USB2230 Software Release Notes
Page - 1 -

SMmMsc

SUCCESS BY DESIGN

Austin Design Center

11000 North Mopac Expressway
Stonelake Bldg. 6 Suite 500
Austin, Texas 78759

USB2230 Software Release Notes
v0.523

Updated 2/28/07

The information contained herein is confidential and proprietary to SMSC, shall be used solely in
accordance with the agreement pursuant to which it is provided, and shall not be reproduced or disclosed
to others without the prior written consent of SMSC. Although the information is believed to be accurate, no
responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to this document and
to specifications and product descriptions at any time without notice. Neither the provision of this
information nor the sale of the described semiconductor devices conveys any licenses under any patent
rights or other intellectual property rights of SMSC or others. The product may contain design defects or
errors known as anomalies, including but not necessarily limited to any which may be identified in this
document, which may cause the product to deviate from published specifications. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product
failure could cause or contribute to personal injury or severe property damage. Any and all such uses
without prior written approval of an officer of SMSC will be fully at the risk of the customer. SMSC is a
registered trademark of Standard Microsystems Corporation (“SMSC").

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY
AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF
DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL,
INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR
REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT,;
NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER
OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR
NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.




USB2230 Software Release Notes
Page -2 -
Software Compliance

The software in this release conforms to the following industry flash card specifications. SMSC has tested to the best of its
ability to ensure that this software conforms to these specifications. However, no other warranty is assured, express or implied,
other than provided by SMSC's standard terms and conditions.

1. SmartMediaTM Electrical Specification Version 1.40

2. SmartMediaTM Physical Format Specifications Version 1.40

3. SmartMediaTM Logical Format Specifications Version 1.30

4. MultiMediaCard System Specification Version 4.20

5. SD Memory Card Specifications Version 2.0

6. Memory Stick Standard Format Specification Version 1.43-00

7. Memory Stick Pro Standard Format Specifications Version 1.02-00
8. Memory Stick Duo Standard Format Specifications Version 1.10-00
9. CompactFlash Specification Rev 2.1

