (with full path) that isto be written to device EEPROM

-r'iFileName" name of formatted text file (with full path) that is to be created by reading device EEPROM
-I"LogFileName" log the serial number to the specified log file

-l infinite loop, till user presses 'CTRL C' to quit

Note:

1. All options can be specified using both UPPERCASE or lowercase |etters.

2. Thedouble quotes ("") around file names for -w and -r optionsis optional. If the path names do not contain blank
spaces, then the double quotes are not necessary. If the path names contain blank spaces, then the double quotes
are mandatory.

3. Thefile namesfor the -w and -r options are to be specified with full path information. If the filesarein the
current directory, then the path information is not necessary.

Features:

1. Usesatemplate EEPROM.DAT file, modifying the serial number alone by scanning it off the keyboard buffer, to
update the device EEPROM.

2. Readsthe contents of the device EEPROM and generates a formatted text file that vividly describes all the fields of
EEPROM structure.

3. The options for writing and reading EEPROM data can be specified together or alone.

4. Provides an option (-c) to confirm the scanned serial number (last 3 digits) with the user before updating the
EEPROM data.

5. Provides an option (-v) to turn on or off the additional debug / status comments.

6. Providesan option (-I"LogFileName") to log the serial number to the user specified log file.

7. Allows processing devices one after another in aloop till user wants to exit (by pressing 'Ctrl C') by specifying the -i
option in the command line. Otherwise, the utility will exit back to the command prompt after it is done with asingle
device.

8. Displaysthe status by showing abig "ERR", "FAIL" or "PASS' aong with other relevant information.

"ERR" - Meansan error occurred outside of the main process of updating or reading to / from the device. This can
happen if there are any errors while parsing the input arguments, or invalid usage, or invalid file paths, or any errors
while starting the host controller and root hub. The application will exit with code 2 during such circumstances.

"FAIL" - Means an error occurred during the process of updating or reading to / from the device. This can happen if
no matching devices are found, or verification of last 3 digits of serial number fails, or error while writing datato
device, or error while reading data from device, or verification of read and write datafails. The actual reason for the
failureis given below the "FAIL" status and the application exits with code 1 during such circumstances. If the -
option is specified, then the application proceeds to prompt for scanning the serial number again. At this paint, itis
left to the user discretion, whether to connect a new device or proceed with the existing device. For example, if the
faillureisdueto last 3 digits serial number mismatch, it could be due to human error rather than a device error and so
the user may want to proceed with the same device again.

"PASS" - Means no error occurred and the process of updating or reading to / from the device completed successfully,
including all necessary verifications and the application exits with code 0. If the -i option is specified, then the
application proceeds to prompt for scanning the serial number again. At this stage, the user can safely remove the
existing device, connect a new device, and enter the serial number again.

USB97C223 Software Release Notes
Page - 70 -

Using the EPRMUPDT .exe Utility (cont.)

9. The utility will return with one of the following exit codes.

0 - Indicates "PASS"
1- Indicates"FAIL"
2 - Indicates "ERR"

Limitations of the EPRM UPDT .exe Utility:

Only supports devices connected to a UHCI host controller.

The UHCI host controller to which the device is connected should be the first one in the enumeration order.

Only supports devices connected at the root hub level.

The first MSC device in the enumeration order has to be the device whose EEPROM dataisto be updated or read.

Rl A

USB97C223 Software Release Notes
Page- 71 -

Using the CheckROM .exe Utility
CheckROM .exeis a DOS based utility used to check the NV Store data of USB97C223 device against a user specified template

DAT file. This utility also checks the device's firmware version against a specified version number. This utility is designed to
be used by OEMs to streamline their production environment.

CheckROM Usage:
CheckROM [-h|-u] [-V] [-€"DATFileName"] [-f"version"

-hj-u print hel p/usage

-v verbose, optional, default is off

-¢'DATFileName" name of DAT file (with full path) that is to be checked against the device EEPROM
-f"version” version number that is to be checked against the firmware version of the device

-l infinite loop, till user presses 'CTRL C' to quit

Note:

1. All options can be specified using both UPPERCASE or lowercase |etters.

2. Thedouble quotes (*") around file name for -e option is optional. If the path names does not contain blank spaces,
then the double quotes are not necessary. If the path names contain blank spaces, then the double quotes are
mandatory.

