SIgC

STANDARD
MICROSYSTEMS
CORPORATION

Austin Design Center

11000 North Mopac Expressway
Stonelake Bldg. 6 Suite 500
Austin, Texas 78759

USB97C210 Software Release Notes

Version 0.0.0.250
Updated 12-22-03

The information contained herein is confidential, is submitted in confidence, and is proprietary information of Standard
Microsystems Corporation, and shall only be used in the furtherance of the agreement of which this document forms a
part, and shall not, without Standard Microsystems Corporation's prior written approval, be reproduced or furnished to
others. The information contained herein may not be disclosed to a third party without the consent of Standard
Microsystems Corporation, and then, only pursuant to a Standard Microsystems Corporation approved non-disclosure
agreement.

Standard Microsystems Corporation assumes no liability for incidental or consequential damages arising from the use
of the information contained herein, and reserves the right to update, revise, or change any information in this
document without notice.

USB97C210 Software Release Notes

Page -2 -

Table of Contents
T AV e VI =T ST 1] (] Y/ 4
T A e Y =T o I 1) (o] Y (0] oL) 5
[o LT T3 o - DO OO OO OSSO P RS PRPTSPRSRTRN 8
THE NON-VOIALHE STOFE DATAeeueiieie ittt b et b e bt bt bt e e e R e e e e e bt s b e eb e e b £ e Rt eh b e ne e beebeebeebeeneanee e e b ee 10
Using Flash ROM t0 StOre the NV SEOFE DATAc.coouiiiiiiiiiii ittt st b ettt e e bt e b bt nee e e 10
Using the DFUTESE SAMPIE APPIICATIONoiuiiiieeee et ettt b e b et s e e e b e sbe bt e st enee e eas 10
USING the DFUTESE DAT BEQITOF ... ottt et b et h e et b e e bt bt bt e b e e Rt e s e e neeebenbeebe et e e neeneeneennas 11
ALFIDULE BIt DETINITIONS ...ttt et bbbt bt h e b b e s bt bt e bt e Rt e s b e nb e b e nbeebe et e e neaneennentas 11
The ATEFIDULES CAICUIATOLo.eiieiiice et b bbbt a e h e e e et e e e e b e e b e b e e b e e Re e s b e et e benb e eb e e b e e neane e e et ee 13
Programming the NV STOIE Datal........c.ccueoierieiiieieii it et ese et e et e et e e et e besaesteeseese e aeseestesreabeeneeseeseenteseeanenreaneeneeneenen 13
Programming the NV STOIE Datal........c.ccuecieiueieieieiisieie et ese st e e se et e e e et e testeeseeseese e aeseetesaeateeneeseeseentesbeanesreaneeneeneenees 14
LUN Configuration and 1CON SNAKINGcccoviieiiiiieiesi ettt sttt te e e s e e eseeteseesteaseeseeseensesaestesaeaseereeneeneeneens 16
I 1N @0 0§ a0 T =1 o] S 16
o700 1= U] o OSSR 16
Using Device Firmware UPGrade (DFU) ...t e e ettt te e sa e aesae st stesteaneasaeseentesteanesnaenseneeseenss 17
OVBIVIBW ...ttt ettt bbbt b e bt e b e eea b e ee e b e e b e 4R £ e E 2R £ 2R e e e e b e AE e 4 E e e E e 4 Re2E £ 4R e eR b e AE e eb e A b e AR e e b £ e Rt en b e nEeebenbeebeebeeneaneene b es 17
FIlES REQUITEA TOF DU ...ttt b ettt b bt b e bt b e e Rt e R e e b e R b e nb e eb e e b e ebeeh e e e et e nbeeb e e be e bt ar e et et es 17
Creating the 128KB DFU Capable Flash Binary “Doth.Din"cccooiiiii e 18
Preparing @ DeViCe fOr DFU OPEIatiONco.eiuiiiiieiieieie ittt sttt bbbt st e e b e sb e st e sbeeb e e e et e seesbesbe e bt abe e e e e ee 19
Choosing a Flash EEProm fOr YOUI DEVICE........coiiiiiie ittt sttt bbbtk e et e se et e b e nbe b et et aneenne b e 19
SEtiNG UP the HANGWAIEc.ee it s et et st ste e Re et e sees et e st e b e eReeEeeneen e e see st e neeabenreaneaneeeensees 19
Performing a Firmware Upgrade with the DFUTEeSt APPIICALION........c.coiiiiiiiircec e 20
Creating @ DFU Uploadable FilE..........cviiiiiiiicieiese sttt et sne et e aneen e e et e ntesbenreaneenee e enrees 21
USING the DFULEXE ULHITY ...eveeiecice ettt ettt e e st e s et e et e st e st e eRe e s e e e enteneenbenreaneareeneeneees 21
USING the DFULEXE ULHIY ...e.veeiecece ettt et et et eese e s et e e e e st e st e eRees e e e enteneenbenreaneareeneeneees 22
[T0TY o LT qTo e I Y o] o] 1o T USSR 23
DIIVET OVEIVIBW ...ttt ettt sttt e et bttt b e bt bt eh et e b e b e eb e eb e e bt eE £ 2R e 2m e et e eE e b e A E e eE £ 2R e em b e eb e e b e eE e eR £ e b e e e eabenbeebeebeeneare e s et es 23
THE SIMISC DIFU AP ..ottt sttt sttt s b et b e et st e st e be st e bt e be e e R e e ke st e R e a4 e e Ee e Ee s b et e Ee e b et e be e b et e besb et e benbe st ete st e e 24
Using the USB97C210 CUStOM 1CONS PACKAGE.ooiiiitiiiiiiee ettt e b e bbbttt b e bbbt e e e 42
Contents of the USB97C210 CUStOM ICONS PACKAJEciviiueieiiieriieiieieie ettt ettt bbbt e bbb et n e e 42
Creating the ReqUIred SELICON INI FIIES.........oui it bbbt e st s e b b e bbb e bt ene e e b e 42
Manually Installing the Custom 1cons APPLICATION FIIEScoiiiiiiii e 44
AN L T o] LN LTI L SRS 44
Creating a Windows Installer for the Custom Icons Application FilesSc.coeviieiiiiiie i 45
Troubleshooting the Custom 1€0NS APPIICALIONcviiiii it e st sresresneera e e eneeneens 45
Using the Production Line Descriptor Update Utility (PLDU)c.coeiiiiiiieciseceeiesese sttt 46
Creating the PLDU BNi FlB........viiiicieiiie sttt ettt et e be et e e se e s et et et e s ee et e eneen e e e et e seeanenreaneanee e ensees 46
AN LT o] C o T 1O -SSR 47
Setting Up the PLDU APPIICALION ..ottt bttt b e b e s b e bt b e e bt e h e e e e b e st sbeebeeneare e e et ee 48
Using the PLDU t0 Update DEVICE DESCIIPLOIScueeeeieitertestesieateeieaie ettt st e it se e e e besbesbesbesbesbe e e ebeseesbesbeaneaseenee b ses 48
USIiNG the PLDU t0 UPAALE FIFMUWAIEouiiiitiitirie ittt sttt ettt sbe st beebesseeae e e e se e b e sbeeb e e e enbesbesbesbeabeabe e e enbees 49
Using the Production Line TeSt ULIILY (PLTU) ..ottt sttt e b bbb see e 51
Creating the PLTU BNQ FIIE ..ottt bbbt bt et s e b e b e ke b e ek e e Rt e R b e b e b e nb e eb e e b e e bt ere e e et es 51
AN LT o] (N o T I -SSR 52
Setting Up the PLTU APPIICALIONooviiiie sttt sttt s e e e e et sne et e eneenee e e aesaestenreaneanee e enrees 53
Using the PLTU t0 TeSt MUIIPIE DEVICESccvviieiieeeieieieiesese et e ettt e st ra et e st e et e aneena e e enteseestenreaneeneeneenenes 53
Using the QuickTest Production Line Read/Write Test ULHITYcccoooviiiiiiiicecc e 54
Known Issues with the USB97C210 Production Line ULHHTIEScoviiiiiiiieiie e 55
USING the EPRMUPDT.EXE ULHITYc.veiiiii ittt st sa s et et teateeneen e e e e ntesteanenreeneeneennentas 56
USING the CheCKROM.EXE UTHIITYc.eoiiiiie ettt bbbttt b e bt b ettt e s e e e e b e nb e bt et et enbe e eas 58
USING the MSPTO FOFMAT ULIIITY ...ttt b bbbt b e bt e s e b et et e bt et et ene e e ntas 59
Using the Windows XP Special Memory Stick Format RegiStry KEY ..ot 60
USING The KIITREG ULHITY ...ttt e e bbbt E e R e e R e e e e e b e ekt bt e b £ e Rt e s b e ne e b e nbeeb e e b e e mteneennentas 61
USING The SWAPANVE ULITITY ..ottt et bbbt £t h e e e e bt ekt b e e b e et e st e st e ebenbeebe et e e ntenbennetas 62
USING the USBOT7C 210 WITN LENUXeitiitiitiitiii ettt sttt e bbbt e s b e e bt e b s b e e b e e Rt e st e neeebenb e e bt e bt e neebenneeas 63
Media Tested With the USBOT7C2L0ccciiiiiiiieiiiteieeieie ettt sttt sttt bt sb e ebe st e b et et e ab et et e abe st et e abe e ebeabeneenen 64

USB97C210 Software Release Notes

Page - 3 -

USBO97C210 Performance BENCIIMAIKS.c.uviciiiiie ittt ettt et s st e st e s s be s st e s st e s satessabessabeeesbasasbesssbeseabenesbeessneeee 65
LT L@ NI To 0 1= L A 1= o] -SSP 66
Known USBO97C210 Firmware REIATEA ISSUES.cocuiiiiiiiiie i ettt stee et s e sb e sbte e sab e sbe e s sb b e e sbee s sbb e e sbeeesbbessbaessbbessnressnns 67
(1T 1T =1 DRSPS 67

(O S B LY o1 TSRS 67

IMIS DIBVICES: .. uviiiiiteieesitti e e e ettt e e ettt e e sttt e s s ettt e e s atee e s sabaeeesabbe e s sabeee e s shbeeaeessbeeesabee s e s sbbeaeeabbee s e eabeasessabeeeesabbaeesnbansssabenessbbanesanes 67

]| I 1A 1073 SRR 67
DAY 1Y (O BTN 1oL SRR 67

DB I B AV ol 3OS 67
Issues Not Related t0 USBOIT7C210 FIIMMNWAIEc..ooivvieiiieitie et sttt e st e st este e s be s savessbessabe s s sbessabessbessabesssbessabesssbessbesssbeserenas 68

USB97C210 Software Release Notes
Page - 4 -

Firmware Version History

For firmware revision history prior to version 0.0.0.96, refer to the USB97C210 release notes for version 0.0.0.125 dated
November 12", 2002.

Version 0.0.0.96: External Evaluation Build. Fixed the compatibility bug where certain CF cards (e-data) could not be read by
the USB97C210.
Fixed the bug causing data corruption during writes to certain Memory Stick
cards.
Changed the firmware to allow elimination of the eeprom by writing NV Store
data directly to the flash. Currently only the SST39VF010 chip is supported for
this functionality.
The firmware is now distributed in four different versions for each LUN
configuration, one for devices that use an EEPROM, one for devices that do not
use an EEPROM, one with suspend enabled, and one with suspend disabled.
The format of the EEPROM.DAT file has changed. Previously programmed
eeproms must be reprogrammed with the new data format in order to function
correctly with this version of the firmware.
Added code to allow customization of the GP10 0 LED blink behavior by setting
2 bytes in the eeprom.dat data.
Added code to allow programming of the bmAttributes and MaxPower descriptors
in the NVStore area, by setting 2 bytes in the eeprom.dat data.
Added code to allow programming of the LUN device IDs in the nvstore area.
Added additional functionality via the attributes bytes in the eeprom.dat data.
Modified the way the device responds to SCSI Inquiry commands.

Version 0.0.0.109: External Evaluation Build.
Adjusted the Secure Digital timeout to accommodate slower SD cards.
Fixed the bug causing the 210 to not suspend properly. This eliminates the need
for SUSPEND ON and SUSPEND OFF versions of the firmware.
Modified the Write210 application to use the new eeprom.dat signature, and
preserve all of the Write210 non-editable bytes.
Fixed bug in the descriptors which caused the wrong USB revision to be reported.
Fixed bug which may have caused data corruption during writes to Smart Media
cards.
Fixed bug causing the WHQL USB Manual Interoperability test to fail.
Fixed bug causing the activity LED to remain lit after the device is suspended.
Added code to implement SM 1 bit ECC correction at high speed.

Version 0.0.0.116: External Evaluation Build.
Added two new fields to the NVStore data area, “Inquiry Manufacturer ID String”
and “Inquiry Product ID String.” These two fields can be used in place of the USB
descriptors, “Manufacturer ID String” and “Product ID String” by setting the
attribute bits (See the section on programming the NV Store data).
Released a new MacOS 8.6 and 9.x mass storage class driver with multi-LUN
support.
Fixes bug where single bit error correction was not reporting an error at full speed.

Version 0.0.0.125: External Evaluation Build.
Added additional functionality to control the state of the activity LED during
suspend.
Fixes a which caused corruption of Memory Stick media under certain conditions.
Improves 1 and 2-bit error handling at high speed.
Fixes a bug which caused the 210 to sometimes not enumerate properly on OHCI
host controllers.
Fixes a bug which caused SD overruns on some systems.
Released version 2.10 of the Win2K MSC driver which fixes the bug causing
device 10 errors after resuming from suspend/hibernate with the Setlcon
application installed.
Released a new version of the MacOS 8.6-9.2 MSC driver which features custom
icon replacement capability.

Version 0.0.0.129: External Evaluation Build.
Fixed the Smart Media SSFDC compliance issue for block address error
correction.

Firmware Version History (cont.)

Version 0.0.0.160: External Evaluation Build.

Version 0.0.0.163: External Evaluation Build.

Version 0.0.0.197: External Evaluation Build.

Firmware:

USB97C210 Software Release Notes
Page -5 -

Added LUN configuration capability by setting bytes in the non-volatile store
data.

Added Icon Sharing capability to allow more than one media type to share a
common icon. Typical applications for icon sharing would be devices with
multi-card adapters.

Added a bit in the attribute bytes to turn off Smart Media CIS checking. This
will allow the USB97C210 to work with hon-compliant Smart Media cards.
Added support for MS-Pro media. (Serial compatibility mode).

Modified the Windows 2000 driver (v2.30) to only display one entry in the
usb system tray left click safe removal dialog.

Fixed a bug causing the Kingmax 8MB and Lexar 512MB (24x) Compact
Flash cards to not work properly with the USB97C210.

Fixed a bug in the MacOS 8.6-9.2 driver which caused extra icons to be
displayed when using the Icon Sharing functionality of the 210. If you are
using lcon Sharing, you should use the updated MacOS 9 driver.

Modified the Setlcon application to use a new architecture. The changes
correct the problems users were experiencing with icons not appearing in
Windows XP (SP1).

Fixed a bug which caused writes to IBM Microdrives to be extremely slow.
Added a bit in the NVStore Attribute data to turn on Compact Flash
compatibility mode. This will force CF cards to operate in slow PIO-0 mode
only. Turning this feature on will lower the performance of CF cards, but may
allow some non-compliant cards to work with the USB97C210.

Modified the schematics in the release notes to show the proper hardware
implementation for using GP105 as an SD card insert indicator.

Fixed a bug causing MMC transfers to fail if the host was suspended at any
time during the transfer.

Modified the behavior of GP107 to drive an LED by going high when the
device is in an unconfigured or suspended state.

Fixed a bug causing the device to become unresponsive if MS Pro media was
removed during a format operation.

Fixed the delay time in waliting for the clock to stabilize. It was in the range
of 48.3 - 298ms, but has been corrected to be from 7.2 to 29ms.

Modified the function of the code such that when VBus is absent or the
device is suspended, all flash interfaces are un-powered and set to a high
impedance state. This is for battery powered devices, where the app needs to
relinquish control of the flash interface and go to sleep, while the kernel is
still not suspended.