10. xD Picture Card Specification Version 1.2

11. Universal Serial Bus Specification Rev 2.0

12. USB Mass Storage Class, Bulk Only Transport Version 1.0



USB2230 Software Release Notes

Page - 3 -

Table of Contents
REVISION HISTONY ...ttt b kbbb bbbt E b bR bbbt bbb e bbb b e bt et b st et n et 5
THE NON-VOIATHE STOFE DATA ... ...eetiieiiteie ittt ettt b ettt s et e b e besb e eb e e bt eb e e e e b e s bt eheebeeRe e b e e s e be st sbe et e beaneennennas 7
Using Flash ROM t0 StOre the NV STOFE DATA .........coiiiiiiiiieieieee ettt ettt sttt b bbb e e 7
Creating the EEPROM.DAT FIlE ...ttt b bttt h et e e s et e b e s b e bt e b e e e e nb e nbeebesbesbeebe e e eneeneens 7
Using the USB Drive Manager Application (for Windows XP ONIY) ... 8
QLIS L2 T I o PSSR 9
IR =g LT T I o OO UR RSP 9
USING At FIlES WIth USBIDIM ...ttt b bbbt he e e e b ek s b e e b e e b e eb e e bt e meenbenbeebenbesbeebeaneannennen 9
THe CONFIGUIALION TAD ... ettt et e bt bt bt b e Re e b e e st e a b e e Eeebeebeebeehe e e enbesbeebenbeeaeabeeneebenean 10
LI (U TLIE: OSSOSO 11
ATLFTDULE Bt DEFINMITIONS ...c.eeveieiiicieee s e e et e st st e st e e Rt e st e st e be s eesb e e EeeReen e e e e beneeabenbeaneereenseneeneens 12
Setting MMC-4 Clock Speed and Card Power Management BitS:..........cvciviiiiiiiiie it 13
Programming the NV STOIE Data...........c.ooiiiiiiiiieie ettt ettt bbbttt e e e beseesb e sk e ebeab e e aeesbeneeebenbeebesbeeneeneeneeneas 13
LUN Configuration @nd ICON SNAKTNG.........coiiiiiiiiieee ettt bbbttt e e sa e b e bt eb e e e enbesbesbesbesbeebe e e eneeneen 15
LI NI @0 ) o U U1 o o RS 15
[oTo] (] = T o [T O O SO T S TSP SO ST O T TEPOT U PPOPTROO 15
LUV oV @ 1o [V ] = L (o] o OSSR 16
LLUN POWEE IMIBSKS ...ttt ettt sttt ettt st sttt e ettt e st et e s e s e e e bt b e eb e e b e e s e e n et e e be e beeRe et e e neenbe st sbenbeaneereeneeneees 17
Using Device Firmware UPgrade (DFU) ...ttt et ste st beateaneenaeseentesbeanenneaneeneeneennes 19
OVBIVIBW ...ttt ettt ettt bbbt b £kt e s e e e x b e o4 e o4 e e E e 4R £ 282 4R e 2Rt e eE e b e HE e 4 H £ e E e 4 ReeE £ e e em b e AEeeb e AE e AR e eE £ e Rt eh b e e e b e nbeebeeb e e bt ab e et enteee 19
Files Required fOr DFU fOr WINGOWS .......cc.oiiiiiiiiiie ettt b et e et bbb bt b e e e b eb et e bt e s e e e 19
Creating the 128KB DFU Capable Flash Binary “Doth.bin" ...t 20
Preparing a DeVice fOr DFU OPEIAtiON .......ccccvciiiieiieieieieiestes e eeete st e e steste s e saeetae e eseesaesbesbesbesbesbesssassessenseseesbesresneeseessenseses 21
Choosing a Flash EEProm fOr YOUE DEVICE.........ciiiiiiiiieie et ste ettt ettt st e et tesbeesa e e ese e st e e e sbestesbesteeneaneeseennees 21
SEHING UP the HAIGWAIE ......ecvicie et ettt et ese e st e ee e e e st et e s b e eReebeeneen e e seeteneeabenreaneeneeeennenes 21
Using the USBDM Application to Perform Device Firmware Upgrade (DFU).......ccccocviiviiinnnciseeie st 22
Using the OEM.eXe t0 UPAate FIFMWAIE ........cviiiieie ettt sttt e beeseeseese e s enseseesbesreenearaeneensees 24
Creating @ DFU UPIoadable FIle ..ot b et b ettt b e et eb e et ebenn b e b nreneas 25
USING the DFULEXE ULHITY ....c.eiviieieieeieee bbbttt bbbttt b et bbb bbbt et n et 26
Using the USB2230 CUStOM 1C0NS PACKAGE........uiveieiiieiesiesie sttt ee sttt ettt s besbe e e esae e e ntesbesnenreaneeneennenns 27
Contents of the USB2230 CUStOM 1CONS PACKAGE........ccueiuieiiiieie ettt bbbttt b e bbbt e e e 27
Creating the ReqUIred SELICON TN FIIES ........c.eiiiiiieiie et b bbbt e e bbbt st e et e ne e b e 27
Manually Installing the Custom 1cons APPLICATION FIIES .......ccvciiiiiiiie e 29
Troubleshooting the Custom 1CONS APPIICALION .........cciiiiieiceceie et e e e e e b e resaeeree s eseesrens 31
WINAOWS INSTAIIEE PACKAGES. ... ... cueitiieeiiitiieetiite ettt bttt b etk b ekt b etk b et ekt e b e ekt eb e e ekt eb e e e bt ebenr et e ebeneebeabenrenea 33
Using the Production Line Descriptor Update Utility (PLDU) .......ccooiiiiiiiiiieieeeeee ettt 33
L L o O o T o I I 1O I o] ] o= 4 o] o ST 35
Using the PLDU to Update DEVICE DESCIIPIONS .....cuvcveiiieitestesieseeseereeieseestestessessaseessesaessessessessessessseseessessessessessesssesesssensenes 35
Using the Production Line TeSt ULIHILY (PLTU) . .iciiiicie ettt e ettt st st ne s et e besnesteenneneesrenas 36
Creating the PLTU BNi FIIE ..ottt h etk b etk b e ekt b ettt e bt e e bt eb e et e abenn b e ebenrereas 36
A SAMPIE PLTU TNEFIIE .ttt bbb bbbkt b bbbt et b et et sb e 37
Setting Up the PLTU APPIICALION .......oouiiiiiiiieie ettt bttt bbb e b b e e b e e st e ne e e e b e sbesb e et e e neaneenn et es 38
Using the PLTU t0 TeSt MUIIPIE DEVICES .........oiuiiiiieiiiieie ettt bbb bbbttt b e bbb e bt n e e e 38
Known Issues with the USB2230 Production Ling ULHITIES. ..o 39
Using the QuickTest Production Line Read/Write TeSt ULIILY ........cccoiriiiiiiiiiiicc e 40
USING the EPRIMUPDT.EXE UTLHITY .....c..ouiiiiiiiitiiicit ettt bbbt b bbbttt 41
Using the Windows XP Special Memory Stick Format RegiStry KEY ..o 43
USING The KIITREG UTHTITY .....eeieiei ettt bbbt bt £ et e s e e e e e b e sk b e e b e et e n b e ne e e b e e b e eb e e b e e neenbeneetas 44
USING The SWAPANVE ULITITY ..ottt bbbt h e e e b ek e e e bt ekt s b e e b e et e s b e ne e e ke nbeebeebeenteneesnetas 45
Using the Dos Production Line Utility (DOSPLTU) .....cciiiiiiiieiicieieiie ettt ste st st te e s e e e stesbesnestesnneneesnenas 46
Media TeSted With the USB2230 ........c.ciueiiiieiiieietisiees sttt sttt et e et s b e st e beebe st ebeabe st ebeabe st ebeabe st ereabeseereabeneenens 50
USB2230 Performance BENCMAIKS ........cc.oiiiiiiiiiiieisieeise ettt ettt et se et tes b b s b et b e st s aneneeneanes 52
LT L@ 0 NS 1o ] 0T oL A I U P 53
KNOWN FIrMWAIe REIATEA ISSUES ......oviiiitiiieiiitiiieieete ettt bttt et b e ek btk s bt et e e b et et e ebe st et e ebe st et e abe st eneabeneenea 54
LGS T - | LSOO TP URURURPTN 54