3. Thefile name for the -e option is to be specified with full path information. If the files are in the current directory,

then the path information is not necessary.

The double quotes around the 'version' in -f option is optional.

The value of 'version' is specified as a max 4-digit decimal integer number.

oA

Features:

1. Readsthe contents of the device EEPROM and checks the entire contents (excluding serial number) against the
specified template DAT file.
Reads the firmware version of the device and checks that against the specified version number.
The options for checking EEPROM data or firmware version number can be specified together or alone.
Provides an option (-v) to turn on or off the additional debug / status comments.
Allows checking devices one after another in aloop till user wants to exit (by pressing 'Ctrl C") by specifying the -
i option in the command line. Otherwise, the utility will exit back to the command prompt after it is done with a
single device.
6. Displaysthe status by showing abig "ERR", "FAIL" or "PASS' aong with other relevant information.

agroDd

"ERR" - Meansan error occurred outside of the main process of checking the EEPROM or firmware version of the
device. This can happen if there are any errors while parsing the input arguments, or invalid usage, or invalid file
paths, or any errors while starting the host controller and root hub. The application will exit with code 2 during such
circumstances.

"FAIL" - Means an error occurred during the process of checking the EEPROM or firmware version of the device.
This can happen if no matching devices are found, or error while reading EEPROM data from device, or the
EEPROM check or firmware version check fails. The actual reason for the failure is given below the "FAIL" status
and the application exits with code 1 during such circumstances. If the —i option is specified, then the exit code is
ignored and the application proceeds to prompt for checking the next device.

"PASS" - Means no error occurred and the process of checking EEPROM and / or firmware version of the device
completed successfully and the application exits with a return code of 0. If the -i option is specified, then the
application proceeds to prompt for checking the next device. At this stage, the user can safely remove the existing
device and connect a new device for checking.

USB97C223 Software Release Notes
Page- 72 -

Using the CheckRom.exe Utility (cont.)

7. The utility will return with one of the following exit codes.

0 - Indicates "PASS'
1- Indicates"FAIL"
2 - Indicates "ERR"

Limitations:
1. Supports only devices connected to a UHCI host controller.
2. The UHCI host controller to which the device is connected should be the first one in the enumeration order.
3. Supports only devices connected at the root hub level.
4. Thefirst MSC device in the enumeration order has to be the device whose NV Store data is to be checked.

Using the Windows XP Special Memory Stick Format Registry Key

Windows X P has the capability to apply a Sony factory format on Memory Stick cards by adding a special key to the registry:

[HKEY_LOCAL_MACHINE\SOFTWAREWMicrosoft\Windows NT\CurrentV ersion\PerHwl dStorage\
USBSTOR#DiskSMSC 223 U_HSMS | "DeviceGroup"="MemoryStick"

This key hasto be customized to match the inquiry data returned from the device. The inquiry datais made up of the first 8
characters of the Manufacturer String, followed by the first 5 characters on the Product String. In the example registry key
above, the strings are:

Manufacturer String = “SMSC” (Note that SMSC is followed by four spaces denoted by underscores to make up the 8
characters.)

Product String = “223 USB97C223" (Note that only the first 5 characters, including the space, are used.)
Thisregistry key works for Windows XP only. It will not work for Windows 2000 or any other operating system. Once the

registry key has been added, when a user formats aMemory Stick card from using Windows, the Sony factory FAT format will
be applied, including the creation of the “MEM STICK.IND” hidden file.

USB97C223 Software Release Notes
Page- 73 -

Using the KillReg Utility

KillReg isa DOS bhased application to stop adevice and clean itsrelated registry entries during an automated uninstallation
process. KillReg is designed to be called from a Windows Installer script. It is used during installation and uninstallation of
USB97C210/223 devices under all Windows operating systems to remove the device entries from the registry. This allows the
SMSC Win2K or Windows native driver to be loaded if the device has previoudy been installed without a driver, or with an
incorrect driver. KillReg is also used during the uninstallation process to completely remove the registry entries for a particular
device.

Requirements:
KillReg requires an ini file to be present in the Windows directory. The name of thisini file should be passed as command line
argument to the application from the installer script.