Fixed a bug which caused the 210 to become unresponsive when used with
certain hosts after several reboots.

Fixed a bug which caused the media activity LEDs to not initialize properly
after resuming from suspend.

Applications:

Modified the KillReg utility to accept more than a single PID in its ini file.
Included a Windows 98 safe removal utility (98SafeRemove.exe) that detects
the plug / unplug of SMSC USB Mass Storage Devices that utilize the SMSC
Windows 98 MSC driver.

Included a new streamline version of the Production Line Test Utility called
“QuickTest”. QuickTest is substantially faster than the PLTU because it uses
the SMSC filter driver to bypass the Windows file system. The test performs
quick read/write tests of up to (4) USB97C210 devices at a time in a
production line test environment.

Fixed a bug in the Windows 2000 multi-LUN mass storage class driver which
caused a blue screen after a reboot when used with OMI’s EHCI drivers.

0.0.0.216: External Evaluation Build.

Firmware:

Applications:

0.0.0.250: External Evaluation Build

Firmware:

USB97C210 Software Release Notes
Page - 6 -

Modified the firmware to improve the transfer speeds of certain high-end
Lexar Compact Flash cards.

Fixed a bug in the Compact Flash media identification code, related to
identifying the media supported PIO mode of operation and setting the right
mode on the host.

Fixed a bug with Memory Stick media surprise removal during a read or
write.

Fixed a bug with Secure Digital media surprise removal during a read or
write.

Modified Memory Stick 2 bit ECC error checking to work properly with non-
compliant cards.

Fixed a bug which caused the activity LED to come on and remain lit when
power was applied to a self-powered 223 device, while the USB cable was
detached.

Fixed a bug which caused the unconfigured LED (GP107) to not function
correctly under Windows 98 with certain EHCI drivers.

Fixed a bug which caused the Secure Digital LED to flash briefly during
enumeration.

Added support for Sony High Speed Memory Stick.

Added support for xD Picture Cards.

Added support for the Sony Memory Stick Format Application.

Modified the Setlcon utility (v1.2.0.6) to fix a bug which caused a “No disk
in drive” error message to appear in Windows XP SP1 under certain
conditions.

Modified the Windows 98 Safe Removal Utility (v1.0.0.4) to display more
descriptive error messages when an error occurs while stopping the device.
Modified the Attributes Calculator Utility (v.08) to allow both encoding and
decoding of attribute values. Please note that you must have the Microsoft
Dot Net framework installed on your PC in order to run the Attributes
Calculator utility.

Fixed a bug in the SMSC FormatPro utility (1.0.0.4) which prevented it from
recognizing multiple devices in Windows 98 and Me.

Added a Japanese version of the SMSC FormatPro utility to the application
software distribution package.

Fixed issue with using write protected SD cards in a CF to SD adapter.
Added support for xD picture card 9A command for compliance to the xD
specification.

Note: This feature is available only when GP104 is used to identify the xD
card. The xD card socket must have two active-low card detect (CD) signals.
XD uses the Smart Media (SM) interface and one CD is connected to the
SM_CD# pin of USB97C210 to identify card insertion/extraction. The other
CD signal is connected to GP104 via a 10K resistor to distinguish the xD card
from the SM card. A 330K pull-up is also required at this CD pin. GP104 is
now shared for EEPORM EE_DIO and xD card identification.

Smart Media 1 bit ECC errors were not handled properly depending on
location in block. This has been corrected in this release.

Fixed a bug which prevented the 210 from reading certain Memory Stick
cards that contained block errors.

USB97C210 Software Release Notes
Page-7 -

0.0.0.250: External Evaluation Build. (Continued)

Applications:

Additional mapper code changes to improve compliance and reliability were

added as below:

- Fixed an issue in Memory Stick so that when the device starts writing
from the first sector of a block (e.g., xx00H, xx20H, xx40H), the Update
Status of the destination physical block remains set.

- The exit condition on the search for alternate blocks, for Memory Stick
was incorrect and is now fixed.

- Fixed 1 and 2 bit ECC error on the second or later page in Memory Stick.

- Fixed issue on Memory Stick such that if an ECC error was on the last
page of a split, but not the last page of a transfer, this would cause the
fmc_xfer to become unresponsive, until the host issued a USB reset.

- Changed firmware to determine write protect status before attempting to
pre-erase blank blocks when building a zone map. This caused Memory
Stick to report “CRC Error” on media even after the write protect switch
was moved to the unlocked position if Memory Stick media was
originally inserted with the media locked.

Added an attribute bit (Byte 2, bit 5) to make GPIO1 function as a common

media LED.

Added an attribute bit (Byte 2, bit 6) to perform full speed 1-bit ECC error

correction for Smart Media cards in software. Previously the 210 was unable

to correct 1-bit ECC errors during full speed operation. Please be aware that
setting this bit will result in about a 50% performance drop for Smart Media
transfers because of the processor overhead involved in doing ECC checking.

Added a new attribute bit (Byte 2, bit 7) to allow the device to skip the status

byte check in the extra data area for Smart Media cards. This speeds up the

map rebuilding process which corrects the hiccups in MPEG playback on SM
cards. Warning: Setting this bit makes the device non-compliant with the

Smart Media specification.

Fixed a bug which caused LUN ID strings to be misreported. This only

occurred under certain LUN configuration and icon sharing schemes when

media was inserted at the time of enumeration.

Fixed a bug in self powered operation which caused the activity LED to stay

on when D+ and D- were disconnected but VVBus was present.

Added support for ST M93C66-W EEPROM and improved descriptor update

time.

Added a small delay to the enumeration time for NO.EEPROM versions of

the firmware to correct an issue where the device could enumerate yellow

banged under certain configurations behind full speed hubs.

Fixed a bug which caused NV Store updates to occasionally fail with the NO

EEPROM version of the firmware.

Modified the QuickTest application (v1.0.0.3) to include a “Stop Test” button
which allows the user to cancel any tests in progress.

Modified the software installer to provide multi-language support. The
included software installer now supports the following languages: English,
Chinese, Danish, Dutch, French, German, Italian, Japanese, Korean, Polish,
Russian, Spanish, and Swedish.

Added two new DOS utilities: EPRMUPDT .exe which is used to program the
NVStore, and CheckROM.exe which is used to verify the firmware revision
and check the validity of the NV Store data.

Included an updated version of the Attributes Calculator (v.11) which adds
definitions for the new attribute bits.

Modified the KillReg utility (v1.0.0.4) to work with all operating systems.
Now an OEM can call KillReg at the beginning of an installation to eliminate
residual device entries from the registry.

USB97C210 Software Release Notes
Page - 8 -

Hardware Errata

SD Modification: The following modifications must be made to the USB97C210 Evaluation Board Assy 6238 Rev A. (if the
board you have does not already have them) in order to ensure compliance with the USB spec, and proper operation of the
firmware. Rev. B boards already have this modification and need not be changed.

1. Add a jumper wire on the backside of the SD connector. A wire (see red wire in photo) is added between the two
large tabs on the back of the connector bypassing the insert switch.

2. Remove resistors R12, R13, R98, R99, and R100.

Smart Media Write Protect Modification: Some of the USB97C210 evaluation boards do not have the write protect
detection switch hooked up. To enable the switch and provide for Smart Media write protect detection, the following hardware

modification must be made.
1. Attach a wire from either one of the write protect lines on the front of the Smart Media slot, to a ground on the board.

2. Attach a 2" wire from the other write protect line, to the SM_nWPS (pin 91) line coming from the chip. (See Photo)

USB97C210 Software Release Notes
Page -9 -

Hardware Errata (cont.)

SD Modification (GPIO 5 Used as SD Card Detect): By setting bit 2 of byte 1, GPIO5 can be made to function as an SD
card detect pin. SMSC customer evaluation boards will have to be modified as shown below to utilize this feature. The first
diagram below shows the SD_WP~ pin connected to a switch on the side of the SD socket which we call the WP Switch. This
input is pulled high when a non write protected card is inserted. A pull down resistor causes this pin to go low when a write
protected card is inserted (switch is open). A switch commonly available on SD sockets which we call the CD Switch is
closed when a card is inserted. Since the firmware is designed to detect a low as a card detect signal on GPIO5 an inverter is
used as shown below.

+3. 7
il 0 Swich 14
Tz - Dﬂ —
2
| R1t TeHCOL
kK
12N
- 1%
} [
NP SNk =
2 &0_np~ <
A7 =03
i) A
I
o 5 - -
S0_CMD 2 t oCo cz
2 =0_CMD [e11 1] g — 1
= S0 CLK 5 a = IWF —— O.nF
2 S0_CLK | CLE : i=N s
=000 i % 1%
T 01 - § ™ ™
T 02 5] DAT!]
T 1] DaTz
COMOATD o
S0.0
2 =0_DpgQ £ 1] Detect =
2 S0P~ < — }3 LIRSt 4
[T
3
== R
e S0P
Toig 7 N _
= RiL
uta b @S0 Socket 0ok
1an
2GRDS < 2 1 - &
1k o
1an =
TIHCO! T4

USB97C210 Software Release Notes
Page - 10 -

The Non-Volatile Store Data

The Non-Volatile Store contains user modifiable data that is used by the device during operation. Some of the values that can
be modified in the NVStore data include the serial number, VID/PID, Manufacturers ID String, Product ID String, LUN ID
Strings, the modifiable device desciptors such as bmAttributes and MaxPower, and other modifiable bytes which customize the
operation of the firmware.

The NVStore data is programmed in the device by using a text file “EEPROM.DAT”, which is modified and then written to
either the EEPROM, or directly into the FlashROM if no EEPROM is present. (Currently, the only Flash ROM supported for
NVStore programming is the SST39VF010.) A complete list of the user modifiable data in the EEPROM.DAT file is included
in this document. (See the section entitled “Sample EEPROM.DAT File”)

SMSC provides two utilities, the DFUTest application, and the Production Line Test Utility, both of which are capable of

programming the NVStore data over the USB. Both applications also contain DAT editors that allow you to create the
eeprom.dat file.

Using Flash ROM to Store the NVStore Data

As a cost reduction measure, you can eliminate the need for a serial eeprom in your device by using the SST39VF010 Flash
ROM, and the “NO EEPROM?” version of the USB97C210 firmware. The NO EEPROM firmware uses a portion of the
memory storage area in the SST39VF010 Flash to hold all of the NVStore data. Currently, the SST39VF010 is the only chip
supported by the NO EEPROM firmware. If you have a requirement to use another flash, please contact SMSC Sales to
inquire about adding support for your chip.

Using the DFUTest Sample Application

To use the DFUTest application to create the eeprom.dat file, and program the USB97C210 device, the following files are
required:

[~ Auto increment serial number

1. The DFU application- (dfuTest exe) x
2. The driver library- (drvlib.dll) Took About
3. The DFU driver- (smscdfu.sys)
. EEPROM/FLASH Descriptors Update
4, The DFU installation inf- (smscdfu.inf) C"C';_ t_h'; b;tmgbf'w l‘lf";e".PD“ _ PR
. . are finished updating all devices. A i
5. (optlonal) The DFU uploadable firmware- o] qJ Click to update the device's descriptars.
(fmc.dfu) For DFU firmware upgrade only. Thiz will restare the native
Wiindoves Mazs Storage Class .
Driver. Update Descriptors

Before using the DFUTest application, you must add a
VID/PID entry for your device to the “smscdfu.inf” file.
This is required for the DFU driver swap to occur properly.

Restore Windows Driver |

Farmat HAMD Flazh
To start the dfuTest application, simply double click the Click ta farmat MAMD Flash drive.

“dfuTest.exe” executable. Once the application starts, you
will see the user interface on the right.

Firrnware Lpdate

Click, to update the device's fimmmare,

Eraze Media Farmat Drive |Update Firmware |

To create the eeprom.dat file which will contain the data to [™ Erase media before formatting
be programmed in the non-volatile store area, select

“Tools” > “DAT Editor” > “New File” from the

application menu.

———

10

Using the DEUTest DAT Editor

USB97C223 Software Release Notes

Page - 11 -

When creating a new eeprom.dat file in the DFUTest DAT Editor, the dialog to the right appears. All fields should be filled out
completely, and the file should be saved using the “Save” or “Save As” buttons.

Attribute Bit Definitions

N

VID- Vendor ID (2 bytes): Unique for every vendor. Assigned by the USB Implementers Forum.

PID- Product ID (2 bytes): Unique to the product. Assigned by the Vendor.

Attributes (4 bytes): Only the 1%and 2™ Bytes are used. The correct attribute value for

your device can be determined using the “Attributes Calculator” utility provided
by SMSC. The bit definitions are as follows:

Byte 1, bit 0: Smart Media Timing (Not Used for the USB97C210)
1 - NAND flash chips will use the slower, smart media compatible r/w
cycle time. This is the recommended setting.
0 - NAND flash chips will use the faster 50ns r/w cycle timing for chips that are
capable.
Byte 1, bit 1: Enumerate as Hard Drive or Removable Media (Not Used for the
USB97C210)
1 (default) - NAND flash hard drives always enumerate as removable media.
0 - NAND flash hard drives enumerate as removable disks when write protected,
and as fixed disks when not write protected.
Byte 1, bit 2: Behavior of GPIO 5
1 - Use GPIOS5 as an SD card insert indicator.
0 (default) - Use GPIO 5 as a High Speed indicator.
Byte 1, bit 3: Behavior of iSerial byte in device descriptor
1 - Always report iSerial as zero in the device descriptor.
0(default) - Report non-zero iSerial in device descriptor if serial number is valid.
Byte 1, bit 4: Use the Inquiry Manufacturer and Product ID Strings
1 — Use the Inquiry Manufacturer and Product ID Strings.
0 (default) - Use the USB Descriptor Manufacturer and Product ID Strings.

DAT Editor - EEPROM.DAT

File

r~DAT Editor

PID: G| 20FC

WD DH|E|424
Language ID: UxIUdUS

I anufacturer Sting; ISM sC

Altributes: 0x |00000000
Senal No: UKIWF?T???T???

Product String:

Fomat Signature: | atal =

|USB 2Flash Media Device

- Fields For Format “atal

bMaxPower: Ox|30 Blink Intervak 0x|05 Blink Duration: UKIUZ

brotrts [E] Ln0iD:JCF LM
Ln2iD: SM Lunai: [SDAMME
Inguiry M anufacturers 1D String: IW
Inguiny Product ID Skring: IF

04 CF Lun # : Dxlﬁ MSLunﬁ:Dle

SDUMMC B: 0w |nz Sk Lun #: 00|03

MNAND Profile: Ox |FFFF NAND HD # UKIFF

Number of lcons
to Display:

Save I

Save As | Exit

Byte 1, bit 5: Set the state of the activity LED when suspended, regardless of its idle state.

1 — The activity LED GPIO is set to High when suspended.
0(default) - The activity LED GPIO is set to Low when suspended.
Byte 1, bit 6: Reverse SD Card Write Protect Sense

1 - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low
0 (default) - SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high

Byte 1, bit 7: Make SD Cards Write Protected Always (Read Only)

1 - SD cards will always be write protected, regardless of the state of the card's write protect switch
0 (default) - SD cards will only be write protected when the write protect switch on the SD card is engaged

Byte 2, bit 0: Smart Media CIS Checking

1 - Ignore CIS check for Smart Media to allow the USB97C210 to work with non-compliant cards.

0(default) — Enforce Strict CIS checking for Smart Media cards.
Byte 2, bit 1: Idle processing (Not Used for the USB97C210)
1 —idle processing on. Device will perform required erase operations while idle.

0(default) — idle processing off. Device will wait until a write is received before doing required erase operations.
Byte 2, bit 2: Compact Flash Compatibility Mode (Note: This bit should no longer be used. It was originally added to allow
compatibility with off brand Compact Flash cards that the 210 was misidentifying. This bug has subsequently been fixed,

eliminating the need to use this compatibility bit.)
1 — Compact Flash will operate in slow P10-0 mode only.