(O B 1At R 54



USB2230 Software Release Notes

Page - 4 -

VIS DIBVICES: ..vviiteiiteete et ette et e ete ettt e beettestaesbeesbeeebeebeeabeabseebseebe e st e e st e e Rbeetaesbe e beebeeaeeeaeeeaeeebeeabeeabeeabeeebesabestaesbeesbeesbeeeeenteenns 54
SIM DBVICES: ..eiiteiiteiite et ettt ettt e et e ettt s te s e e s beeebe e ebeeabeebeesbeeabeebe e s beeabesheesheeabeeRbeeRbeeheeeheeabe e beeRbeaRbe et beabeeabeebeebeenteeaeeebeeareereen 54
SD/IMIMIC DBVICES: ...vieveetteetteitteite ettt ete st ste e ebe e ebeebeesbesbeesbeesbe e beesbesteesbeesbeebeeabeeabeeaseebeesbeesbe et be et sesbeesbeesbeesbesnnesaseabeeabeenreans 54
XD DBVICES: .t eveeteeite et ettt ete ettt e et e et e eb e e ebe e be e beesbesheesbeesbe e beeabeeabeeRseeb b e beesbeesbeesbeeReebe e beeAbeeReeeReeebeeebe e beenbeenbeetbenreenrees 54
55

E LT N [0 L R N (o I (O T 1 10 1TATZ L =TT



USB2230 Software Release Notes
Page -5 -

Revision History

0.473: - External Evaluation Build.
-Initial Release

0.479 -External Evaluation Build.
Firmware:
- fixed issue with SD clock starting before card power is settled and to always start at 200KHz.
- fixed intermittent card startup issue after USB Suspend.
- added additional SD vendor specific commands to provide SD Status Register information, such as
Speed Class.

Applications:

- (USBDM 2.0.0.8, PLDU 2.0.1.1) Added attribute bit 31 for setting xD Player mode.

- (USBDM 2.0.0.8, PLDU 2.0.1.1) DFU recovery enhancement for system power loss during DFU.

- (USBDM 2.0.0.8, PLDU 2.0.1.1) Allow 29 characters for MFG and PROD strings.

- (USBDM 2.0.0.8, PLDU 2.0.1.1) Added User Interface for updating VID/PID of DFU file during
creation of OEM.exe.

- (USBDM 2.0.0.8, PLDU 2.0.1.1) Dragging and drop of a DFU file onto PLDU.exe is ignored.

- (Setlcon 1.4.0.0) Changed the way GetMedialD command is issued.

- (Software Installers 1.0.0.4) Generic.ini included for X86 platforms.

- (USBDM 2.0.0.8, PLDU 2.0.1.1) Added User Interface for updating VID/PID of DFU file during
creation of OEM.exe.

- (USBDM 2.0.0.8, PLDU 2.0.1.1) Dragging and drop of a DFU file onto PLDU.exe is ignored.

- (Setlcon 1.4.0.0) Changed the way GetMedialD command is issued.

- (Software Installers 1.0.0.4) Generic.ini included for X86 platforms.

- (Software Installers 0.4) Supports installation on 32-bit and 64-bit platforms.

- (Software Installers 1.0.0.4) Supports installation on all OSs from Windows 98 to Windows Vista.

- (Software Installers 1.0.0.4) Installs all components (end-user applications, drivers, INF files, INI files
and utility applications).

- (Software Installers 1.0.0.4) Provides support for SMSC and GENERIC descriptor data.

- (Software Installers 1.0.0.4) Provides support for grouping MS LUN with MemoryStick device group.
This feature is available only for 223 and 2228 devices having SMSC descriptor data.