INI File Requirements:
1. Theini file should be in the Windows directory.
2. Theini file should contain the following lines;

VID =VID
PID = PID1[,PID2,PID3,...,PID30]

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sampleini File:

VID =0424

; The following line shows how
; to specify multiple PIDs

PID = 20FC, 223A, 211A, 242A

; Thefollowing line is used by SwapDrvr.exe
; only and NOT by KillReg.exe

INFFILE = smscpswd.inf

4

NOTE:

1. Theini fileis also used by the application " SwapDrvr.exe", which will expect the line specifying the INFFILE. KillReg
ignoresthisline.

2. Multiple PIDs separated by a comma can be specified to uninstall all the PIDs associated with asingle VID.

USB97C223 Software Release Notes
Page - 74 -

Using the Swapdrvr Utility

Swapdrvr isa DOS based application used by a Windows installer to load the password filter driver in Windows XP.
Unfortunately, SwapDrvr does not work with Windows 98 and Me. The only USB97C223 application that requires the
password filter driver be loaded when running XP is the QuickTest production line test utility. If you are not using that utility
or do not want to include it in your installer, you can skip this section.

Requirements:

1. The device should be connected while this application isinvoked from a Windows installer. The application will prompt the
user to connect the device during run time.

2. Swapdrvr needs an ini file to be present in the Windows directory. The name of thisini file should be passed as command
line argument to the application from the installer script.

3. Theinstaller application should have already placed the required INF and SY Sfilesin their correct locations.

INI File Requirements:
1. Theini file should be in the Windows directory.
2. Theini file should contain the following lines;

VID =VID
PID =PID
INFFILE = Inf file name

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sampleini File:

VID =0424
PID =223A
INFFILE = smscpswd.inf

USB97C223 Software Release Notes
Page- 75 -

Using the Dos Production Line Utility (DosPL TU)

DosPLTU isaDOS based utility intended to be used by OEMs to streamline their production testing, requiring as little human
intervention as possible. This utility supports checking the device firmware version, checking and / or updating the
device EEPROM with atemplate DAT file, and performing R/W tests on all the logical units (LUNS) supported by the device.

DosPLTU Usage:

DosPLTU [-h|-u] [-V] [-f"version”] [-t -n"loopcount” -S'testsize"]
[-€'DATFileName" | -w"DATFileName" | -x"DATFileName"]
[-I"LogFileName']

-hfFU print help/usage

Vo verbose, optional, default is off

-f'version”.......... version number that isto be checked against the firmware
version of the device

e TR perform R/W tests

-n"loopcount”........ specifies the number of times the R/W tests are to be

performed. Thisis optional and a default value of 10
will be used if thisis not specified

-S'testsize"........ specifies the test transfer sizein KB for the R/W tests.
Thisisoptional and a default value of 64KB will be used
if thisis not specified

-€'DATFileName"......name of DAT file (with full path) that is to be checked
against the device EEPROM. This option cannot be specified
with -w or -x options

-w"DATFileName"......name of DAT file (with full path) that isto be written
to device EEPROM This option cannot be specified with -e
or -x options

-X"DATFileName"......name of DAT file (with full path) that is to be checked
against the device EEPROM and if necessary that isto be
written to the device EEPROM. This option cannot be
specified with the -e or -w options

-I"LogFileName"......name of the log file (with full path) to which the test
status messages are logged

S I infinite loop, till user wantsto quit

Note:

1. All options can be specified using both UPPERCASE or lowercase |etters.

2. Thedouble quotes (*") around file names are optional. If the path names do not contain blank spaces, then the
double quotes are not necessary. If the path names contain blank spaces, then the double quotes are mandatory.

3. Thefile names are to be specified with full path information. If the files are in the current directory, then the path
information is not necessary.

Option Groupsand Priority Levels:

1. The options are classified into 4 groups as described below.

a. Usage -"-h"or"-u"
b. Firmware check -
c. EEPROM check / update -"-e","-w" and "-Xx"

d. R/W tests -t

USB97C223 Software Release Notes
Page - 76 -

2. The utility has a proirity level for each group of options. The priority level and processing details are described below.

a. Usage group - Has the highest priority (level 0). If thisis specified, then the utility would just display the
program usage and exit. All other options are ignored and are not processed.

b. Firmware check group - Has the next highest priority (level 1). The utility processes this option before
EEPROM check and R/W test options. If the device firmware does not match the version specified with
this option, then the utility would display an error message and exit without processing any other option.