0(default) — Compact Flash will operate at the fastest mode the card reports it can support.
Byte 2, bit 3: Change the Device Response to a Get Status Command (Not Used for the USB97C210)
1 — Device will report itself as SELF POWERED in response to a GET STATUS from the host.
0(default) — Device will report itself as BUS POWERED in response to a GET STATUS from the host.
Byte 2, bit 4: Change the USB Version the Device Reports to the Host (Warning: Setting this bit will result in the device being

non-compliant with the USB 2.0 specification.)
1 — Device will report itself as USB version 1.1 in the bcdUSB device descriptor.

0(default) — Device will report itself as USB version 2.0 in the hcdUSB device descriptor.

Byte 2, bit 5: Use a Common Media Insert / Media Activity LED.

1 — The activity LED will function as a common media inserted/media access LED.

0(default) — The activity LED will remain in its idle state until media is accessed.

o s

10.

11.

12.

13.
14.

15.

16.

USB97C223 Software Release Notes
Page - 12 -

Attribute Bit Definitions (cont.)

Byte 2, bit 6: Perform Software 1-bit ECC Error Correction on Smart Media.
1 — The device will perform Full Speed 1-bit ECC error correction in software for Smart Media transfers. Please be warned that
setting this bit will result in approx. 50% transfer performance drop for Smart Media due to the processor overhead required to do
ECC checking in software.
0(default) — The device will not correct 1-bit ECC errors during full speed Smart Media transfers.

Byte 2, bit 7: Bypass Status Byte Check for Smart Media Cards.
1 — The device will bypass the Smart Media status byte check in the extra data area, speeding up the map building process. Caution:
Setting this bit makes the design noncompliant to the Smart Media specification.
0(default) — The device will not bypass the Smart Media status byte check. (Smart Media spec compliant).

All other bits and bytes are reserved and should be set to 0.

Language ID (2 bytes): 0409 is the Language Code for English. Other language codes may be found in the USB 2.0 specification.
Serial Number (12 Hex Digits Max): Unique to each device. The serial number can be up to 12 hex digits, written in the eeprom.dat
file as unicode.
Manufacturers String (28 Characters Max): Used to hold a descriptive manufacturer string.
Product ID String (28 Characters Max): Used to hold a string to identify the product. The user will see this string during the USB
enumeration process in Windows.
Format Signature- Do not change. For the USB97C210, this should remain “atal”.
bmAttributes (1 byte)- Per USB Specification.

80 — Device is bus powered.

CO — Device is self powered.
MaxPower (1 byte)- Per USB Specification. Do not set this value greater than 200mA.

01-2mA

31-98mA
GPIO 0/1 LED Blink Interval (1 byte)- Programmable in 10ms intervals. Hi bit indicates idle state: 0-Off, 1-On. The remaining bits
are used to determine the blink interval up to a max of 128 x 10ms.
GPIO 0/1 Blink After Access Time (1 byte)- This byte is used to designate the number of seconds that the GP10 0 LED will continue
to blink after a drive access. Setting this byte to “05” will cause the GP10 0 LED to blink for 5 seconds after a drive access.
LUN ID Strings (7 bytes each)- There are four LUN ID strings corresponding to LUNs 0,1,2 and 3.
Inquiry Manufacturer (8 Bytes) and Product (5 Bytes) ID Strings: If bit 4 of the 1% attribute byte is set, the device will use these
strings in response to a USB inquiry command, instead of the USB Descriptor Manufacturer and Product 1D Strings.
Number of Icons to Display, CF Lun #, MS Lun#, NAND Lun #, SD/MMC Lun #, SM Lun #- These bytes are used to specify the
number of LUNSs the device exposes to the host. These bytes are also used for icon sharing- Assigning more than one LUN to a single
icon. (See the section of this document entitled “LUN Configuration and Icon Sharing.”)
NAND Profile (2 Bytes): (Not Used for the USB97C210) This is where the NAND performance profile is specified for controllers that
use them.

USB97C223 Software Release Notes
Page - 13 -

The Attributes Calculator

SMSC provides a small utility called the Attributes Calculator which can be used to calculate the attribute values for your
device. In order to run the utility, you must have the latest Microsoft NET framework installed on your PC. The NET
framework can be obtained through a normal Windows Update, or you can download it manually from the Microsoft website
at: http://msdn.microsoft.com/netframework/downloads/howtoget.aspx . To use the utility, simply select each of the Attribute
byte tabs and check the boxes for the bits you want to use. The attribute bytes are calculated in real-time and displayed at the
top of the application. If you hover the mouse pointer over any of the bits, a complete definition and option summary is
displayed on the right.

RISk
—Attribute Byte Yalues Filter by Chip: Im 'l

Byte 1 Byte 2 Byte 3 Byte 4
oo [o0 oo |00

— Attribute Hex ¥Yalue

0x00000000

Attribute Byte 1 | Aftribute Byte 2 I Aftribute Byte 3 I Aftribute Byte 4

—Attribute Byte 1
[Use Slow NAND Flash Media Timing
[Enurnerate MAND device as Bemovable Media
[T Use GPIOS as an 5D Card Insert Indicator

[™ Report iSerial Byte a: Zero in Device Descriptor Options:

[Use Inguiny Manufacturer and Product 1D Stings
[Setthe &ctiviy LED GPIO to High 'When Suzpended
[Reverze SO Card “Wiite Protect Sense

[T Make SD Cards ‘white Protected Always

USB97C223 Software Release Notes

Programming the NVStore Data

Once the eeprom.dat file has been created with the DFUTest application, you
are ready to program the NV Store data into your device.

E7 SMSC Descriptor Update / Firmware Update for

Todls About

Click the button below when vou
are finished updating all devices.

This will restore the native

‘Windows Mass Storage Class
Driver.

Restore Windows Driver

Page - 14 -

x|

- EEPROMAFLASH Descriptors Update———

Click to update the device's descriptors,

Update Descriptors

[~ Auto increment serial number

Farmnat MAMD Flash
Click to format MAND Flash drive.

Eraze Media Format Diive

i Firmysare Uipdal

Click to update the device's firmware.

Update Fimware |

[~ Erase media before formatting

Once the eeprom.dat file is complete, press the “Update Descriptors” button on the
DFUTest application to program the NV Store data. A dialog like the one on the
right will appear. Enter the current VID/PID/DID for the device, browse to the path
of each of the three required files, and select “OK”. The operation will report
completion once the data has been programmed. Note that you can also use the
USB97C210 Production Line Test Utility to program and configure multiple 210
devices at once. See the section of this document entitled “Using the Production
Line Test Utility.”

The DFUTest application can also be used to upgrade the firmware for the
USB97C210 device by pressing the “Update Firmware” button. For complete
information on performing a device firmware upgrade (DFU) operation, see the
section of this document entitled “Using Device Firmware Upgrade.”

Exit
51
- Setting

WID: Ox|IEEE PID: 0x/0000 DID: 0xJo000

Path to “Smscdfuinf" :

| Erowse

Path to "Smscdfu sps"

| Eromss

Path to "Drvlib.dll* :

| Browse

2% SMSC Descriptor Update / Firmware Update for

Tools About

Click. the buttan below when you
are finished updating all devices,

This will restore the native:

‘windows Mass Storage Class
Drriver.

Restore ‘Windows Driver

Format HAMD Flash

- EEPROM/FLASH Descriptars Update ———

Click to update the device's descriptors.

Update Descriptars

[Auto increment serial number

Click to format MAND Flash diive.

Erase Media Fomat Diive

~ Firmware Updat

Click to update the device's fimware.

Update Firmware |

[~ Erase media before formatting

Exit

Sample EEPROM.DAT File

USB97C223 Software Release Notes

Page - 15 -

Below is an example of the contents of the “EEPROM.DAT?” file, displayed here in columnar format for clarity’s
sake. For each of the string descriptors, the first byte is the length of the descriptor including the length byte itself. The next
byte is the “03” String ID, followed by the string itself. For example, the string “SMSC” would be “0A 03 53 00 4D 00 53 00
43 00 00 00”. Note that “0A” is the length, followed by “03” the String ID, and then the SMSC string in Unicode, terminated

with the NULL character “00”.

1A // length of serial
03 // string descriptor type
30 // unicode serial number string descriptor

24 // vid lo

04 // vid hi

FC // pid lo

20 // pid hi

04 // langid length

03 // descriptor type: string

09 // langid lo

04 // langid hi

0A // unicode manufacturer's string descriptor

00 // attributes lo word lo byte
00 // attributes lo word hi byte
00 // attributes hi word lo byte
00 // attributes hi word hi byte
00 // password

80 // bmAttribute - 0xCO (Self) or 0x80 (Bus) only
30 // bMaxPower - 1 <= bMaxPower <= 0x31

05 // GPIO 0 LED blink interval in mult. of 10msec - hi bit indicates idle state: 0-off, 1-on

05 // number of seconds to keep GPIO 0 LED blinking after access

43 // ascii, not null terminated, logical lun 0 id string
46 //ICF

53 /IMS

4D //ISM

53 // ascii, not null terminated, logical lun 4 id string
44 //SD/MMC

FF // max number of luns

FF // CF lun number

FF // MS lun number

FF // SM lun number

FF // SD/MMC lun number

FF // NAND lun number

FF // reserved - to set clock speed - edit manually
FF // NAND profile hi byte

FF // NAND profile lo byte

FF // reserved - fpga, pwr_mgmt flags - edit manually
FF // reserved

61 // signature

74

61
31

LUN Configuration and Icon Sharing

LUN Confhquration

LUN (Logical Unit Number) is the term given to each available media
type in the USB97C210. The USB97C210 has a total of 4 LUNs available
for use: Compact Flash, Memory Stick, Smart Media, and Secure
Digital/Multimedia Card. OEMs can specify the number and order of
LUNSs exposed to the user by setting 5 bytes in the NVStore data. (See the
section entitled “Using the DFUTest DAT Editor™).

Example: The example on the right shows the correct settings for a 210
device that exposes icons for MS, SM and CF in that order. Note the
following bytes:

Number of Icons to Display: “03” (The user will see 3 icons)

MS LUN #: “00” (Memory Stick will be the 1% icon displayed)

SM LUN #: “01” (Smart Media will be the 2" icon displayed)

CF LUN #: “02” (Compact Flash will be the 3 icon displayed)
SD/MMC LUN #: “FF” (An icon for SD/MMC will not be displayed)

Note: LUN numbering always starts at “00”.

Icon Sharing

In addition to LUN configuration, the USB97C210 can be further
customized to allow more than one LUN to share an icon. This
functionality would most likely be used for devices that contain multi-card
adapters (adapters that can read more than one type of card.) So if you
wanted to use a “5-in-1" or a “6-in-1" adapter, the USB97C210 could be
configured to only display a single icon to the user, rather than an icon for
each individual media type. Alternatively, if you wanted to use a “4-in-1”"
adapter for Memory Stick, Smart Media, Secure Digital and Multimedia
Card, but have a separate adapter for Compact Flash, you could configure
the USB97C210 to display 2 icons to the user (one for the 4-in-1 adapter
and one for the Compact Flash) as shown in the example on the right.

Example: The example on the right shows the correct settings for a 210
device that exposes 2 icons: 1 for (CF) and 1 for (MS, SM and SD/MMC)
in that order. Note the following bytes:

Number of Icons to Display: “02” (The user will see 2 icons)

CF LUN #: “00” (Compact Flash will be the 1* icon displayed)

MS LUN #: “01”

SM LUN #: “01” } (These media will all share a single icon)
SD/MMC LUN #: “01”

USB97C210 Software Release Notes

Page -16-
File
r— DAT Editor
VID: 050426 PID: 0)J20FC | Attibutes: Ox 00000000

Language [D: D:-:ID4DS Serial Nao: Dgl????????????

M anufacturer Sting: ISMSE

Product String:

Farmat Signature: Iata1 YI

JUSE 2 Flash Media Device

r Fields For Format "atal"

bk auPawer: DHIBD Blirk Intereal: DHIDS Blink Duratior: DH|D2

bmétib: [a0 =] Lund ID: [CF

Lun2 ID: |5t Lun3 ID: [SDMME

Inguiry M anufacturers 1D Sting: ISMSC
Inquiny Praduct 1D String: IUSB 2

CFLuntt: 02 |0z MSLunﬁ:DHIDD

SD/MMC #: 02 IFF SM Lun #: UH|D1

MNAMD Profile: 0x IFFFF MNaWD HD #: 0= IFF

Lun ID: [MS

Murnber of lcons
to Display: I03

Save I

Save As | Exit

DAT Editor - EEPROM.DAT

File

— DAT Editor

WD D:-:I 0424
Language 10: DH|U4US

|sMsC

PID: Oxf20FC

Attributes: 0w | 00000000
Serial Ma: O I????F"???????

M anufacturer String:

Praduct String:

Format Signature: I atal w2 l

|UUSE 2 Flash Media Device

r— Fields For Format atal"

b axPower: UK|3D Blink Interval: DHIDE Blink Duration: Ox| 02

bottiic: B Lun0iD:[CF Lumtim:MS
Lund |D: ISM— Lun3 ID: IW

Inguiry Manufacturers 1D Sting: IW

Inquiry Product |0 String: lr

CFlun#: O« |ggp MS Lund: DHID‘]

SM Lun & : DHID]

NAND HD #: D= |FF

Murber of lcons
to Display: I02

SDAMMC 80 Ox |01

MAND Profile: 0w IFFFF

Save I

Save b | E it

USB97C210 Software Release Notes
Page -17-

Using Device Firmware Upgrade (DFU)

Overview

Device Firmware Upgrade (DFU) is the process by which device firmware is updated through a standard USB cable,
eliminating the need to remove, reprogram and replace flash memory. This operation is accomplished by placing special code
into the chip at the time it is initially programmed. This code can then later be called upon to essentially change the USB
device into a flash programmable device. Then new firmware can then be uploaded to the device and reprogrammed into the
flash. Once the operation is complete, the device configures itself back to a normal USB device and begins utilizing the new
firmware.

SMSC’s Device Firmware Upgrade (DFU) package gives manufacturers the ability to easily utilize DFU to
dynamically update the firmware and descriptor information in their devices. This allows for in circuit programming of new
device firmware both on the assembly line, and by the end user in the field. This affords both the manufacturer and the end user
a great opportunity to utilize the feature enhancements and bug fixes of new code immediately once it becomes available.

In order to help customers evaluate the DFU technology, SMSC provides a DFU package that consists of the DFU
driver, device firmware, sample DFU applications and source code, and a DFU driver API which customers can use to quickly
develop custom DFU applications. This document serves to describe the use of these tools, and the implementation of Device
Firmware Upgrade in a typical device application.

Files Required for DFU

The following files are provided for DFU evaluation:

dfuTest.exe —A sample DFU application which demonstrates the use of the API and the procedure for updating the firmware
and NVStore data.

drvlib.dll —-A dynamic link library loaded with “smscdfu.sys” which handles all of the non-DFU specific operations such as
PNP message handling and basic WDM and USB support.

smscdfu.sys -This is the DFU driver which is loaded prior to performing a firmware or eeprom update operation. It is
responsible for handling the DFU specific function calls from the DFU application.

smscdfu.inf —The file responsible for loading the “smscdfu.sys” DFU driver. The contents of this file should never be altered.

eeprom.dat —A text file containing the changeable descriptor information used to update the NV Store. This file can be created
and edited in the DAT Editor (under the Tools menu) in the DFUTest application.

hex2bin.exe -A batch capable utility that converts INTEL HEX, MOTOROLA'S', or TEKTRONIX HEX files to Binary
Format.

dfu.exe -A utility used to add, remove, or check for the presence of a DFU file suffix. Any firmware image that is to be
uploaded to a device via DFU, should contain a valid DFU file suffix.

dfu.hex -The DFU execution code that is inserted into the lower 64kb of a 128kb flash when it is initially programmed. This
hex file is converted to a 64kb binary file with the “hex2bin.exe” utility, and then appended to the 64kb “fmc.bin” file to create
the 128kb flash image. (Included with the USB97C210 firmware).

fmc.hex -The USB97C210 device firmware that is inserted into the upper 64kb of a 128kb flash when it is initially
programmed. This hex file is converted to a 64kb binary file with the “hex2bin.exe” utility, and then appended to the 64kb
“dfu.bin” file to create the 128kb flash image. (Included with the USB97C210 firmware).

fmc.dfu -A firmware image that can be uploaded to the device. This file is created by the user. This document explains in
detail how to make downloadable DFU images through the use of the “DFU.exe” utility, which appends a DFU file suffix to
the firmware file to be uploaded to the device. (This file is created by the user).