- (Software Installers 1.0.0.4) Installer does not install any signed drivers

0.0.0.500 -External Evaluation Build.
Firmware:
- Added MMC 4.2 support.
- Added performance enhancements
- Added MS-Pro Compliancy (tester version 1.06.070A).

0.0.0.501 -External Evaluation Build.
Firmware:
- Fixed MMC 4.2 Identification issue.



USB2230 Software Release Notes
Page - 6 -
0.523: External Evaluation Build.

Firmware:

- Fixed minor Memory Stick Compliance test issue uncovered by latest test version.

- Added HS-MMC Compliancy mode with default that only allows MMC clock speed of 20MHz to
ensure out of specification HS-MMC cards work. Optional high speed operation via attribute bit.

- MS/MS Pro Compliance enhancements.

Applications:

- (USBDM 2.0.1.0) Removed Admin check for OEM.exe under Vista. The OEM.exe app will check for
admin rights under other OS only.

- (USBDM 2.0.1.0, PLDU 2.0.1.3) Changed the definition of bit20 of Attributes field to 0 = Compatibility
Mode (Default value) and 1 = Allow High Speed Mode.

- (DosPLTU v2.2, CheckROM v1.6, EprmUpdt v2.2) Fixed the issue of infinite loop in certain OEM PCs
for EHCI tests; Added code to try and enable A20 gate if it is not enabled.



USB2230 Software Release Notes
Page - 7 -

The Non-Volatile Store Data

The NVStore is user modifiable data that is stored in either serial EEPROM or external program flash ROM and used by
the device during operation. Some of the values that can be modified in the NV Store data include the serial number,
VID/PID, Manufacturers 1D String, Product ID String, LUN ID Strings, the modifiable device descriptors such as
bmAttributes and MaxPower, number of LUNs, LUN order, and other madifiable bytes which customize the operation of
the USB2230.

The NVStore data is programmed into the device using a text file “EEPROM.DAT,” which contains the bytes of data that
are written to the EEPROM.

SMSC provides a utility to program the NVStore data called “USBDM.exe.” The procedure for using the USBDM Utility
to write the NVStore data is described in the following paragraphs.

Using Flash ROM to Store the NVStore Data

If you are using external program flash you can, as a cost reduction measure, eliminate the need for a serial eeprom in your
device by using the SST39xx010 Flash ROM, and the “NO EEPROM?” version of the USB2230 firmware. The NO EEPROM
firmware uses a portion of the memory storage area in the SST39xx010 Flash to hold all of the NV Store data. Currently, the
SST39xx010 is the only chip supported by the NO EEPROM firmware. If you have a requirement to use another flash, please
contact SMSC Sales to inquire about adding support for your chip.

Note: If external program flash is used, the access time of the flash media must be less than 66 nanoseconds.

Note: The USB2230 contains internal masked ROM program code. If you are running the 2230 from internal ROM code, you
must use an external eeprom to store the NVStore data (VID/PID/Manufacturer and Product ID Strings, Attribute Bytes, etc.)

Creating the EEPROM.DAT File

An eeprom.dat file can be created using the USBDM application by altering all fields in the Configuration and Branding tab as
desired for the new file and saving the file using the “Save” button. This can be done with or without a device attached to the
host computer. The following section describes these tabs and the USBDM application in detail.



USB2230 Software Release Notes
Page - 8 -

Using the USB Drive Manager Application (for Windows XP only)

The USB Drive Manager (USBDM) application can be used to create the eeprom.dat file and program the USB2230 device via
USB, plus some additional functions such as creating end-user firmware updates contained within a single, easily distributable
exe, and having the ability to instantly read the NVStore data from the device without the need for a driver swap.

Note: Only USBDM version 2.0.0.4 or newer will work properly for updating 2230

Note: USBDM will not work for updating a SMSC standalone hub.

Note: The USBDM Application is supported in Windows XP only.

Getting Started: He Edt Yew Heb

=|_1\H Erass Fﬂt"g%“@‘
To start the USB Drive Manager application, simply double S et | M0 [Branding | Configuration | Hub | About |
click on the “USBDM.exe” executable. Once the application 3 ot o ey dentfcaier
opens you will see the screen shown to the right if there is a L tritlans: Dive-Lunt __Deach |
device attached to the host computer. If there is no device Manuisctuss [SHOE
present, a virtual device will be listed instead of the USB MSC Product. 2230 HGHS
Device information shown in this example. This virtual device SefolMumber. 00022292230
allows a .dat file to be edited without the need for a device to be P Revision 407
attached to the host computer. Bt Fo MCU: 2230

Chip ID/Rey:  0x30-0
Media Present:  Mone

Configured For:  Memary Stick

Ready MU

The USBDM Toolbar

‘m USB Mass Storage Class Drive Manager

File Edit Options Wiew Help

20| =

Erase

A ER
Fmt | DFU |

The toolbar buttons shown above are displayed at the top left hand side of the application. Starting from left to right, they
perform the following functions:

Button 1: Refresh Drive List Button 5: Format Drive (Not Used With 2230)
Button 2: Load .dat file Button 6: Upload Firmware

Button 3: Save .dat file Button 7: Copy

Button 4: Erase Media (Not Used With 2230) Button 8: Paste

*1f you do not see these buttons displayed, go to “View” in menu bar and make sure there is a check next to the “Toolbar”
option.