c. EEPROM check / update group - Has a priority level of 2. If "-f" option is specified, the utility would
process this option after successfully checking the device firmware version. Otherwise, this would be
processed first. It isimportant to note that this group has 3 options ("-€", "-w" and "-x") which are
mutually exclusive. That is, only one of the 3 options can be specified. If any error occurs while
processing this group, the utility ignores the R/W test option and exits after displaying the corresponding
error message.

d. R/W test group - Thishasthe lowest priority (level 3) and is processed last after successfully processing
other specified options. This group has two optional command line options (*-n" and "-s") and the
corresponding default values are used if those options are not specified.

DosPLTU Features:

© N

Checks the firmware version of the device.

Checks the device EEPROM against atemplate DAT file and returns an error if any mismatch isfound. Thisis
achieved by using the "-€" option and is useful in testing devices whose EEPROM has already been updated.
Updates the device EEPROM always with atemplate DAT file without checking for any mismatch. After every
update, the serial number is automatically incremented and the DAT fileis updated. Thisis achieved by using the "-
w" option and is useful in updating the device EEPROM for the first time.

Checks the device EEPROM against atemplate DAT file and updates the device EEPROM if any mismatch is found.
If the EEPROM is updated, the serial number is automatically incremented and the DAT fileis updated. Thisis
achieved by using the "-x" option and is useful in testing devices whose EEPROM may or may not have been already
updated.

Performs R/W tests on all LUNSs supported by the device. The tests are performed using the loop count and test size
values specified with "-n" and "-s" options.

Provides an option (-v) to turn on or off the additional debug / status comments.

Provides an option (-I"LogFileName") to log all messages to the user specified log file.

Allows processing devices one after another in aloop till user wantsto exit by specifying the "-i" option in the
command line. Otherwise, the utility will exit after it is done with a single device.

Displays the status by showing abig "ERR", "FAIL" or "PASS" along with other relevent information.

"ERR" - Meansan error occurred outside of the test process. This can happen
if there are any errors while parsing the input arguments, or invalid
usage, or invalid file paths, or any errors while starting the host
controller and root hub.
The application will exit with error code 1 during such circumstances.
"FAIL" - Means an error occurred during the process of testing. This can happen
if no matching devices are found or any of the test fails. The actual
reason for the failureis given below the "FAIL" status.

The application will exit with error code > 1 during such circumstances.

"PASS" - Means no error occurred and the process of testing completed
successfully.

The application will exit with error code 0 during such circumstances.

USB97C223 Software Release Notes
Page- 77 -

10. The utility will return with one of the following exit codes.

0 - Indicates "PASS'

1- Indicates"ERR"

2 - Indicates "FAIL" (Device not found error)

3 - Indicates "FAIL" (Firmware mismatch error)

4 - Indicates"FAIL" (Error while reading device EEPROM)

5- Indicates "FAIL" (Device EEPROM and template DAT file mismatch error)
6 - Indicates "FAIL" (Error while writing to the device EEPROM)
7 - Indicates "FAIL" (Error verifying updated EEPROM data)

8 - Indicates "FAIL" (Error while initializing disk(s) for R/W tests)
9 - Indicates "FAIL" (Error while writing to disk)

10 - Indicates "FAIL" (Error while reading from disk)

11 - Indicates "FAIL" (Error verifying read and write data)

12 - Indicates "FAIL" (Error creating the log file)

NOTE:

As mentioned above, when the device EEPROM is updated, the DAT file is updated with the serial number incremented by
one. During such cases, there is a chance for the serial number to overflow from "FFFFFFFFFFFF" to "000000000000". When
this overflow occurs, there will be awarning displayed to indicate the overflow. However, the testing on the current device
continues normally as the overflow will matter only with the next device that isto be tested. Even if the tests on the current
device pass successfully, the return value will be "ERR" to indicate the serial number overflow error.