Application Source Code -All of the source code for the dfuTest sample application, as well as the DFULIB.LIB link library
used to create custom DFU applications.

USB97C210 Software Release Notes
Page -18-

Creating the 128KB DFU Capable Flash Binary “both.bin”

128KB Flash EEPROM

In order to prepare a device for DFU operation, the flash must be programmed with
both the DFU code, and the normal USB97C210 device code. The device code is
converted to a 64KB binary file, and appended to the DFU code, which has also

been converted to a 64KB binary file. Together they form the 128KB binary file -
which is uploaded to the flash eeprom. When this file is uploaded to the flash, the Device
DFU code occupies the lower 64KB block, and the device code occupies the upper 64K Code
64KB block.

In normal operation, a DFU capable USB97C210 device executes only the device 64K DFU
code in the upper 64KB block of memory. This code allows it to function as a Code
normal USB 2.0 flash media controller. However, when the device is switched to

DFU mode, the DFU code in the lower 64KB block begins executing and the

device ceases to be a flash media device. Essentially, it changes to become an eeprom programming device. In this mode it is
capable of reprogramming the USB97C210 device code in the upper 64KB block of flash memory. Once the operation is
complete, the device switches code execution back to the upper bank and begins operating with the newly updated code. At this
point is ceases to be an eeprom programming device, and returns to being a flash media device.

To create the 128KB DFU capable flash binary file that will initially be programmed into the flash eeprom, you will need two
files:

1) fmc.hex (The device code)
2) dfu.hex (The DFU code)

The “dfu.hex” file is provided by SMSC, and provides programming support for a limited number of eeproms. The “fmc.hex”
file is the standard USB97C210 device firmware. These two files, “dfu.hex” and “fmc.hex,” are both converted to 64KB binary
files with the “hex2bin.exe” utility, and then appended to each other with a DOS copy command. Together they become the
128KB binary file “both.bin”. The procedure for creating “both.bin” is outlined below.

'\\ \
fmc.hex > ‘ fmc.bin >
P ’Iﬂﬂ!’ % p
'\\
dfuhex > ‘ gdf"-hi" >
P m p

both.bin

Note that this entire procedure can be accomplished easily using a simple DOS batch file:

hex2bin -L65536 dfu.hex dfu.bin
hex2bin -L65534 fmc.hex fmc.bin
copy /Y /B dfu.bin /B + fmc.bin /B both.bin /B

USB97C210 Software Release Notes
Page -19-

Preparing a Device for DFU Operation

In order to prepare a device for DFU operation, the flash must initially be programmed with the “both.bin” code. The
“both.bin” file contains both the device code as well as the DFU code. The DFU code must preexist on the flash in order for it
to be cable of receiving a DFU upload. The DFU code remains dormant in the lower 64KB of memory until it is called upon to
perform a device firmware upgrade operation.

Once the flash has been programmed with the “both.bin” file, it may be inserted into the 210’s flash socket in
preparation for DFU operation.

Choosing a Flash Eeprom for Your Device

SMSC provides customers the “dfu.hex” file which supports a limited number of eeproms commonly used with the
USB97C210. At present, the DFU package provides support for the SST39VF010, the MX29F001, the AM29LV010B, the
STM29WO010B, or the STM29F010B flash eeproms. If you wish to use another flash in your device, it would most likely
require some modification to the existing DFU code by SMSC to support the electrical characteristics of the new chip. If this is
the case, please contact SMSC sales to have the project scheduled.

If you do decide to use another flash eeprom, there are a few requirements to look for to make sure it will work with
DFU. First of all it should be 128KB and byte writable. Also, it should have equivalent programming characteristics as the
three supported chips, i.e. block size, erase size, read/write/erase speed, command set, and command address. Provided the chip
meets all of the above requirements, there is a good chance that it will support DFU.

Setting up the Hardware

Either a USB 1.1 or 2.0 controller may be used for the DFU operation, however some USB 2.0 host controller drivers
such as OrangeMicro’s have been found to have flaws which prevent DFU from performing normally. If you are going to use a
USB 2.0 host controller, it is recommended that you use Microsoft’s host controller drivers in order to achieve the best results.
Once the board is attached and powered up, it should enumerate as a normal USB flash media controller. When you see the
drive icon(s) appear, the device is ready. The following section describes the next step in the process, which is setting up the
software application to perform the DFU.

USB97C210 Software Release Notes

Performing a Firmware Upgrade with the DEUTest Application

The following files are required in order to perform a device firmware upgrade:

The DFU application- (DFUTest.exe)
The driver library- (drvlib.dll)

The DFU driver- (smscdfu.sys)

The DFU installation inf- (smscdfu.inf)
The updated firmware image- (fmc.dfu)

agrwdE

* Note that if you also want to perform an update of the
serial eeprom, you will need a 6th file, “eeprom.dat”
which contains the descriptor information for the serial
eeprom. (See the section of this document entitled “The
Non-Volatile Store Area.”

Before using the DFUTest application, you must add a
VID/PID entry for your device to the “smscdfu.inf”
file. This is required for the DFU driver swap to occur

properly.

To start the dfuTest210 application, simply double
click the “dfuTest.exe” executable. Once the
application starts, you will see the user interface on the
right. Pressing either the “Update Descriptors” or

E 5MSC Descriptor Update / Firmware Update for x|

Tools About

Click the button belaw when vau
are finizhed updating all devices.

Thiz will restare the native

Windows hMasz Storage Class
Diriver.

Restore “Windows Driver

Format MAMD Flash
Click to format MAMD Flash drive.

Eraze Media Farmat Drive

Page -20-

— EEPROM/FLASH Descriptors Update

Click. to update the device's descriptors.,

Update Dezcriptors

[~ Auto increment senal number

[~ Erase media befare fomatting

— Firrmware Update

Click to update the device's firmware.

Update Firrmware |

“Update Firmware” button causes the DFU driver to load. This driver is required for the update to take place. From a user’s
perspective, the drive icon(s) will disappear once the device enters DFU mode. The DFU upload process is not completed until
the “Operation Complete” dialog appears. The application itself does not provide any indication of the progress of the update.
A typical firmware update takes about 1 minute to complete. To unload the DFU driver, press the “Restore Windows Driver”
button. This will restore the Windows mass storage class driver, and allow the device to be operated normally. Note: In order
for the new descriptor information to appear, you must unplug the device, and then plug it back into the host. On attach, the

device will begin using the new data in the NV Store area.

USB97C210 Software Release Notes
Page -21-

Creating a DFU Uploadable File

In order for a file to be uploadable via a DFU operation, it must contain a valid DFU file suffix. The DFU file suffix
contains a CRC of the entire file, a DFU signature, and the VID, PID, and DID for the device to be upgraded. The following
table was extracted from the USB Device Firmware Upgrade Specification (Rev 1.0), and shows the composition of the DFU
file suffix.

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC. (Calculation specified in the
following section).

-4 bLength 1 16 The length of this DFU suffix including
dwCRC.

-5 ucDfuSignature 3 uc The unique DFU signature field.

-8 bcdDFU 2 BCD DFU specification number.

-10 idvVendor 2 ID The vendor ID associated with this file.
Either FFFFh or must match device’s
vendor ID.

-12 idProduct 2 ID The product ID associated with this file.
Either FFFFh or must match device’s
product ID.

-14 bcdDevice 2 BCD The release number of the device
associated with this file. Either FFFFh or a
BCD firmware release or version number.

In the SMSC DFU application, DFU downloadable files are given the extension “.dfu”. This is strictly arbitrary; the
files can be of any extension as long as the application is designed to handle them. In order to create your own DFU
downloadable file, you begin with the firmware file that is going to be used to upgrade the device. If the new firmware file is
not already in binary format, it should be converted to binary using the Hex2Bin utility provided. Once in binary format, the
“dfu.exe” utility is used to append a valid DFU file suffix to the firmware file (See the next section titled “Using the DFU.exe
Utility”). Once the DFU file suffix has been added, you may rename the file with a .dfu extension to indicate that it is DFU
downloadable. The entire procedure for creating the DFU downloadable file is summarized below.

fmc.hex fmc.hin fmc.bin finc.dfu
Firmware . Firmware Firmware DFU
File a2 File —_— File —el2TE e | Downloadable
{Hex Format) {Bin Format) (With DFU Suffix) Firmware

USB97C210 Software Release Notes
Page -22-

Using the DFEU.exe Utility

The “DFU.exe” utility can be used to add a DFU suffix to a file, or to check for the presence of a valid DFU suffix on
an existing file. If required, the “DFU.exe” utility can also be used to remove a DFU suffix from a file. The “DFU.exe” utility
is run from a command box in Windows.

The usage of DFU.exe is: DFU.exe <filename> [options]

To check for the presence of a DFU file suffix: DFU.exe <filename>

To remove a DFU suffix from a file: DFU.exe <filename> -del

To add a DFU suffix to a file: DFU.exe <filename> -did <val> -pid <val> -vid <val>
Example of adding a DFU suffix to “fmc.bin”: DFU.exe fmc.bin -did 0x1234 -pid 0x20FC -vid 0x0424

Y WINNTS System32h cmd.exe

E:s>xdfu

usage: dfu fname [options]

to check for a suffix use: dfu fname
to remove a suffix nsze: dfu fname —del
to add a suffix use: dfu fname —did val —pid val —wvid val

o dfu myfile —did Bx@182 —pid 2345 —wid B17

e.g
sets didDevice BxB182 idProduct Bx@72? idlUendor BxBAAF

Once the DFU suffix has been added to the file, the last step is to give it a file extension that matches the type
expected by your application. The dfuTest210 sample application is programmed to accept DFU uploadable files that have the
“.dfu” extension. Finally, to check and make sure that the file has a valid suffix:

[5] O\ WINNT . System 32 cmnd

Liwrdfu fmc.dfu
idDevice:
idProduct:
idUendor: BxB424
valid dfu suffix found

R

Building a DFEU Application

USB97C210 Software Release Notes

Page -23-

SMSC provides the source code for the dfuTest210 sample application, which can be used to template your own
custom DFU applications. However, before developing your own application, you should understand the five steps the
application must perform to complete the DFU operation:

Initiate the update

Perform the update

AR A

Find the device driver attached to the target device’s VID/PID
Exchange the device’s driver with the DFU driver “smscdfu.sys”

Unload the DFU driver and restore the original device driver.

All of the above steps may be performed through the use of calls to the SMSC DFU API, which is made available to
the application when it is linked to the “dfulib.lib” library. A complete list of all the SMSC DFU API function calls, complete
with descriptions, usage and commentary is available in Appendix 1 of this document, “The SMSC DFU API”.

Driver Overview

The DFU application communicates to the
device via 10 Control Calls to the DFU driver
“smscdfu.sys” as shown in the diagram on the
right.

The “smscdfu.sys” driver handles all of the
DFU specific requests, while it passes all other
requests, such as PNP message handling and
USB standard traffic, on to the “drvlib.dll” for
handling.

DFU Application

Exported
DFU driver

drvlib.dil

EHCD.sys
or
UHCD.sys
or
OHCD.sys

il

| |

Host Controller

“ DFU Device

The SMSC DFU API

USB97C210 Software Release Notes
Page -24-

The following are the list of functions available through the SMSC DFU API, with descriptions, usage, parameters,
and commentary describing how they should be implemented in the application. The API is made available to the application
by linking to the “dfulib.lib” library at compile time.

Int32 Start Firmware Update (char* fname, char* infFile,char* sysFile,

char* drvLFile ulntl6 vid, ulntl6 pid, ulntl6 did)

This function allows the updating of the OEM descriptor fields.

Parameters

fname

infFile

sysFile

drvLFile

Comments

The function will
the Windows System directory.

pointer to a
the location

pointer to a
the location

pointer to a
the location
resides.

pointer to a
the location

vendor ID of

complete path that specifies where
of the new firmware .bin file resides.

complete path that specifies where
of the SMSC DFU .inf file resides.

complete path that specifies where
of the SMSC DFU .sys driver file

complete path that specifies where
of the SMSC DFU .dINl driver lib file resides.

the OEM specific device

product 1D of the OEM specific device

device ID of

the OEM specific device

install the INF file specified, copying the needed driver files to
It then initiates a driver swap causing the Windows or

OEM specific .sys driver to be replaced by the SMSC DFU driver. The driver swap is
done is preparation for the next API call which should follow in sequence. This API

call is Firmware Update.

The function returns zero for success, or one of the error codes described in the

dfuDLL.h header Tfile.

USB97C210 Software Release Notes
Page -25-

API Functions

Int32 Firmware Update (void)

This function allows the updating of the existing application firmware.

Parameters

None

Comments

The function then uses the SMSC DFU driver to initiate a DFU class firmware update,
which replaces the existing application firmware with the new firmware. After the
firmware is successfully updated, the APl call End Firmware Update can be used to
restore the original application’s device driver allowing normal operation of the
device to continue.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -26-

API Functions

Int32 End_Firmware Update (char* originalDriverInfName)

This function terminates the updating of the application firmware and restores the
original application device driver.

Parameters

originalDriveriInfName pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enumerate the device in
its original application state (i.e, ‘“usbstor.inf”)

Comments

Call this function when finished updating all device firmware. This function swaps
the DFU driver out of the operating system and restores the original application
device driver. You can plug in other devices for update BEFORE calling this function.
This function serves as the terminating call to updating all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -27-

API Functions

Int32 Start Descriptor Update (char* infFile,char* sysFile, char*
drvLFile ulntl6 vid, ulntl6 pid, ulntl6 did)

This function allows the updating of the OEM descriptor fields.

Parameters

infFile pointer to a complete path that specifies where
the location of the SMSC DFU .inf file resides.

sysFile pointer to a complete path that specifies where
the location of the SMSC DFU .sys driver file
resides.

drvLFile pointer to a complete path that specifies where
the location of the SMSC DFU .dIl driver lib Ffile resides.

vid vendor ID of the OEM specific device

pid product ID of the OEM specific device

did device 1D of the OEM specific device

Comments

The function will install the INF file specified, copying the needed driver files to
the Windows System directory. It then initiates a driver swap causing the Windows or
OEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to send a vendor specific command to the device firmware,
instructing it to rewrite its OEM descriptor table. Upon the next enumeration, the
new OEM descriptors will be exported.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -28-

API Functions

Int32 Descriptor Update (char* buffer,ulnt32 size)

This function allows the updating of the OEM descriptor fields.

Parameters

buffer pointer to a 256 byte buffer that contains
the formatted OEM data fields to update internal descriptors.
This is raw binary data.

size size of the buffer in bytes (256)

Comments

The function will install the INF file specified, copying the needed driver files to
the Windows System directory. It then initiates a driver swap causing the Windows or
OEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to send a vendor specific command to the device firmware,
instructing It to rewrite its OEM descriptor table. Upon the next enumeration, the
new OEM descriptors will be exported.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header Tfile.

USB97C210 Software Release Notes
Page -29-

API Functions

Int32 End Descriptor _Update (char* originalDriverInfName)

This function terminates the updating of the OEM descriptor fields and restores the
application driver.

Parameters

originalDriveriInfName pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enumerate the device in
its original application state (i.e, ‘“usbstor.inf”)

Comments

Call this function when finished updating all devices. This function swaps the DFU
driver out of the operating system and restores the original application device
driver. You can plug in other devices to update BEFORE calling this function last.
This function serves as the terminating call to updating all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -30-

API Functions

Int32 Get _Error_String (Int32 errorCode, char* buffer)

This function terminates the updating of the OEM descriptor fields and restores the
application driver.

Parameters

errorCode the 32-bit signed error code received from any
DFU library function calls.

buffer a minimum of 512 byte buffer for string
storage.