*Clicking on the “Help” option above the toolbar and selecting “About Drive Manager” will display the version of the
USBDM application.



The Info Tab

The info tab is displayed whenever a USB mass storage
class device is attached to the host while USBDM is
running. This tab displays the key fields in the NVStore
data for the device. Note: Unless the device contains the
SMSC USBDM firmware extensions, most of the data
fields will display INVALID.

Attach a device containing the USBDM firmware
extensions to the PC via a USB cable. The USB Drive
Manager application will read the NVStore data for this
device if valid data exists. It will display information for
each drive that is available on the device. The example to
the right has information for Drive F, Drive G, Drive H,
and Drive I. You can toggle between the information for
each of these drives by single clicking on the Drive entry
under the “USB MSC Device” folder on the left side of
the application.

USB2230 Software Release Notes

Page-9 -
i USB Mass Storage Class Drive Manager E@@
Ble Edt View Help
= | AL
z|_1|ﬂ Erase Fmt|DFU‘|@‘

Bl USE MSC Device Info IBranding} Cunfiguraliunl Hub ] About ]

E Drive - Lund Inquiry |dentification

Drive E - Lun0
B orive H - Lunz Uit Mame: Drive G - Lunl H Detach

Ready

Manufacturer:
Praduct:

Serial Number:
P/ Revision:
Built For MCU:
Chip ID/Rewv:
Media Present:

Configured For:

SMSC

2230 H5-M5
000022292230
4.07

2230

02200

Mane

temony Stick.

Note: The detach button seen on this tab will momentarily detach the target device from the system.

The Branding Tab

The Branding tab is used to write vendor specific data
to the NV Store. Programmable fields include: Vendor
ID, Product ID, Language 1D, Product String,
Manufacturing String, and Serial Number String. Any
of this information can be changed on the device. Once
you have entered the information for your device, click
on the “Update Now” button to program the NVStore.

Vendor ID: Unique for every vendor. Assigned by the
USB Implementers Forum.

Product ID: Unique to product. Assigned by vendor.
Language ID: 0409 is the Language Code for English.
Other Language Codes may be found in the USB
specification.

Product String: 28 characters max. Used to identify
the product. This string will be used during the USB
enumeration process in Windows.

Manufacturing String: 28 characters max. Used to
identify the manufacturer.

Serial Number: 12 hex digits max. Must be unique to
each device.

‘ml USB Mass Storage Class Drive Manager

Fle Edt View Help

e

=
Erase

|| E:
Fmt‘DFU|‘@‘

=123 USE M3C Device
B Drive G - Luni/H
B oriveF - Lund
A oriver-Luna
A oriveH - Lunz

Ready

Info

Branding WCunfiguratiunl Hub I

0EM Eranding Information

Wendar [D:

Product 1D:
Language ID:
tanufacturer Sting:
Froduct Sting:

Serial Number String;

Inquiry Reported D ata
Inquiry Pracuct

Inguiry M anutacturer:

«[04za
| 2230
«[0408

Feset Defaults Update Now

[smsC

|2230 Card Reader + 1104

|o00022232230

2230
SMSC

(12 hex digits)

Inquiry Manufacturer (8 Bytes) and Product (5 Bytes) ID Strings: If bit 4 of the 1% attribute byte is set, the device will use
these strings in response to a USB inquiry command, instead of the USB Descriptor Manufacturer and Product ID Strings.

Using .dat files with USBDM

The Load .dat file button can be used to populate these fields from a valid .dat file. After clicking the Load .dat file button, you
will be prompted to specify a .dat file. Once the .dat file has loaded, the text fields will be updated to reflect the data in the .dat
file. Any changes made to the text fields can also be saved into a .dat format using the Save .dat file button at the top of the

application.



The Configuration Tab

The Configuration tab contains all of the
other NVStore programmable fields not
found in the Branding Tab.

The Configuration Tab is where you set:

1) The NVStore signature (always
“ATAL” for USB2230)

2) The attribute bits

3) The LUN assignments

4) The LUN IDs

5) NAND Profile (Not Used for
USB2230)

6) Miscellaneous settings such as
the USB descriptors bMaxPower
and bmAttribute

These user programmable fields are
described in detail in the following
paragraphs.