USB97C223 Software Release Notes
Page- 78 -

Using the USB97C223 with Linux

Versions 2.4.20 and greater of the Linux kernel provide native support for multi-LUN USB mass storage class devices like the
USB97C223. Some brands of Linux such as SuSe 8.2 require little or no user setup. Simply plug in your USB97C223 device,
and icons will appear, provided thereis mediain the card reader dots. Other brands of Linux such as Redhat require the user to
configure the kernel in order to enable multi-L UN support in the mass storage class driver. The procedure for doing that is:

Requirement:
RedHat Linux 9.0 with kernel 2.4.20 or greater

Steps:
Install RedHat Linux 9.0 on the host system
Login to the system as 'root'.
Open aterminal window.
Plug the multi-LUN card reader into the host.
At the shell prompt, type 'cat /proc/scsi/scsi'.
If the screen shows only one LUN, type 'Ismod'.
If 'ush-storage' does not exist, type 'insmod usb-storage'.
If 'usb-storage' exists, type 'cdrecord -scanbus. It will display
scsibusO:
0,0,00) 'SMSC ' '223 U HS-CF' 'X.XX"' Removable Disk
0,1,01) *
0,2,02) *
0,3,03) *
0,4,04) *
0,5,05) *
0,6,06) *
0,7,07) *
9. Create abatch file with the following calls:
‘echo "set-single-device 0 0 0 0">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 1">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 2">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 3">/proc/scsi/scsi
‘cat /proc/scsi/scsi'
10. After running the batch file, the screen should display:

©ONoTAWDNE

Attached devices:
Host: scsiO Channel: 00 ID: 00 LUN: 00

Vendor: SMSC Moddl: 223 U HS-CF Rev: X. XX

Type: Direct-Access ANSI SCSlI revision: 02
Attached devices:
Host: scsi0 Channel: 00 ID: 00 LUN: 01

Vendor: SMSC Moddl: 223U HS-MS Rev: X.XX

Type: Direct-Access ANSI SCSl revision: 02
Attached devices:
Host: scsiO Channel: 00 ID: 00 LUN: 02

Vendor: SMSC Model: 223 U HS-SM Rev: X. XX

Type: Direct-Access ANSI SCSI revision: 02
Attached devices:
Host: scsiO Channel: 00 ID: 00 LUN: 03

Vendor: SMSC Model: 223 U HS-SD/MMC Rev: X. XX

Type: Direct-Access ANSI SCSl revision: 02

11. Now multi-LUN support is enabled and you should be able to mount and access all media normally.

Media Tested with the USB97C223

USB97C223 Software Release Notes

Page - 79 -

The following flash media cards were used during the devel opment and testing of the USB97C223. All media listed has been
determined to work properly and be compatible with the USB97C223.

Memorex 128MB

PQI 16MB

PQI 64MB

Samsung 128MB
SanDisk 1GB
SanDisk Extreme 1GB
SanDisk Ultra 128MB
SunDisk 8MB

Memory Stick Pro

IBM MicroDrive

IBM Microdrive 340MB
IBM Microdrive 1GB

Sony 256MB
Sony 512MB
Sony 1GB
SanDisk 256MB

Panasonic 128MB
Toshiba 32MB

Compact Flash Memory Stick Secure Digital Smart Media
CompUSA 16MB Lexar 16MB IO Data 64MB Fuji Film 8MB
CompUSA 48MB Lexar 32MB Buffalo 256MB Kingston 64MB
CompUSA 64MB Lexar 64MB Lexar 16MB I-O Data 8MB
Hyperstone 8MB Lexar 128MB Lexar 32MB I-O Data 16MB
IO Data 4MB PQI 64MB Memorex 32MB I-O Data 32MB
IO Data 8SMB PQI 128MB Panasonic 512MB I-O Data 64MB
IO Data 32MB SanDisk 16MB PNY 128MB [-O Data 128MB
King Max 8MB SanDisk 64MB PQI 64MB Lexar 16MB
King Stone 64MB SanDisk 128MB PQI 128MB Lexar 32MB
Lexar 32MB Sony 8MB PQI 256MB Lexar 64MB
Lexar 48MB Sony 16MB SanDisk 32MB Lexar 128MB
Lexar 64MB Sony 32MB SanDisk 64MB Memorex 32MB
Lexar 128MB Sony 64MB SanDisk 128MB Memorex 64MB
Lexar 256MB Sony 128MB SanDisk Extreme 256MB |Memorex 128MB
Lexar 512MB (24x) SimpleTech 128MB Olympus 8MB
Lexar 1GB (4x) High Speed PNY 128MB
Lexar 1GB (24x) Memory Stick Samsung 32MB
Lexar 2GB (40x) Sony 16MB Mini Secure Digital SanDisk 32MB
Memorex 32MB Sony 32MB Panasonic 32MB SanDisk 64MB
Memorex 64MB Sony 128MB Panasonic 64MB SanDisk 128MB