Comments

Call this function to translate an error code received from the DFU library, into a
NULL terminated text string. You must provide 512 bytes of storage for the buffer
parameter.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -31-

API Functions

ulnt32 Get OS Version (char* osString)

This function returns an operating system identification code and string that
specifies which platform the DFU library is running on.

Parameters

osString a minimum of 512 byte buffer for string
storage.

Comments

Call this function to determine which operating system the DFU library is executing
on. This is a utility function that returns a string and code identifier as shown
below. See the dfuDLL.h header file for a complete list of operating system codes.

#define OS_WINDOWS_95 0x00
#define OS_WINDOWS_950SR2 0x01
#define OS_WINDOWS_NT351 0x02
#define OS_WINDOWS_98 0x03
#define OS_WINDOWS_98SE 0x04
#define OS_WINDOWS_NT40 0x05
#define OS_WINDOWS_2000 0x06
#define OS_WINDOWS_XP 0x07
#define OS_WINDOWS_ME 0x08
#define OS_WINDOWS_NEWNTOS 0x09

#define OS_WINDOWS_NEWCONSUMEROS Ox0a

API Functions

Int32 UpdateFirmware

(char* fname,

USB97C210 Software Release Notes

Page

char* infFile,char* sysFile,

char* drvLFile,ulntl6 vid,ulntl6 pid,ulntl6
did,char* originalDriverInfName);

This function allows the updating of the device firmware module.

Parameters

fname

infFile

sysFile

drvLFile

originalDriveriInfName

Comments

pointer to a
the location

pointer to a

the location

pointer to a
the location
resides.

pointer to a
the location

vendor ID of

complete path that specifies where
of the new firmware .bin file resides.

complete path that specifies where
of the SMSC DFU .inf file resides.

complete path that specifies where
of the SMSC DFU .sys driver file

complete path that specifies where

-32 -

of the SMSC DFU .dIIl driver lib file resides.

the OEM specific device

product ID of the OEM specific device

device 1D of

pointer to a

the OEM specific device

NULL terminated string that

describes the file name only (not path)
of the INF file used to enumerate the device
in its original application state (i.e, ‘“usbstor.inf”)

The function will install the INF file specified, copying the needed driver files to

the Windows System directory.

OEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to initiate a DFU class firmware update, which replaces the
existing application firmware with the new Firmware. After the firmware is

successfully updated, the operating system is instructed to swap the DFU device
driver with the original application’s device driver allowing normal operation of the

device to continue.

It then initiates a driver swap causing the Windows or

The functions returns zero for success, or one of the error codes described in the

dfuDLL.h header file.

USB97C210 Software Release Notes
Page -33-

API Functions

Int32 Start Format Drive (char* infFile,char* sysFile, char*
drvLFile ulntl6 vid, ulntl6 pid, ulntl6 did)

This function allows swapping the Mass Storage Class driver with SMSCDFU driver.

Parameters

infFile pointer to a complete path that specifies where
the location of the SMSC DFU .inf file resides.

sysFile pointer to a complete path that specifies where
the location of the SMSC DFU .sys driver file
resides.

drvLFile pointer to a complete path that specifies where
the location of the SMSC DFU .dIl driver lib Ffile resides.

vid vendor ID of the OEM specific device

pid product ID of the OEM specific device

did device 1D of the OEM specific device

Comments

The function will install the INF file specified, copying the needed driver files to
the Windows System directory. It then initiates a driver swap causing the Windows or
OEM specific .sys driver to be replaced by the SMSC DFU driver.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -34-

API Functions

Int32 Format Drive (ulnt8* Label, BOOL ForceMediaErase)

This function does the formatting of NAND Flash Hard disk drives.

Parameters

Label pointer to a 11 byte buffer that contains
the label of the volume. If this parameter is NULL or points
to an empty string, then the volume will contain no Label
information.

ForceMediaErase specifies whether the Flash media is to be
erased before formatting the drive.

Comments

IT necessary, this function will install the INF file specified, copying the needed
driver files to the Windows System directory and initiate a driver swap causing the
Windows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send SCSI commands to the device firmware
to create a primary DOS partition and format it to a FAT12, FAT16 or FAT32 volume.
The FAT type is determined by the capacity of the drive and cannot be specified by
the user.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -35-

API Functions

Int32 End Format Drive (char* originalDriverlInfName)

This function terminates the format process and restores the original application
driver.

Parameters

originalDriveriInfName pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enumerate the device in
its original application state (i.e, ‘“usbstor.inf”)

Comments

Call this function when finished formatting all devices. This function swaps the DFU
driver out of the operating system and restores the original application device
driver. You can plug in other devices to format BEFORE calling this function last.
This function serves as the terminating call to formatting all devices. Before
calling this function, the DFU is fully installed and used for each device plugged
in.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header Tfile.

USB97C210 Software Release Notes
Page -36-

API Functions

Int32 Start Erase Media (char* infFile,char* sysFile, char*
drvLFile ulntl6 vid, ulntl6é pid, ulntl6 did)

This function allows swapping the Mass Storage Class driver with SMSCDFU driver.

Parameters

infFile pointer to a complete path that specifies where
the location of the SMSC DFU .inf file resides.

sysFile pointer to a complete path that specifies where
the location of the SMSC DFU .sys driver file
resides.

drvLFile pointer to a complete path that specifies where
the location of the SMSC DFU .dIl driver lib Ffile resides.

vid vendor ID of the OEM specific device

pid product ID of the OEM specific device

did device 1D of the OEM specific device

Comments

The function will install the INF file specified, copying the needed driver files to
the Windows System directory. It then initiates a driver swap causing the Windows or
OEM specific .sys driver to be replaced by the SMSC DFU driver.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -37-

API Functions

Int32 Erase Media (void)

This function allows the erasing all valid pages of NAND Flash Hard disk drives.

Parameters

None

Comments

IT necessary, this function will install the INF file specified, copying the needed
driver files to the Windows System directory and initiate a driver swap causing the
Windows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send SCSI commands to the device firmware
to erase every valid page on the media, restoring it to an un-written state.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header Tfile.

USB97C210 Software Release Notes
Page -38-

API Functions

Int32 End _Erase Media (char* originalDriverInfName)

This function terminates the erase process and restores the original application
driver.

Parameters

originalDriveriInfName pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enumerate the device in
its original application state (i.e, ‘“usbstor.inf”)

Comments

Call this function when finished erasing all devices. This function swaps the DFU
driver out of the operating system and restores the original application device
driver. You can plug in other devices to erase BEFORE calling this function last.
This function serves as the terminating call to erasing all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -39-

API Functions

Int32 Start Descriptor Read (char* infFile,char* sysFile, char*
drvLFile ulntl6 vid, ulntl6 pid, ulntl6 did)

This function allows swapping the Mass Storage Class driver with SMSCDFU driver.

Parameters

infFile pointer to a complete path that specifies where
the location of the SMSC DFU .inf file resides.

sysFile pointer to a complete path that specifies where
the location of the SMSC DFU .sys driver file
resides.

drvLFile pointer to a complete path that specifies where
the location of the SMSC DFU .dIl driver lib Ffile resides.

vid vendor ID of the OEM specific device

pid product ID of the OEM specific device

did device 1D of the OEM specific device

Comments

The function will install the INF file specified, copying the needed driver files to
the Windows System directory. It then initiates a driver swap causing the Windows or
OEM specific .sys driver to be replaced by the SMSC DFU driver.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -40 -

API Functions

Int32 Descriptor Read (uInt8* buffer, ulnt32* size)

This function allows the reading of device’s internal descriptors stored in the
EEPROM.

Parameters

buffer pointer to a 256 byte buffer that will contain
the formatted OEM data fields read from the device’s internal
descriptors. This is raw binary data.

size pointer to an unsigned long integer that
contains size of the buffer in bytes. Upon successful
completion, this will contain the number of bytes returned in
the buffer.

Comments

IT necessary, this function will install the INF file specified, copying the needed
driver files to the Windows System directory and initiate a driver swap causing the
Windows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send vendor specific commands to the device
firmware to read it’s internal descriptors. The data is copied to the specified
buffer.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header file.

USB97C210 Software Release Notes
Page -41-

API Functions

Int32 End Descriptor Read (char* originalDriverInfName)

This function terminates the process of reading the device’s descriptors and restores
the original application driver.

Parameters

originalDriveriInfName pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enumerate the device in
its original application state (i.e, ‘“usbstor.inf”)

Comments

Call this function when finished reading descriptors of all devices. This function
swaps the DFU driver out of the operating system and restores the original
application device driver. You can plug in other devices to be read BEFORE calling
this function last. This function serves as the terminating call to reading
descriptors of all devices. Before calling this function, the DFU is fully installed
and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
dfuDLL.h header Tfile.

USB97C210 Software Release Notes
Page -42-

Using the USB97C210 Custom lcons Package

The USB97C210 custom icons package allows OEMs to assign custom icons to the drives associated with the
USB97C210 flash media controller. This allows the end user to easily distinguish between the different media types in
Windows Explorer. The application works with Windows 98 SE, Windows Me, Windows 2000 and Windows XP (SP1).

Contents of the USB97C210 Custom Icons Package

The USB97C210 Custom Icons Package consists of the following:

Setlcon.exe- The custom icon application.

Oem_0424.ini- A sample Windows 98 ini file.

Smsc.ini- A sample Windows Me/2000 ini file.

Sample Icons- The sample icons distributed with this package are for evaluation use only.

Eeprom.dat- A text file containing the changeable descriptor information used to update the serial eeprom with Write210.exe.

Creating the Required Setlcon Ini Files

In order for the Setlcon application to work properly, an ini file with a specific file name and format must be installed on the

host computer. The ini file tells the Setlcon application which icons are associated with which drives, and provides a full path
to each icon. The following four paragraphs describe the procedure for creating, naming, formatting and installing the ini file
on the host PC.

1) Setting the Ini File Name:

Windows 98 SE - The name of the ini file should be of the type "Oem_xxxx.ini" where
xxxX is the VID as a hexadecimal number.

Example: If VID is 0x0424, the ini filename should be "Oem_0424.ini"

Windows Me, 2000 and XP (SP1)- The name of the ini file should be the same as the device's Manufacturer
string, but be no longer than 8 characters. If the Manufacturer string is greater than 8 characters, then only the
first 8 characters of the string should be used. If the Manufacturer string is less than 8 characters, then the ini
file should use the entire Manufacturer’s string.

Example: If MFG string is "Standard Microsystems Corp", the ini filename should be "Standard.ini"
Example: If MFG string is "SMSC", the ini filename should be "SMSC.ini"

(Note: The Manufacturer’s string may be set or viewed using the Write210 utility ‘Option 1’. See the
“Programming the Serial EEPROM?” section of this document for more details.)

(Note: For Windows Me alone, all blank spaces (" "
under scores (*_") in the ini file name.)

) in the Manufacturer’s string should be replaced with

Example: If MFG string is 'S M S C", the ini filename for Windows Me should be "S_M_S_C.ini" and for
Windows 2000, it should be "S M S C.ini"

USB97C210 Software Release Notes
Page -43-

Creating the Required Setlcon Ini Files (Cont.)

2) Setting the Ini Section Name:

Windows 98 SE - The name of the section should be of the type [xxxx] where xxxx is
the PID as hexadecimal number.

Example: If PID is 0x20FC, the ini section name should be [20FC]

Windows Me, 2000 and XP (SP1)- The name of the section should be same as the first 5 characters of the
Device's Product ID string enclosed in square brackets, including any spaces if present.

Example: If the Product ID string is “210 USB Controller", the section name should be "[210 U]"
Example: If the Product ID string is "210US", the section name should be "[210US]"

Example: If the Product ID string is “210", the section name should be "[210]"

Example: If the Product ID string is "", the section name should be "[]"

(Note: The Manufacturer’s string may be set or viewed using the Write210 utility ‘Option 1’. See the
“Programming the Serial EEPROM?” section of this document for more details.)

3) Creating the Ini Section Content:

Under the Ini Section name should be a two line entry for each media type. The format for the two line entry
is "Prod=Path\IconName.ico", where "Prod" is the string following the dash (-) in the Disk Drives section of
the Device Manager for that drive (as seen in the screenshot to the right).

Path\IconName.ico is the full path and icon name for the icon to be used
for that drive. "ProdLABEL=Label Name" — (A declaration used to EXC Y

. A e) . &=
display a descriptive label in Windows Explorer for disk volumes with no BT

[=]

names) where "ProdLABEL" is the same as "Prod" as explained above ' i
appended with the word "LABEL" and "Label Name" is the label that is =

to be displayed for the corresponding drive.

(3 SMSC USE 2 H5-5D/MMC
| (D SMSC USE 2 HS-5M
(3 WOC WDL02BA
-3 Display adapters
¥ -4 03 DYDJCD-ROM drives
-2 Floppy disk controllers
¥-= Floppy disk drives
+]- 2 IDE ATAJATAPI controllers
- Keyboards
+]-7) Mice and other pointing devices
-3 Moniters
+]- B8 Network adapters
+)- i Ports (COM & LPT)
i Sound, video and game contrallers
-3 Storage volumes

| -[@ System devices
+]-8 Universal Serial Bus contrallers

Note: The string length of "Label Name" should be less than 32 characters
and should only contain alpha-numerical characters and special characters
‘space’ (* ") and 'under score' (*_").

Example: CF=C:\Program Files\Icons\CF.ico

Example: CFLABEL=Compact Flash Drive

Example: SD/MMC= C:\Program Files\Icons\SDMMC.ico

Example: SD/MMCLABEL=SDMMC Drive (Note there is no slash “/”")

Important Notes:

1) The full path to the icon should be less than 64 characters.

2) The file containing the icon should only be an .ico, .dll or .exe file.

3) There should not be any extra spaces before and after the '=' sign
4) Placing the Ini File in the Correct Location on the Target PC:

In order for the custom icon application to work correctly, the ini file must be placed in one of the Windows
System directories, depending on which operating system is being used. Those directories are:

Windows 98 SE - "Windows\System"
Windows Me - "Windows\System"
Windows 2000 - "Windows\System32"

Windows XP (SP1) - "Windows\System32"

USB97C210 Software Release Notes
Page -44 -

Manually Installing the Custom Icons Application Files

In order to perform a manual installation of the custom icons application files, the following steps should be
performed:

1. Copy the Setlcon.exe file to a location on the target computer’s hard drive. (i.e. “C:\Program
Files\Icons\Setlcon.exe™)

2. Copy the icon files to a location on the target computer’s hard drive. (i.e. “C:\Program Files\Icons\”).

3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.

String: Setlcon Value: C:\Program Files\Icons\Setlcon.exe

4. Copy the ini file to the appropriate Windows System directory on the host PC. (See the previous section
“Creating the Ini Files” for details.)

5. Manually start the Setlcon.exe application by double clicking it, or simply reboot the host PC. The entry
placed in the registry during Step 3 will automatically start the application after the PC is rebooted.

A Sample Ini File

[USB 2]

CF=C:\Program Files\Icons\CF.ico
CFLABEL=Compact Flash Drive
MS=C:\Program Files\Icons\MS.ico
MSLABEL=Memory Stick Drive
SM=C:\Program Files\Icons\SM.ico
SMLABEL=Smart Media Drive
SD/MMC=C:\Program Files\lcons\SDMMC.ico
SD/MMCLABEL=SDMMC Drive

USB97C210 Software Release Notes
Page -45-

Creating a Windows Installer for the Custom Icons Application Files

Using an automated installer is the preferred method for installing and setting up the Custom Icons application to run
on an end user’s PC. As part of the USB97C210 Custom Icons Application Package, a sample Windows installer “Icons.exe” is
included which demonstrates a practical example of using a Windows installer to install, setup and run the Custom Icons
application. To use the “Icons.exe” installer, simply run it and then reboot the host PC once the installation is complete. When
the reboot is complete, the custom icons for the 210 should appear in Windows Explorer.