Signature: Signature should remain set to
ATAL1 for USB2230.

Attribute Bytes: This field should only
be used in development phase to modify
attribute bits that have not yet been
implemented into check boxes and
dropdown choices on this tab. There
needs to be full understanding of what
effect altering a specific bit will have on

USB2230 Software Release Notes

dropdown applies to the 2230 and are explained in detail in the Attribute Bit definitions section.

LUN Configuration:

LUN ID Strings (7 bytes each)—There are four LUN ID strings corresponding to LUN# 0,1,2, and 3.

specify the number of LUNS the device exposes to the host. These bytes are also used for
icon sharing- Assigning more than one LUN to a single icon. This is used in applications
where the device utilizes a combo socket and the OEM wishes to have only a single icon
displayed for one or more interfaces. For more information, see the section of this
document entitled “LUN Configuration and Icon Sharing.” If this field is set to “FF”, the
program assumes that you are using the default value of “04” and will display icons for CF,
MS, SM, and SD. If this field is any other value besides “FF”, you must specify the LUN#
assignments in the boxes starting with LUN 00 and going to (# of Icons to Display -1)

Page - 10 -
=IOl x|
File Edit Yew Help
BlO| @ =R =] e
E.?éssé\:iiie_vﬁum Info | Branding Cenfiguration |Huh |
E ';:3:3‘;““”; NVSTORE Data { Update Now
E Drive I-LunZ Altribute Bytes
Signature: IATM j Innnnnnqn
Compact Flash D&
(l‘ Use Slow Cornpatibility Mode ‘ IMDde PFin Inactive [Static Programming] j
=D [~ Enable Transceiver Shutdown
™ Enable %D Doar Suppart [ Transceiver Shutdovin Polarity
™ Enable %D Player Mode [~ Enable SIR mode only
— Secure Digital —CIR
T i [Fesvion =
¥ Reverse Card White Protect Sense
— Smart Media ~ LUM Configuration
™ Full Speed 1-bit ECT Conection F # of [cans to Display
™ Don't Perform eckin
L] Ek\p‘PF.ag; SlaE.Ili E‘C_I,:E I’fheik [5M and ¥D) F Compact Flash IEF LUIMHD - 1D
Do - N o e [FF Memony Stck Jpis LUNH -1D
MAND [FF Smart Media [5u LUN#2 - 1D
[~ Uss Slow Media Timing ) [FF gecus Digital/MMC JEDMME " Lunga -1
I Cnmavte P [P o
- MMC-4
ICompalib\hly Mode j
|200me -
 Misc Setting:
F Device Repots USE Yersion *1.7 or 2.0 NIS_D b axPower “la Lun Pwr Cfg
Use Inguiy MFG and PROD I Strings
'E Set Ac:wlj GPIO High vhen Suspt:engdad xIE Blink Interval Klﬁ Lun Pawer Mask 1
Use Lun Power Configuration
I Deice HespondsTDgGetStalus i xlE Blink Duration |42 Lun Power Mask 2
[~ Use Common Media Insert / Media Access LED #)CO bmattibute
|__| T~ Report Senal Mumber Sting Index as ZERD o
[~ Attach on Card Insert / Detach on Card Removal
Ready [ o [
the device before changing this field. All released features will be able to be selected without utilizing this field.
Attribute Bits: The attribute bits are used to customize the functionality of the USB2230 firmware. They are organized by
which particular media type they pertain to. Attribute bit checkboxes that are not specific to a media type are contained in the
Misc. Settings section. A complete list of all programmable attribute bits and their function is listed in the section of this
document entitled “Attribute Bit Definitions and NVStore Editable Values.” In the image shown above “Reverse SD Card
Write Protect Sense” is the only option selected. Placing a check to the left of an option sets an attribute bit. If the box is
unchecked, the attribute bit will be cleared. Any of these options may be checked or unchecked depending on the various
needs for the product being programmed. There are also dropdown options in the “MMC-4" section. Only the “MMC-4”
Number of Icons to Display, CF Lun #, MS Lun#, NAND Lun #, SD/MMC Lun #, SM Lun #- These bytes are used to
LUM Configuration
’E # of |cons to Display
[FF Compact Flash F LUNHD - 1D
[FF Memon Stick MS LUMN##1 - 1D
[FF Smart Media Sh LUN#2- D
[FF Gecure DighalMMC [SDMME g3 1D
[FF MaND « |FFFF MAMD Profile

NAND Profile (2 Bytes): (Not used for the USB2230) This is where the NAND
performance profile is specified for controllers that use it.