Viking 64MB

MMC xD Picture Card
Lexar 16MB PQI 64MB
Lexar 32MB Fuji 64MB
Lexar 64MB Fuji 512MB
PQI 32MB Olympus 32MB
PQI 64MB Olympus 128MB
SanDisk 8MB Olympus 256MB

SanDisk 16MB
SanDisk 32MB
SanDisk 64MB

USB97C223 Software Release Notes
Page - 80 -

USB97C223 Performance Benchmarks

The measurements were performed using HDBench v3.30 on a Windows XP (SP1) system with an |CH4 south bridge.
(Pentium 4, 1.8GHz, 512MB DDR). All benchmarks were measured on new (out of the box) media. Please note that the
benchmark performance of flash cards varies widely from manufacturer to manufacturer, and the performance of all
manufacturers’ cards degrade with use. In order to duplicate the results below, you must use brand new media and test on a
similarly configured host.

Full Speed (USB1.1) Reads Writes Media Used for Testing:
Compact Flash | 1043 KB/s | 932 KB/s SanDisk Extreme 1GB
Memory Stick | 909 KB/s 550 KB/s Lexar Media 128MB
High Speed Memory Stick | 811 KB/s 652 KB/s Sony MagicGate 128MB
Memory Stick Pro| 1031 KB/s | 902 KB/s Sony 512MB

Smart Media 977 KB/s 537 KB/s Memorex 128MB
Secure Digital 1039 KB/s | 945 KB/s SanDisk Extreme 256MB
Multimedia Card | 996 KB/s 374 KB/s Lexar Media 64MB
High Speed (USB2.0) Reads Writes Media Used for Testing:

Compact Flash | 9682 KB/s | 5953 KB/s SanDisk Extreme 1GB
Memory Stick | 1540 KB/s | 833 KB/s Lexar Media 128MB
High Speed Memory Stick | 4031 KB/s | 897 KB/s Sony MagicGate 128MB
Memory Stick Pro | 4027 KB/s & 3157 KB/s Sony 512MB
Smart Media| 4762 KB/s | 1746 KB/s Memorex 128MB
Secure Digital | 7275 KB/s | 5340 KB/s SanDisk Extreme 256MB
Multimedia Card | 1522 KB/s & 486 KB/s Lexar Media 64MB

USB97C223 Software Release Notes
Page - 81 -

GPI O Assignment Table

The following is atable of GPIO assignments for the USB97C223. Please note that multi-function GPIO
operations are determined by attribute settings. Please refer to the software release notes for detail on
configuration settings.

Name Description Function
GPIO0 Not avaliable due to pin count \

GPIO1 Flash Media Activity LED Media Activity LED

GPIO2 EE_CS EE_CS

GPIO3 V_BUS V_BUS

GPIO4 EE_DIN/EE_DOUT EE_DIN&DOUT

GPIO5 HS Ind./SD Card Detect HS Ind./SD CD

GPIO6 A16 (external ROM only) /ROMEN ROMEN/A16 \

GPIO7 EE_CLK/Unconfigured LED EE_CLK/Uncfg LED

GPIO8 MS Power Control MS Power Control

GPIO9 CF Power Control CF Power Control

GPIO10 SM Power Control SM Power Control

GPIO11 SD Power Control SD Power Control

GPI0O12 MS Activity MS Activity/Media Activity LED
GPIO13 CF Activity CF Activity

GPI1014 SM Activity SM Activity

GPIO15 SD/MMC Activity SD/MMC Activity

Known Firmware Related | ssues

General:
| ssue:

USB97C223 Software Release Notes

Workaround:

Page - 82 -

Status:

Surprise removal of the USB cable from a self-powered
USB97C223 eval board in the middle of a MStransfer,
sometimes results in the device reenumerating as Full Speed

Unplug the cable and then plug it back into the host.

Currently under
investigation. May be
fixed in afuture release

when the cable is reattached. of the USB97C223
firmware.

CFE Devices:

| ssue: Workaround: Status:

No known issues.