Important Note: The ini files that are installed by the SMSC provided installer are hard coded to match SMSC’s
VID/PID, Manufacturer String, and Product ID String. The EEPROM.DAT file that is included with the software distribution
contains the required data, and should be used to program evaluation boards to be used with the installer. Otherwise the ini files
will not match the data in your board, and the icons will not appear. In general, to create a Windows Installer you should
configure it to do the following:

1. Copy the Setlcon.exe file to a location on the target computer’s hard drive. (i.e. “C:\Program
Files\Icons\Setlcon.exe™)

2. Copy the icon files to a location on the target computer’s hard drive. (i.e. “C:\Program Files\Icons\”).

3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.

String: Setlcon Value: C:\Program Files\Icons\Setlcon.exe

4. Configure the installer to do a conditional installation depending on the operating system, to copy the ini
files to the appropriate Windows System directory. (See the section “Creating the Ini Files” for details.)

5. Configure the installer to run the “Setlcon.exe” application once the install is complete. Alternatively,
you could force the user to reboot the PC.

Troubleshooting the Custom Icons Application

Issue: Cause:
After installing the Custom Icons application and 1) If you used the custom installer it is likely that the contents of your serial eeprom do not
rebooting, the custom icons do not appear. match the ini files that are installed with the installer. Read the section “Programming the

Serial EEPROM” and use the Write210 utility to program the eeprom to match SMSC’s
VID/PID, Manufacturers String, and Product ID String for the 210. An EEPROM.DAT
file with this data is included in the Setlcon software release for your convenience.

2) If you created your own ini files and installed the application files manually, the cause is
most likely an incorrectly named or formatted ini file. Refer to the section “Creating the
Ini Files” and double check to make sure that the ini files are correctly named, formatted,
and placed in the proper location.

3) Check to see that the “Setlcon.exe” application is running by checking the Processes tab in
the Task Manager.

After installing the Custom Icons application the Unplug the USB cable and then reattach it. Icons are only displayed when the device is attached with

drives still show the original icon. the Setlcon application running. If this does not correct the problem, try the troubleshooting steps
above.

In Windows XP (SP1) the custom icons do not This is a known bug in Windows XP where the registry entries for the drive icons are not refreshed on

appear after a reboot of the host. However if the a host reboot. To workaround this issue detach and reattach the USB cable, or either insert or eject the

USB cable is detached and reattached, or media is flash media. Either event will cause XP to update the icons.
either inserted or ejected, the icon(s) appear.

USB97C210 Software Release Notes
Page -46 -

Using the Production Line Descriptor Update Utility (PLDU)

Purpose: The PLDU is used to update device firmware and/or device descriptors such as the VID/PID, Manufacturer and
Product ID strings in a production line environment using Windows 2000 (SP3) only. The utility features a simple interface
that displays success or failure of the programming operation in graphical form using either a green box with a checkmark
(PASS), or a red box with an “X” (FAIL). The PLDU is capable of programming one device at a time and takes approximately
12 seconds to complete.

Features:
Firmware update.
Descriptor (256 byte EEPROM) update.
Read descriptor (256 byte EEPROM) data from device.
GUI editor to edit and create DAT files.
Graphical and Text status display.
Automatic serial number increment after every descriptor update.
Break up of serial number to YY-MM-DD-S-SN format where
YY - Year (2 digits)
MM - Month (2 digits)
DD - Day (2 digits)
S - Station number (1 digit)
SN - Serial number (5 digits)

Noogk~wpE

Creating the PLDU ini File

Before using the PLDU you must create or edit an ini file. A sample ini file is shipped with the PLDU application which can be
modified for your setup. The ini file should contain the following lines:

DFUVID =VID
This is the VID (Vendor ID) of the device whose descriptor / firmware is to be updated. The VID is specified as a four
digit hexadecimal number.

DFUPID =PID
This is the PID (Product ID) of the device whose descriptor / firmware is to be updated. The PID is specified as a four digit
hexadecimal number.

DFUDID =DID
This is the DID (Device ID) of the device whose descriptor / firmware is to be updated. The DID is specified as a four
digit hexadecimal number.

INF = path to Smscdfu.inf

Specifies the full path to the ‘Smscdfu.inf’ file that is to be used during swapping of Mass storage class driver to the DFU
driver. This inf file must contain a VID and PID entry for the device you are programming, or the DFU driver swap will
not execute and the operation will fail. An example entry for a device with a VID of “0424” and a PID of “20FC” is:

%Smsc.DFU.Desc% = SMSCDFU.Install, USB\VID_0424&PI1D_20fc
You should change the values above in bold to match the VID and PID of your device.

SYS = path to Smscdfu.sys
Specifies the full path to the ‘Smscdfu.sys” DFU driver.

DLL = path to Drvlib.dll
Specifies the full path to the ‘Drvlib.dIl’ file that is to be used during swapping of the mass storage class driver to the
SMSC DFU driver.

DFUFILE = Path to DFU file
Specifies the full path to the DFU file that is used for firmware update.

MSCINFNAME = Mass storage class Inf name
Specifies the name of the original Mass storage class driver’s INF file name. This is used while swapping the DFU driver
back to the original MSC driver.

USB97C210 Software Release Notes
Page -47 -

A Sample PLDU ini File

DFUVID =0424

DFUPID = 20FC

DFUDID = FFFF

INF = C:\Dfufiles\Smscdfu.inf
SYS = C:\Dfufiles\Smscdfu.sys
DLL = C:\Dfufiles\Drvlib.dll
DFUFILE = C:\Dfufiles\Fmc.dfu
MSCINFNAME = Usbstor.inf

y

i There can be spaces before and after the ‘=" (equals) sign, but the total number of characters per line
(including spaces) should be LESS THAN (<) 255.

ii. All the paths specified above should be valid, as the application will make sure that those files do exist in
their respective paths. If a path is not valid, then the application would display a corresponding ERROR
message and terminate itself.

USB97C210 Software Release Notes

Page -48-
Setting Up the PLDU Application
open TS|
1. First attach a USB97C210 device to the host. To start the PLDU Loskin [55 PLOU R =N =
application, simply double click “DescUpdt.exe” executable. The S Descodtin
application will prompt you to select the location of the ini file.
File name: Open |
Filez of type: I\m Files [*.Ini] LI Cancel
[~ Open as read-only 4
2. Provided the ini file contains the correct path to the key files on the EEETEEIETETERTTTTT]
local machine, the main program dialog opens. Here you are given S e
two OptiOﬂS: This will update the device's 256 | | This will update the device's 54KB
byte EEPROM data, Firmware data.
a. Update Descriptors- Updates NVStore data such a _ UsdstoFimua |
VID/PID, Manufacturer and Product ID strings from the
“EEPROM.DAT” file.
b. Update Firmware- Updates the device firmware using a
DFU update file with the .dfu extension. o |
Using the PLDU to Update Device Descriptors
- : oo 2
1. The first operation that should be performed on a USB97C210 _ el xd
. . . L . . Lok in: [5 PLDU x| « &k E-
device coming off the production line is to update its descriptors. ———
To do this, press the “Update Descriptors” button on the main
dialog above. For the first device only, the application will prompt
you to select the EEPROM.DAT file that will be used to program
the descriptors. Once the EEPROM.DAT file has been selected the
program will swap the mass storage class driver for the SMSC Flensme [0aT Geen |
DFU driver. Files of type: [DAT Files (*DAT) = Cancel
[~ Open as read-only 4

:
2. Once the DFU driver swap has completed, the e

programming dialog appears. At this point the station is [DATFI ~Device EEPROM
f : Signature: [dlal x| VID:0«[0424 | PID: 0x[20°C Signalure: VID: 0 FID: 0
setup and ready to begin programming USB97C210 fanatu: | ol i [Z0FC | | Signatwe: [Y
devi Language ID: Ox[0405 | Atbutes: 0«[o0000000 | | LanguageID: O Attibutes: Ox
evices. e [T et
Product [LISE 2 Flssh Medis Device Froduct: [
Senial Mo (Last used in DAT File). O« [77-7777 007760 Seialo Ge[
. : Fields For Format “ataf '———————————————
Sir:.;\Nn[Tr:r:eusedsnDdEwces;::?e]se”a‘ i oy] sk - [
=1z =[17 =]El=][po000 bt] Blink Duration: i [~
 Fields For Format "atal | | bl Lunt 1D:

bianPower : 0x [30 Bink Interval < 0x [05 wnzio: [ez [
Lm0 ID: [EF LntD: Jus Max 8 of Luns: O] CFluntt: Ocf
w2id: M Lusgio: [SDMMC MsLun#: 0 SMLun# oe|
L,”.E;‘;’g SMSC nauty [05 2 sommcH: o] NAND HD #: De|

M # of Luns: Ox[FF CFlunt: Ok [FF

Status:
MSLun#: D[FF SMlun#: Ox|FF =
SD/MMCH: O [FF NAND HD #: 0 JFF o

Save DAT File | Update Devlcel Aead Device | Exit | |

Using the PLDU to Update Device Descriptors (Cont.)

4. Once all devices have been programmed, the user selects the “Exit”

To program the first device, the operator simply presses
the “Update Device” button. Once the Update Device
button is pressed, the application saves all of the data in
the editable fields (the fields with a white background)
including the serial number, to the EEPROM.DAT file.
After that, all of the 256 bytes of data contained in the
EEPROM.DAT file is programmed into the device. The
operation takes about 12 seconds to complete. Provided
the programming was successful, the EEPROM Update
Dialog displays a green box with a black checkmark and
reports success. At this point the user simply detaches the
device and reattaches the next device to be programmed.
The PLDU automatically updates the EEPROM.DAT file
to the next unique serial number.

button to return to the main dialog.

Using the PLDU to Update Firmware

1.

USB97C210 Software Release Notes

~DAT Fil
Signature: [atal = | WID: Ox|0424 PID: Ox[20FC
Attributes: Ox | 00000000

Language 1D 00409

Page -49 -

EEPROM Update Dialog

- Device EEPROM

Signature; WID: O PID: O
Language D: 0 Attibutes: Ox

Mg String: |SMSE

Mg String: |

Froduct: [USE 2 Flash Medis Devics

Serial No [Last used in DAT File): Ox [02-12-17-0-00000

Serial No (To be used in device update

T MM oo Station Serial

1z ~|[iz =l[i7 =|fo =]oooon

~Fields For Format “atal—————————————————
bMasPower < O[30 Blink Interval - 0 05
Brnétrib: 30 - Blink Duration: Ox E
Lun D [oF Lunl 1B [m5

Lun2 10 [5M Lun3 |0 [SD/MMC
Ingquiry Inquiry

MiglD: ISMSC Prodip: 10582

Mar # of Luns: Ox[FF CFlun#: 0[P
MS Lunt: 0u[FF SMLun#: O [FF
SD/MMC#: DxJFF NANDHD #: 0¢JFF

Product |

Serial Ma: Ox
~Fields For Format “atal'——————————————

bMaxPomer < 0x [Blink Intrval - 0% [
[— Blink Durstion: Ox [
Lur0ID: [Lunt D2 [

Lun2 1D Lun3 1D I

Ineuiny Ineiny

Mg ID: Frodin: |

Max# of Luns: O] CFLn#: O]
MSLunt: O] SMlund: O]
sommc o NANDHD 8 0]

Status:

5 aving File - Success ﬁl
LIpdating Device EEPROM - Success

Incrementing Serial Mo - Success LI

Update Device I

Save DAT Fil |

Read Device |

Exit | .

= Production Line Descriptor Update Utility x|

i~ Descriptar.

This will update the device's 256
byte EEPROM data,

Update Desciptor I

Firmware:

This will update the device's G4KB
Firmuare data.

Update Firmware

r Status:

Exit Utility

The PLDU application can also be used on the production line to apply in circuit firmware updates through the USB.
In order to do this you MUST have flash ROMs preprogrammed with the DFU loader. (See the instructions on
creating the “BOTH.BIN” file in the USB97C210/211 DFU Release Notes.)

Assuming you have completed steps 1 and 2 in the “Setting Up the

PLDU Application” section, to initiate a firmware update, the user will

press the “Update Firmware” button. The dialog on the right appears.
At this point the station is ready to begin updating device firmware.

Firmware Update Dialog x|

Updale Firware | Eit | I

Status:

Using the PLDU to Update Firmware (Cont.)

3.

5.

To initialize a firmware update, the user presses the “Update
Firmware” button on the Firmware Update Dialog. If the application
displays a red box with an “X” in it as shown on the right, the operation
failed. If this is the case, be sure to check that you have the DFU loader
programmed into the chip. (See the section on creating the
“BOTH.BIN” file in the USB97C210/211 DFU Release Notes.

If the operation completes successfully, the Firmware Update Dialog
displays a green box with a black checkmark to indicate success. The
user may now remove the device, attach the next device and repeat the
programming operation.

Once all devices have been updated, the user presses the “Exit” button
to return to the main dialog.

USB97C210 Software Release Notes

Page

-850 -

2
Update Fimware | | -
Status
DFU upload command failed =]
Firmware Update Dialog x|
Update Firmware I Exit I -
Status:
Update firmware - Suscess ;I
[|
o Production Line Descriptor Update Ukility x|

- Descriptor:

This will Lpdate the device's 256
byte EEPAOM data.

Update Descriptor I

This will Lipdate the device's B4KE
Firmware data

Update Firmuars

r Status:

E it Uity

USB97C210 Software Release Notes
Page -51-

Using the Production Line Test Utility (PLTU)

Purpose: The PLTU application is used to test the basic functionality of USB97C210 devices in a production line environment
using Windows 2000 (SP3) only. The application creates a subdirectory on the media for each LUN, copies a 'Test File' to the
subdirectory, deletes the 'Test File', and then deletes the subdirectory.

Features:
1. Capable of testing 5 devices with 4 LUNs each simultaneously.
2. After testing, the application cleans up the registry entries involving the OEM's VID, PID, Inquiry MFG and Product
strings.
3. Graphical and Text status display of test results.
4. GUI editor to edit and create ini files.

Creating the PLTU ini File

Before using the PLTU you must create or edit an ini file. A sample ini file is shipped with the PLTU application which can be
modified for your setup. The ini file should contain the following lines:

OEMVID =VID
This is the original equipment manufacturer’s VID (Vendor ID) of the device whose descriptor has already been updated.
The “VID’ is specified as a four digit hexadecimal humber.

OEMPID =PID
This is the original equipment manufacturer’s PID (Product ID) of the device whose descriptor has already been updated.
The ‘PID’ is specified as a four digit hexadecimal humber.

INQUIRY_MFG = Inquiry MFG String
This is the string returned by the device as part of the Vendor information in the Inquiry data. This can be of maximum 8
characters.

INQUIRY_PRODUCT = Inquiry Product String
This is part of the string returned by the device Product information Inquiry data. This can be of maximum 5 characters.

TEST_FILE = path to Test file
Specifies the full path to the file that is to be used during file copy tests.

DEV1 LUNO = Drive Letter
DEV1 LUNL1 = Drive Letter
DEV1 LUN2 = Drive Letter
DEV1 LUNS3 = Drive Letter

DEV2_LUNO = Drive Letter
DEV2_LUNL1 = Drive Letter
DEV2_LUNZ2 = Drive Letter
DEV2_LUNS3 = Drive Letter

DEV3_LUNO = Drive Letter
DEV3_LUNL1 = Drive Letter
DEV3 _LUN2 = Drive Letter
DEV3 _LUNS3 = Drive Letter

DEV4 _LUNO = Drive Letter
DEV4 LUNL1 = Drive Letter
DEV4 LUN2 = Drive Letter
DEV4_LUNS3 = Drive Letter

Creating the PLTU ini File (Cont.)

DEV5_LUNO = Drive Letter
DEV5_LUNL1 = Drive Letter
DEV5 _LUN2 = Drive Letter
DEV5_LUNS3 = Drive Letter

USB97C210 Software Release Notes
Page -52-

These lines specify the Drives that are associated with the multiple LUNSs of the respective devices to be tested. If the
‘Drive Letter’ is not specified for a particular LUN, then it means that the corresponding LUN of that device is NOT to be
tested. If the ‘Drive Letter’ is not specified for all LUNSs for a particular device, then it means that the entire device is

either NOT present or NOT to be tested.