Note that more than one interface (CF, MS, SM, or SD) can share a LUN. Remember LUN numbering always starts at 00.




USB2230 Software Release Notes
Page - 11 -

The configuration to the right directs the firmware to show three LUNSs in the order of CF, SD/MMC, and SM. Note that
Memory Stick is not enabled in this configuration.

LUM Configuration

# Of Icons to D|Sp|ay 03 Iﬁ # of lcons to Display

Compact Flash (1% LUN): 00 [00 CompactFlash  |CF  LUN#D-ID

Memory Stick (will not display): FF [FF Memory Stick MS  Lungt-ID

Smart Media (2" LUN)r:dOZ [02 St Media 84 LUN#2-ID

Secure Digital/MMC (3" LUN):01 [0 Secure DigtaMME [SD/MMC  LN#3 - 1D
[FF_ NaND alFFFF_ NAND Profie

Misc. Settings: The Misc. Settings section is used to program the other

miscellaneous NVStore editable values. They are: 4|30 bMasPower |54 Lun Punr Cig

W lE Blink. Inkerval W ’ﬁ Lun Power Magk 1

1) I;:\e/lngg]v;ﬁrlglo Itq)qy’:\e). Per USB specification. Do not set this value «J02 Bink Duraion. %[ 42 Lum Power Mask 2

2) Blink Interval (1 byte): Programmable in 10ms intervals. Hi bit /80 bmatbute
indicates idle state: 0-Off, 1-On. The remaining bits are used to
determine the blink interval up to a max of 128 x 10 ms.

3) Blink Duration (1 byte): This byte is used to designate the number of seconds that the GPIO 0 LED will continue to
blink after a drive access. Setting this byte to “05” will cause the GPIO 0 LED to blink for 5 seconds after a drive
access.

4) bmAttribute (1 byte): Per USB Specification.

80 — Device is Bus Powered
CO - Device is Self Powered

5) Lun Pwr Cfg (1 byte): — Should be a valid hexadecimal number. Default = 54. Refer to the “Lun Power
Configuration” section for additional information on how to calculate this byte.

6) Lun Power Mask 1 (1 byte): - contains the power mask setting for CF and MS controllers. The mask used depends
on how the LUN is configured in the LUN Power Configuration byte. Refer to the “Lun Power Configuration”
section for additional information on how to calculate this byte.

7) Lun Power Mask 2 (1 byte): - contains the power mask setting for SM and SD controllers. The mask used depends
on how the LUN is configured in the LUN Power Configuration byte.

The Hub Tab

i . B Ma orage Class Drive Manage EE

The Hub tab is non-functional for the 2230 product. If a 2230 B ft Yew o

(or any USB mass storage class device that does not support A= A LY

this t_ab’s functio_ns) is_ connected to the hos_t whgn USBDM ig =St T [ito | Bronding| Configuration b |

running, the entries will be grayed out and inactive. Attempting B orive H-Lunz HUB Dessipter

. - B orive F - Luno
to moQ|fy the contents of the Hgb tab will have no effect on the e e vy
operation of the device. Changing any values on the Hub tab —
. - . Product ID: &

y\nII have no effect, as these entries will be grayed out and o e A

inactive.
Configuration (in hex)
’_ HUE Options Byke #1 r tamimum Pawer Self-Powered
5% HUB Dptions Byts 2 [ Masinum Power Bus-Powered
’_ Mon Removable Device ,_ Hub Controller Max Current Self-Powered
[FF Por Disable SelFPonered [F7 Hub Controller Max Current Bus-Pawered

[FF Pont Disable Bus-Powered [ Powern Time

Risaidy




USB2230 Software Release Notes
Page - 12 -

Attribute Bit Definitions

Attributes (4 bytes): The attribute value for your device is determined by the options selecting in the USBDM utility provided by SMSC.
Changing the checkboxes and dropdown boxes and updating the device can update this information. These bits are defined below and
organized by the Byte/Bit order. In the USBDM GUI, these bits are organized by which media type/feature they affect. The majority of
these bits are displayed as checkboxes in the USBDM GUI. A few of them are displayed in dropdown options. The “MMC-4" dropdown
does apply to the 2230 and is described in detail following the bit definitions. The bit definitions are as follows:

Note: The bit names are shown in bold below and correlate to how the attribute checkbox is labeled in USBDM. Not all checkboxes apply to
the USB2230. Those bits that do not apply will specify, “Reserved — always set to 0” in the definitions below.

Byte 1, bit 0: Reserved — always set to 0. Use Slow NAND FLASH Media Timing
Byte 1, bit 1: Reserved — always set to 0. Enumerate NAND Device as Removable
Byte 1, bit 2: Reserved — always set to 0. Use GPIO5 as an SD Card Insert Indicator
Byte 1, bit 3: Report Serial Number String Index as ZERO

1 — Always report iSerial as zero in the device descriptor.