MS Devices:

| ssue: Workaround: Status:

When High Speed Magic Gate Memory Stick mediais None. Webelievethisisa

formatted with aFAT file system on aMacOS 10.X host, the Magic Gate security

media becomes unreadable on machines with Windows protocol issue. WE will

operating systems, but will continue to work normally with continue to investigate

Macs. and provideafixina
future release of the
USB97C223 firmware
if possible.

SM Devices:

| ssue: Workaround: Status:

Writesto 2MB Smart Media cards are not supported. None. 2MB Smart Media

cards can be read by the
USB97C223, but writes
are not supported.
These cards are
considered obsolete and
there are no plansto
implement support for
them in the future.

USB97C223 Software Release Notes

Page - 83 -
SD/MMC Devices:
| ssue: Workaround: Status:
Under certain conditions, the USB97C223 device may fail to Attempt to reinsert the card. Currently under
recognize an SD/MMC card inserted while writing to either investigation. May be
CFor MSor SM cards. fixed in afuture release
of the USB97C223
firmware.

| ssues Not Related to Firmware

Issue:

USB97C223 Software Release Notes

Workaround:

Page - 84 -

Status:

Due to the write caching functionality of Windows, data
corruption can sometimes occur if the mediais removed
improperly.

Before removing any piece of media, you should right click
the driveicon in Windows Explorer and select “Eject” from
the context menu. This will force the operating system to
perform awrite of any cached data.

Limitation of the OS.

Reading or writing multiple media types simultaneously will
generally happen at the slowest media rate.

Thisisalimitation of the OS. If writesto aslow media type
like MS are made while reading from a fast mediatype like
CF or SM, then the read will slow to approximately the rate of
thewrite. Thisisbecause the OS must process each
command separately. It is not alimitation of the firmware.

Limitation of the OS.

If the USB97C223 evaluation board does not have a properly
programmed serial number, only one drive will appear in
Windows Explorer.

Program a unique serial number into the board using the
“DFUTest” utility.

Surprise removal of the USB cable during awrite to any Reboot the host. This appears to be a bug
mediatype under Windows 98, Me, or MacOS sometimes with the operating
causes the host to become unresponsive. systems. All mass storage
class devices tested have
displayed this behavior.
Occasionally, surprise removal of the USB cable during Reboot the host. This appears to be abug
writes to any mediatype under Windows XP, resultsin the in Windows XP. No mass
failure of the device to re-enumerate after being reattached. storage class USB devices
will enumerate once the
host isin this state.
Windows 2000 does not immediately report that mediais None. Thisisnormal behavior

write protected when attempting to perform a full format. The
format will appear to progress to completion, but at the end of
the operation reports that the mediais write protected.

for Windows 2000. This
occurs for al USB write
protectable devices when
attempting to perform a
full format.

16MB MMC mediareports an incorrect format capacity when
you attempt to format it in Windows 98 or Me after having
previously formatted a64MB MMC.

Power cycle the board.

This appears to be a bug
with the Windows
Operating system.

Prematurely attempting to access a drive after resuming from
suspend sometimes results in adevice 1/0 error in Win2K.
Thisisaknown issue at Microsoft. (Reference Microsoft
Knowledge Base article Q323754)

Obtain and install the updated Usbhub.sys file from the hotfix
that is described in Microsoft Knowledge Base article
Q306455.

N/A

Under Mac OS 9.x only one drive will appear on the desktop.
Thisisnormal asthe Mac OS 9.x mass storage class driver
does not support multiple LUN devices.

Use the MacOS 8.6-9.x driver provided by SMSC.

Use the MacOS 8.6-9.x
driver provided by
SMSC.

DFU for Mac 10.X does not work when the deviceis
connected to a1.1 USB host controller

Attach device to a 2.0 host controller when using DFU on Mac
0S 10.X

Currently under
investigation. May be
fixed in afuture release

Under Windows 2000 SP2 or below, only one drive icon
appears.

Windows 2000 SP2 and below does not provide native support
for multi LUN mass storage class devices like the
USB97C223. Y ou can either use the SMSC Windows 2000
driver, or upgrade your OSto Service Pack 3 or higher. (This
isafree update).

Use the SMSC Windows
2000 driver, or upgrade to
Windows 2000 SP3 or
higher.