A Sample PLTU ini File

DEV1 LUNO=F
DEV1_LUN1=G
DEV1_LUN2 =H
DEV1_LUN3 =1

DEV2_LUNO =1

DEV2_LUN1=K
DEV2_LUN2=L
DEV2_LUN3 =M

DEV3_LUNO = N
DEV3_LUN1=0
DEV3_LUN2=P
DEV3_LUN3=0Q

DEV4_LUNO=R
DEV4_LUN1=S
DEV4_LUN2=T
DEV4_LUN3=U

DEV5_LUNO =
DEV5_LUNL1 =
DEV5_LUN2 =
DEV5_LUN3 =

OEMVID = 0424
OEMPID =20FC
INQUIRY_MFG =SMSC

INQUIRY_PRODUCT = 210
TEST_FILE = CA\TEST\IMEG.R01

NOTE:

There can be spaces before and after the '='sign, but the total number of characters for an entire line (including

spaces) should be less than 255.

Setting Up the PLTU Application

1.

First attach a USB97C210 device to the host. To start the PLTU
application, simply double click “TestDevice.exe” executable. The

USB97C210 Software Release Notes

application will prompt you to select the location of the ini file when it is

first started.

Provided the ini file contains the correct path to the
key files on the local machine, the main program
dialog opens. The station is now ready to begin
testing devices. At this point you should attach the
devices to be tested and ensure that they have good
media with sufficient free space to hold the file
being used for testing.

Using the PLTU to Test Multiple Devices

2.

Once all of the devices have been attached, the user
simply presses the “Start Test” button to begin
testing devices in accordance with the contents of
the ini file being used. After the testing has
completed, the user receives a graphical
representation of the test results in the form of a
green box with a black checkmark to indicate
“PASS”, or a red box with a black “X” to indicate
“FAIL".

Once the test has completed, the user should remove all of the tested devices and then attach the next set of devices to

open 2=l
Lok in: [9 PLTU x| « &k E-
b TestDevice.ini
File: name: Open |
Filez of type: I\m Files [*.Ini] ﬂ Cancel
™ Open as read-only
v
+* Production Line Device Test Utility (Using C:\Documents and Settings'gatestiDesk x|
= Ini Fil Status:
DEM WID: 0x 0424 Inquiry MFG: [SMSC i File (C\Documents and
Settingshgatest\Desklop\PLTUAT estDevice.ini] loaded
OEM PID: Ox |20FC Inquiry Prod: (210 successtully
Test File: IE ATESTAIMEG ROT
Load ini File Edit ini File
r~ Test Devic
Start Test
Exll
" Production Line Device Test Utility {Using C:\Documents and Settings'qatest!Desk x|
I Fil Status:
OEMVID: 0x |0424 Inquirg MFG: [SMSC -
Device 1 I
OEM PID: Ox |20FC Inquiry Frod: (210 Drive F : - Passed
Drive G : -~ Passed
Test FllE.IE.\TESTUMEG.F\UT Drive H : — Passed
Drive: | -~ Passed
i Fi i Dievice 2
Load ini File Edit ini File Drived - — Passed
Drive K. @ - Passad
Drivel - Passed
Tost Dewi Diive M : — Passed
Device 3
Drive M : — Passed
[santest | Diive 0 - - Passed
Drive P ;- Passed
Drive @ : -~ Passed
Device 4 b
Em Drive B : -~ Passed
Drive 5 — Passed
Drive T @ Passad LI

be tested. Once all of the devices are attached and enumerated (as indicated by the presence of drive icons in Windows
Explorer), the user repeats step 1 to test the next set of devices.

USB97C210 Software Release Notes
Page -54-

Using the QuickTest Production Line Read/Write Test Utility

The QuickTest utility is a streamlined version of the full Production Line Test Utility discussed previously. QuickTest can test
a maximum of (4) USB97C210 devices at a time, with a maximum of 4 LUNs each. The testing procedure is very simple
involving these only 4 steps:

Writes to media on each LUN starting from LBA 1024
Reads from media on each LUN starting from LBA 1024
Compares the data read against the data written to the media
Updates the status for each LUN in the application

el A

The testing is performed on all the LUNSs of the device serially. However, tests on multiple devices are performed
simultaneously using multiple threads. The QuickTest utility requires the presence of the SMSC password filter driver to send
BULK-ONLY commands, totally by-passing the native file system. On windows 2000 systems, Service Pack 3 should be
installed.

Bl QuickTest Production Line Utility {using filter driver) - ' Bigdawg'.0ATest' ISBS x|
r— Ini File Status:
OEM¥ID: 0x (0424 Inguine MFG: ISMSC Iri File :I
[W\Bigdawg AT esthlJSBI7C21 0WPLTUND Lick Test Ini)
OEM PID: Ox 20FC Irnguiny Prod: IUSB 2 lnaded successiully

tax Devices: |4 M ax LUMs: |4

Read / Wiite Test Size in F.B: |2EE

Load ini File I Edit ini File |

— Test Device
Start Test |
E:-:Il

Limitations of the QuickTest Utility:

1. Does not distinguish between general device write failures and media specific write failures. This means that the test
will fail if no media is present in the drive, the media is full, unformatted, corrupt, write protected, etc.. Under such
circumstances, the test results do not reflect the status of the device. Hence, it is recommended that the test is
performed again on the device with known good media.

2. The time taken to complete the tests depend on the following:

e Test size - This can be from 64KB to 5000KB. The bigger the size, the more time it will take to complete the
tests.

o Number of devices connected- The field "Max Devices" specifies how many devices to test at once (should
be 1 <= N <= 4). However, it is not necessary that the actual number of devices connected be equal to the
number specified in the "Max Devices" field. For example, the "Max Devices" field can specify 4 but the
actual number of devices connected may be <4 or >4. However, the utility will either test only the actual
number of devices connected or the "Max Devices", whichever is less. Though tests on multiple devices are
performed simultaneously, the time taken for the tests to complete on multiple devices will be a little more
than that for a single device.

USB97C210 Software Release Notes

Known Issues with the USB97C210 Production Line Utilities

Issue:

Workaround:

Page -55-

Status:

The PLDU and PLTU applications are designed to be used
with Windows 2000 (SP3) host systems using the Microsoft
mass storage class driver. While the applications may work
with other operating systems, only Windows 2000 (SP3) is
supported.

N/A

N/A

Some EHCI host controller drivers such as Orange Micro’s do
not work properly with the DFU driver swapping performed
by the PLDU and PLTU applications.

We highly recommend that you use the Microsoft supplied
EHCI drivers for the test systems running the PLDU and
PLTU applications.

N/A

The PLTU does not distinguish between general device write
failures and media specific write failures. This means that the
test will fail if no media present in the drive, media is full,
media is unformatted, media is corrupt, media is write
protected, etc.. Under such circumstances, the test results do
not reflect the status of the device, but rather the failure of the
media. Hence, it is recommended that the test is performed
again on the device with known good media.

Only use known good media to perform the PLTU testing.

N/A

Due to caching by the OS, the 10 transfer may not be fully
completed before the test results are displayed by the
application. It is recommended that the user wait for 5 to 10
seconds before disconnecting the devices.

Wait 5-10 seconds after completion of the PLTU tests before
removing the devices from the host.

N/A

In order to perform a firmware update, the flash rom must be
preprogrammed with the DFU loader code.

See the USB97C210/211 DFU Release Notes section on
creating the “BOTH.BIN” file.

N/A

In the main dialog window of the PLDU application, when
the "Update Descriptor" or "Update Firmware" is clicked, the
application swaps the Mass storage class driver with the DFU
driver before opening the corresponding dialog box. This
requires that the device be connected before the user can click
on these buttons. If no device is connected, the driver swap
and consequently the update operation will fail.

Make sure that there is a device connected BEFORE

attempting to perform either a Descriptor or Firmware Update.

N/A

In the PLDU application, When the user exits either from the
"EEPROM Update Dialog" or the "Firmware Update Dialog",
the application tries to restore the Mass storage class driver
before exiting the dialog. This requires that the device be
connected while the application exits these dialog boxes. If
the device is removed before the application exits, the
application will prompt for the user to reconnect the device.

Make sure the device is connected to the host before exiting
the EEPROM or Firmware Update dialog screens. A device
must be connected while the DFU driver swap takes place for
the operation to complete successfully.

N/A

USB97C210 Software Release Notes
Page -56 -

Using the EPRMUPDT .exe Utility

EPRMUPDT .exe is a DOS based utility used to write and / or read EEPROM data to / from the USB97C210 device. This
utility is designed to be used by OEMs in a production line environment with as little human intervention as possible.

EprmUpdt Usage:

EprmUpdt [-h|-u] [-Vv] [-c] [-w"oFileName"] [-r"iFileName"]

-h|-u print help/usage

-v verbose, optional, default is off

-C confirm scanned serial number (last 3 digits) before updating EPPROM

-w"oFileName" name of DAT file (with full path) that is to be written to device EEPROM

-r"iFileName" name of formatted text file (with full path) that is to be created by reading device EEPROM
-I"LogFileName" log the serial number to the specified log file

-1 infinite loop, till user presses 'CTRL C' to quit

Note:

1. All options can be specified using both UPPERCASE or lowercase letters.

2. The double quotes (") around file names for -w and -r options is optional. If the path names do not contain blank
spaces, then the double quotes are not necessary. If the path names contain blank spaces, then the double quotes
are mandatory.

3. The file names for the -w and -r options are to be specified with full path information. If the files are in the
current directory, then the path information is not necessary.

Features:

1. Uses a template EEPROM.DAT file, modifying the serial number alone by scanning it off the keyboard buffer, to
update the device EEPROM.

2. Reads the contents of the device EEPROM and generates a formatted text file that vividly describes all the fields of
EEPROM structure.

3. The options for writing and reading EEPROM data can be specified together or alone.

4. Provides an option (-c) to confirm the scanned serial number (last 3 digits) with the user before updating the
EEPROM data.

5. Provides an option (-v) to turn on or off the additional debug / status comments.

6. Provides an option (-I"LogFileName") to log the serial number to the user specified log file.

7. Allows processing devices one after another in a loop till user wants to exit (by pressing 'Ctrl C") by specifying the -i
option in the command line. Otherwise, the utility will exit back to the command prompt after it is done with a single
device.

8. Displays the status by showing a big "ERR", "FAIL" or "PASS" along with other relevant information.

"ERR" - Means an error occurred outside of the main process of updating or reading to / from the device. This can
happen if there are any errors while parsing the input arguments, or invalid usage, or invalid file paths, or any errors
while starting the host controller and root hub. The application will exit with code 2 during such circumstances.

"FAIL" - Means an error occurred during the process of updating or reading to / from the device. This can happen if
no matching devices are found, or verification of last 3 digits of serial number fails, or error while writing data to
device, or error while reading data from device, or verification of read and write data fails. The actual reason for the
failure is given below the "FAIL" status and the application exits with code 1 during such circumstances. If the —I
option is specified, then the application proceeds to prompt for scanning the serial number again. At this point, it is
left to the user discretion, whether to connect a new device or proceed with the existing device. For example, if the
failure is due to last 3 digits serial number mismatch, it could be due to human error rather than a device error and so
the user may want to proceed with the same device again.

"PASS™ - Means no error occurred and the process of updating or reading to / from the device completed successfully,
including all necessary verifications and the application exits with code 0. If the -i option is specified, then the
application proceeds to prompt for scanning the serial number again. At this stage, the user can safely remove the
existing device, connect a new device, and enter the serial number again.

USB97C210 Software Release Notes
Page -57-

Using the EPRMUPDT .exe Utility (cont.)

9. The utility will return with one of the following exit codes.

0 - Indicates "PASS"
1 - Indicates "FAIL"
2 - Indicates "ERR"

Limitations of the EPRMUPDT .exe Utility:

Only supports devices connected to a UHCI host controller.

The UHCI host controller to which the device is connected should be the first one in the enumeration order.

Only supports devices connected at the root hub level.

The first MSC device in the enumeration order has to be the device whose EEPROM data is to be updated or read.

POONME

USB97C210 Software Release Notes
Page -58-

Using the CheckROM.exe Utility

CheckROM.exe is a DOS based utility used to check the NVStore data of USB97C210 device against a user specified template
DAT file. This utility also checks the device's firmware version against a specified version number. This utility is designed to
be used by OEMs to streamline their production environment.

CheckROM Usage:
CheckROM [-h|-u] [-V] [-e"DATFileName"] [-f"version"

-h|-u print help/usage

-v verbose, optional, default is off

-¢"DATFileName" name of DAT file (with full path) that is to be checked against the device EEPROM
-f"version" version number that is to be checked against the firmware version of the device

-1 infinite loop, till user presses 'CTRL C' to quit

Note:

1. All options can be specified using both UPPERCASE or lowercase letters.

2. The double quotes (") around file name for -e option is optional. If the path names does not contain blank spaces,
then the double quotes are not necessary. If the path names contain blank spaces, then the double quotes are
mandatory.

3. The file name for the -e option is to be specified with full path information. If the files are in the current directory,
then the path information is not necessary.

4. The double quotes around the 'version' in -f option is optional.

5. The value of 'version' is specified as a max 4-digit decimal integer number.

Features:

1. Reads the contents of the device EEPROM and checks the entire contents (excluding serial number) against the
specified template DAT file.
Reads the firmware version of the device and checks that against the specified version number.
The options for checking EEPROM data or firmware version number can be specified together or alone.
Provides an option (-v) to turn on or off the additional debug / status comments.
Allows checking devices one after another in a loop till user wants to exit (by pressing 'Ctrl C") by specifying the -
i option in the command line. Otherwise, the utility will exit back to the command prompt after it is done with a
single device.
6. Displays the status by showing a big "ERR", "FAIL" or "PASS" along with other relevant information.

agkrwmn

"ERR" - Means an error occurred outside of the main process of checking the EEPROM or firmware version of the
device. This can happen if there are any errors while parsing the input arguments, or invalid usage, or invalid file
paths, or any errors while starting the host controller and root hub. The application will exit with code 2 during such
circumstances.

"FAIL" - Means an error occurred during the process of checking the EEPROM or firmware version of the device.
This can happen if no matching devices are found, or error while reading EEPROM data from device, or the
EEPROM check or firmware version check fails. The actual reason for the failure is given below the "FAIL" status
and the application exits with code 1 during such circumstances. If the —i option is specified, then the exit code is
ignored and the application proceeds to prompt for checking the next device.

"PASS" - Means no error occurred and the process of checking EEPROM and / or firmware version of the device
completed successfully and the application exits with a return code of 0. If the -i option is specified, then the
application proceeds to prompt for checking the next device. At this stage, the user can safely remove the existing
device and connect a new device for checking.

Using the CheckRom.exe Utility (cont.)

7. The utility will return with one of the following exit codes.

0 - Indicates "PASS"
1 - Indicates "FAIL"
2 - Indicates "ERR"

Limitations:
1. Supports only devices connected to a UHCI host controller.

USB97C210 Software Release Notes
Page -59 -

The UHCI host controller to which the device is connected should be the first one in the enumeration order.

2.
3. Supports only devices connected at the root hub level.
4

The first MSC device in the enumeration order has to be the device whose NVStore data is to be checked.

Using the MSPro Format Utility

SMSC provides a utility “FormatPro.exe” to apply the special Sony
proprietary format to MSPro media. Although MSPro cards can be
formatted using the normal Windows format, using the Sony format will
result in significantly higher read/write performance.

To use the application, make sure the USB97C223 device is enumerated and
there is MSPro media inserted in the card slot. Start the application, select
the drive from the drop-down menu and specify a volume label if desired.
Check or uncheck the quick format box, and then press the format button to
begin the format. The application will notify the user once it has completed
the operation.

Important Note: In order to use the FormatPro application in either
Windows 98 or Me, the SMSC Password Filter driver must be loaded. To do
this, go to the device manager and double click the device entry for the 223
in the USB section. Select “Update Driver” and then follow the update
driver wizard. When asked for the location of the new driver, point to the
folder containing the SMSC Password Filter driver and inf file.

x

— Farmat Application far M5 PRO

Select Drive: |[NaT3S -
Yalurne |abel: I—
™ Quick Format

Forrnat | Exit |

— Progresz Indicataor

USB97C210 Software Release Notes
Page -60 -

Using the Windows XP Special Memory Stick Format Registry Key

Windows XP has the capability to apply a Sony factory format on Memory Stick cards by adding a special key to the registry:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\PerHwldStorage\
USBSTOR#DiskSMSC 210_U_HS-MS] "DeviceGroup"="MemoryStick"

This key has to be customized to match the inquiry data returned from the device. The inquiry data is made up of the first 8
characters of the Manufacturer String, followed by the first 5 characters on the Product String. In the example registry key
above, the strings are:

Manufacturer String = “SMSC” (Note that SMSC is followed by four spaces denoted by underscores to make up the 8
characters.)

Product String = “210 USB97C210” (Note that only the first 5 characters, including the space, are used.)
This registry key works for Windows XP only. It will not work for Windows 2000 or any other operating system. Once the

registry key has been added, when a user formats a Memory Stick card from using Windows, the Sony factory FAT format will
be applied, including the creation of the “MEMSTICK.IND” hidden file.

USB97C210 Software Release Notes
Page -61-

Using the KillReqg Utility

KillReg is a DOS based application to stop a device and clean its related registry entries during an automated uninstallation
process. KillReg is designed to be called from a Windows Installer script. It is used during installation and uninstallation of
USB97C210/223 devices under Windows 2000 (SP2 and earlier) to disassociate the device from the OEM MSC driver. This
allows the SMSC Win2K driver to be loaded. KillReg is also used during the uninstallation process to completely remove the
registry entries for a particular device.

Requirements:
KillReg requires an ini file to be present in the Windows directory. The name of this ini file should be passed as command line

argument to the application from the installer script.

INI File Requirements:
1. The ini file should be in the Windows directory.
2. The ini file should contain the following lines;

VID = VID
PID = PID1[,PID2,PID3,...,PID30]

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sample ini File:

VID =0424

; The following line shows how
; to specify multiple PIDs

PID = 20FC, 223A, 211A, 242A

; The following line is used by SwapDrvr.exe
; only and NOT by KillReg.exe

INFFILE = smscpswd.inf

4

NOTE:

1. The ini file is also used by the application "SwapDrvr.exe", which will expect the line specifying the INFFILE. KillReg
ignores this line.

2. Multiple PIDs separated by a comma can be specified to uninstall all the PIDs associated with a single VID.

USB97C210 Software Release Notes
Page -62-

Using the Swapdrvr Utility

Swapdrvr is a DOS based application used by a Windows installer to load the password filter driver in Windows XP.
Unfortunately, SwapDrvr does not work with Windows 98 and Me. The only USB97C210 application that requires the
password filter driver be loaded when running XP is the QuickTest production line test utility. If you are not using that utility
or do not want to include it in your installer, you can skip this section.

Requirements:

1. The device should be connected while this application is invoked from a Windows installer. The application will prompt the
user to connect the device during run time.

2. Swapdrvr needs an ini file to be present in the Windows directory. The name of this ini file should be passed as command
line argument to the application from the installer script.

3. The installer application should have already placed the required INF and SYS files in their correct locations.

INI File Requirements:
1. The ini file should be in the Windows directory.
2. The ini file should contain the following lines;

VID =VID
PID =PID
INFFILE = Inf file name

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sample ini File:

VID = 0424
PID = 20FC
INFFILE = smscpswd.inf

USB97C210 Software Release Notes
Page -63-

Using the USB97C210 with Linux

Versions 2.4.20 and greater of the Linux kernel provide native support for multi-LUN USB mass storage class devices like the
USB97C210. Some brands of Linux such as SuSe 8.2 require little or no user setup. Simply plug in your USB97C210 device,
and icons will appear, provided there is media in the card reader slots. Other brands of Linux such as Redhat require the user to
configure the kernel in order to enable multi-LUN support in the mass storage class driver. The procedure for doing that is:

Requirement:
RedHat Linux 9.0 with kernel 2.4.20 or greater

Steps:
1. Install RedHat Linux 9.0 on the host system
2. Login to the system as 'root'.
3. Open a terminal window.
4. Plug the multi-LUN card reader into the host.
5. At the shell prompt, type 'cat /proc/scsi/scsi'.
6. If the screen shows only one LUN, type ‘Ismod'".
7. If 'usb-storage' does not exist, type 'insmod usb-storage'.
8. If 'usb-storage' exists, type ‘cdrecord -scanbus'. It will display
scsibusO:
0,0,00) 'SMSC ' '210 U HS-CF' 'X.XX' Removable Disk
0,1,01) *
0,2,02) *
0,3,03) *
0,4,04) *
0,5,05) *
0,6,06) *
0,7,07) *

9. Create a batch file with the following calls:
‘echo "set-single-device 0 0 0 0">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 1">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 2">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 3">/proc/scsi/scsi
‘cat /proc/scsi/scsi'
10. After running the batch file, the screen should display:

Attached devices:

Host: scsi0 Channel: 00 ID: 00 LUN: 00

Vendor: SMSC Model: 210 U HS-CF Rev: X.XX

Type: Direct-Access ANSI SCSI revision: 02
Attached devices:
Host: scsi0 Channel: 00 ID: 00 LUN: 01

Vendor: SMSC Model: 210 U HS-MS Rev: X.XX

Type: Direct-Access ANSI SCSI revision: 02
Attached devices:
Host: scsi0 Channel: 00 ID: 00 LUN: 02

Vendor: SMSC Model: 210 U HS-SM Rev: X.XX

Type: Direct-Access ANSI SCSI revision: 02
Attached devices:
Host: scsi0 Channel: 00 ID: 00 LUN: 03

Vendor: SMSC Model: 210 U HS-SD/MMC Rev: X.XX

Type: Direct-Access ANSI SCSI revision: 02

11. Now multi-LUN support is enabled and you should be able to mount and access all media normally.

USB97C210 Software Release Notes
Page -64 -

Media Tested with the USB97C210

The following flash media cards were used during the development and testing of the USB97C210. All media listed has been
determined to work properly and be compatible with the USB97C210.

Compact Flash Memory Stick Secure Digital Smart Media
CompUSA 16MB Lexar 16MB IO Data 64MB Fuji Film 8MB
CompUSA 48MB Lexar 32MB Buffalo 256MB Kingston 64MB
CompUSA 64MB Lexar 64MB Lexar 16MB I-O Data 8MB
Hyperstone 8MB Lexar 128MB Lexar 32MB I-O Data 16MB
IO Data 4MB PQI 64MB Memorex 32MB I-O Data 32MB
IO Data 8MB SanDisk 16MB Panasonic 512MB [-O Data 64MB
IO Data 32MB SanDisk 64MB PNY 128MB [-O Data 128MB
King Max 8MB Sony 8MB PQI 128MB Lexar 16MB
King Stone 64MB Sony 16MB PQI 256MB Lexar 32MB
Lexar 32MB Sony 32MB SanDisk 32MB Lexar 64MB
Lexar 48MB Sony 64MB SanDisk 64MB Lexar 128MB
Lexar 64MB Sony 128MB SanDisk 128MB Memorex 32MB
Lexar 128MB SanDisk Extreme 256MB [Memorex 64MB
Lexar 256MB High Speed SimpleTech 128MB Memorex 128MB
Lexar 512MB (24x) Memory Stick Olympus 8MB
Lexar 1GB (4x) Sony 16MB PNY 128MB
Lexar 1GB (24x) Sony 32MB Samsung 32MB
Lexar 2GB (40x) Sony 128MB Mini Secure Digital SanDisk 32MB

Memorex 32MB Toshiba 32MB SanDisk 64MB
Memorex 64MB SanDisk 128MB
Memorex 128MB Viking 64MB
PQI 16MB Memory Stick Pro MMC
Samsung 128MB Sony 256MB Lexar 16MB
SanDisk 1GB Sony 512MB Lexar 32MB xD Picture Card
SanDisk Extreme 1GB |Sony 1GB Lexar 64MB Olympus 32MB
SanDisk Ultra 128MB SanDisk 256MB SanDisk 8MB Olympus 128MB
SunDisk 8MB SanDisk 16MB Olympus 256MB
SanDisk 32MB Fuji 64MB
IBM MicroDrive SanDisk 64MB Fuji 512MB

IBM Microdrive 340MB
IBM Microdrive 1GB

USB97C210 Software Release Notes
Page -65-

USB97C210 Performance Benchmarks

The measurements were performed using HDBench v3.30 on a Windows XP (SP1) system with an ICH4 south bridge.
(Pentium 4, 1.8GHz, 512MB DDR). All benchmarks were measured on new (out of the box) media. Please note that the
benchmark performance of flash cards varies widely from manufacturer to manufacturer, and the performance of all
manufacturers’ cards degrade with use. In order to duplicate the results below, you must use brand new media and test on a
similarly configured host.

Media Used for Testing:

Lexar Media (24x) 256MB Typical USB 1.1 device benchmark data

Lexar Media 128MB Media Read KB/sec Write KB/sec

Sony 1GB CF 1,000 KB/s 675 KB/s

Memorex 128MB SM 806 KB/s 384 KB/s

Buffalo 256MB SD 925 KB/s 625 KB/s

Lexar Media 64MB MMC 886 KB/s 360 KB/s
MS 694 KB/s 330 KB/s

MEASURED (Sustained Data rates Bytes/sec) Full Speed--4MB file size
Full Speed (USB1.1)

Media FS Mult. Read KB/sec FS Mult. Write KB/sec
CF 1.0 1,030 KB/s 1.3 890 KB/s
SM 1.2 973 KB/s 1.3 488 KB/s
SD 0.2 194 KB/s 0.4 246 KB/s

MMC 0.2 176 KB/s 0.6 219 KB/s
MS 0.9 632 KB/s 1.4 471 KB/s
MS Pro N/A 600 KB/s N/A 421 KB/s

FS MULT is ratio to 1.1 reader device measured speeds

MEASURED (Sustained Data rates Bytes/sec) High Speed--4MB file size

High Speed (USB2.0)

Media FS Mult. Read KB/sec FS Mult. Write KB/sec
CF 5.4 5,446 KB/s 4.4 2,985 KB/s
SM 6.2 5,000 KB/s 1.9 742 KB/s
SD 7.6 7,070 KB/s 4.1 2,590 KB/s

MMC 1.7 1,510 KB/s 1.3 471 KB/s
MS 1.2 858 KB/s 2.0 659 KB/s
MS Pro N/A 864 KB/s N/A 547 KB/s

FS MULT is ratio to 1.1 reader device measured speeds

GPI10O Assignment Table

USB97C210 Software Release Notes
Page -66 -

The following is a table of GPI1O assignments as configured and compiled for this version of the

firmware.

USBAFC2T0

Name
GPICO
GPIC
GPID2
GPID3
GPID4
GPIDA
GPIDE
GPIOT
GPIOE
GPIDG
GPIOM0
GPIC
GPIO 2
GPIOT 3
GPIO14
GPID1 A

Descripton

Flash Media Activity LED
Lnused

EE_iCS5

YW BLIS
EE_DIMNEE_DOUT

HS Ind.rSD Card Detect
AlB

EE_CLK

M3 Fower Contral

CF Power Contral

SM Fower Contral

SD Fower Contral

M3 Activity

CF Activity

Shl Activity

SOuMMC Activity

Notes
Indicates media activity. GPIO high indicates activity.

EE Chip select

IUSB W Bus detect

EE Data inputfoutput

HS ind. or 5D Crd. detect, GPIO high indicates HS+blink active
Al16 address line connect for DFL ar debug LED

EE Clock input

Controls transistor to switch power to the memory stick
Contrals transistor to switch power to the compactflash
Contrals transistor to switch power to smart media
Contrals transistor to switch power to SOUMMC
Indicates media activity. GPIO high indicates activity.
Indicates media activity. GPIO high indicates activity.
Indicates media activity. GPIO high indicates activity.
Indicates media activity. GPIO high indicates activity.

USB97C210 Software Release Notes

Page -67-

Known USB97C210 Firmware Related Issues

General:

Issue: Workaround: Status:

None. None.

CF Devices:

Issue: Workaround: Status:

No known issues.

MS Devices:

Issue: Workaround: Status:

When High Speed Magic Gate Memory Stick media is None. We believe this is a

formatted with a FAT file system on a MacOS 10.X host, the Magic Gate security

media becomes unreadable on machines with Windows protocol issue. We will

operating systems, but will continue to work normally with continue to investigate

Macs. and provide a fix in a
future release of the
USB97C210 firmware
if possible.

SM Devices:

Issue: Workaround: Status:

Writes to 2MB Smart Media cards are not supported. None. 2MB Smart Media
cards can be read by the
USB97C210, but writes
are not supported.
These cards are
considered obsolete and
there are no plans to
implement support for
them in the future.

SD/MMC Devices:

Issue: Workaround: Status:

Under certain conditions, the USB97C210 device may fail to
recognize an SD/MMC card inserted while writing to either
CF or MS or SM cards.

Reinsert the card after the transfer has completed.

Use workaround.

xD Devices:
Issue:

Workaround:

Status:

No known issues.

USB97C210 Software Release Notes

Issues Not Related to USB97C210 Firmware

Issue:

Workaround:

Page -68 -

Status:

Due to the write caching functionality of Windows, data
corruption can sometimes occur if the media is removed
improperly.

Before removing any piece of media, you should right click
the drive icon in Windows Explorer and select “Eject” from
the context menu. This will force the operating system to
perform a write of any cached data.

Limitation of the OS.

Reading or writing multiple media types simultaneously
will generally happen at the slowest media rate.

This is a limitation of the OS. If writes to a slow media type
like MS are made while reading from a fast media type like
CF or SM, then the read will slow to approximately the rate of
the write. This is because the OS must process each
command separately. It is not a limitation of the firmware.

Limitation of the OS.

If the USB97C210 evaluation board does not have a
properly programmed serial number, only one drive will
appear in Windows Explorer.

Program a unique serial number into the board using the
“Write210.exe” utility.

Surprise removal of the USB cable during a write to any
media type under Windows 98 or Me, sometimes causes
the host to become unresponsive.

Reboot the host.

This appears to be a bug
with the operating systems.
All mass storage class
devices tested have
displayed this same
behavior.

Occasionally, surprise removal of the USB cable during
writes to any media type under Windows XP, results in the
failure of the device to re-enumerate after being reattached.

Reboot the host.

This appears to be a bug in
Windows XP. No mass
storage class USB devices
will enumerate once the host
is in this state. The
USB97C210 firmware
continues to function
normally however. This can
be verified by reenumerating
it on a 2™ computer

Windows 2000 does not immediately report that media is
write protected when attempting to perform a full format.
The format will appear to progress to completion, but at
the end of the operation reports that the media is write
protected.

None.

This is normal behavior for
Windows 2000. This occurs
for all USB write protectable
devices when attempting to
perform a full format.

16MB MMC media reports an incorrect format capacity
when you attempt to format it in Windows 98 or Me after
having previously formatted a 64MB MMC.

Power cycle the board.

This appears to be a bug
with the Windows Operating
system.

Prematurely attempting to access a drive after resuming
from suspend sometimes results in a device I/O error in
Win2K. This is a known issue at Microsoft. (Reference
Microsoft Knowledge Base article Q323754)

Obtain and install the updated Usbhub.sys file from the hotfix
that is described in Microsoft Knowledge Base article
Q306455.

N/A

Under Mac OS 9.x only one drive will appear on the
desktop. This is normal as the Mac OS 9.x mass storage
class driver does not support multiple LUN devices.

Use the MacOS 8.6-9.x driver provided by SMSC.

Use the MacOS 8.6-9.x
driver provided by SMSC.

The MacOS MSC driver does not handle surprise removal
of the USB cable during writes properly.

None.

Currently under
investigation.

MacOS 9 reports an error when the 210 device is resumed
from a suspend state, informing the user that the media was
removed.

Close the error message and the 210 will operate normally.

Currently under
investigation.