0 (default) — Report non-zero iSerial in device descriptor if serial number is valid.
Byte 1, bit 4: Use the Inquiry Manufacturer and Product ID Strings

1 — Use the Inquiry Manufacturer and Product ID Strings.

0 (default) — Use the USB Descriptor Manufacturer and Product ID Strings.
Byte 1, bit 5: Set Activity GP10O High when Suspended.

1 — The activity LED GPIO is set to High when suspended.

0 (default) — The activity LED GPIO is set to Low when suspended.
Byte 1, bit 6: Reverse SD Card Write Protect Sense

1 (default) — SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low

0 — SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high
Byte 1, bit 7: Make SD Cards Write Protected Always (Read Only)

1 - SD cards will always be write protected, regardless of the state of the card's write protect switch

0 (default) — SD cards will only be write protected when the write protect switch on the SD card is engaged
Byte 2, bit 0: Don’t Perform Smart Media CIS Checking

1 - Ignore CIS check for Smart Media to allow the USB2230 to work with non-compliant cards.

0 (default) — Enforce Strict CIS checking for Smart Media cards.

Byte 2, bit 1: Reserved — always set to 0. Perform NAND Media Idle processing

Byte 2, bit 2: Use Slow Compact Flash Compatibility Mode
1 — Compact Flash will operate in slow PIO-0 mode only regardless of CF card’s actual capability.
0 (default) — Compact Flash will operate at the fastest mode the card reports it can support.

Byte 2, bit 3: Device Responds To Get Status(1)

1 — Device will report itself as SELF POWERED in response to a GET STATUS from the host.

0 (default) — Device will report itself as BUS POWERED in response to a GET STATUS from the host.
Byte 2, bit 4: Device Reports USB Version *1.1 or 2.0 (Warning: Setting this bit will result in the device being non-compliant
with the USB 2.0 specification.)

1 — Device will report itself as USB version 1.1 in the bcdUSB device descriptor.

0 (default) — Device will report itself as USB version 2.0 in the bcdUSB device descriptor.

Byte 2, bit 5: Use a Common Media Insert / Media Activity LED.

1 — The activity LED will function as a common media inserted/media access LED.

0 (default) — The activity LED will remain in its idle state until media is accessed.

Byte 2, bit 6: Reserved — always set to 0. Perform Software 1-bit ECC Error Correction on Smart Media.
Byte 2, bit 7: Reserved — always set to 0. Skip Page Status Byte Check on SM and xD.



USB2230 Software Release Notes
Page - 13 -
Attribute Bit Definitions (cont.)

Byte 3, bit 0: Reserved —always set to 0. Attach on Card Insert / Detach on Card Removal.

Byte 3, bit 1: Reserved — always set to 0. Enable xD Door Support

Byte 3, bit 2: Use Lun Power Configuration.
1 — Custom LUN Power Configuration stored in the NVSTORE is used. Refer to section “LUN Power Configuration” section for
additional information about this feature.
0 (default) — Default LUN Power Configuration is used.

Byte 3, bit 3: Reserved — always set to 0

Byte 3, bit 4: MMC-4 clock speed. (Set or cleared by dropdown option in MMC-4 section)
1 - Allows HS-MMC cards to operate at the maximum clock frequency (24MHz or 48MHz) specified by the card. Will
automatically adjust the clock rate back to 20MHz maximum if any card errors are detected for a given card insertion. Although
this mode as been shown to work with known non-compliant HS-MMC cards, SMSC cannot guarantee that any non-compliant card
can operate, either with this bit set or cleared.
0 (default) — Forces all MMC cards to operate at a maximum of 20MHz. Some HS-MMC cards have been found to have non-
compliant data hold timing and will fail with SMSC’s product if operated above 20MHz.

Byte 3, bit 5: MMC-4 Card Power Management. (Set or cleared by dropdown option in MMC-4 section)
Combined with Byte 3, bit 6 to form the MMC-4 current allowed dropdown option. See section below titled “Setting MMC-4
Clock Speed and Card Power Management Bits” for additional information about this bit. This bit is set to O by default.

Byte 3, bit 6 MMC-4 Card Power Management. (Set or cleared by dropdown option in MMC-4 section)
Combined with Byte 3, bit 5 to form the MMC-4 current allowed dropdown option. See section below titled “Setting MMC-4
Clock Speed and Card Power Management Bits” for additional information about this bit. This bit is set to 0 by default.

Byte 4, bit 6 Smart Media Player Mode
1 — Do not erase blocks while resolving mapping conflicts.
0 (default) — Erase blocks while resolving mapping conflicts.

Byte 4, bit 7 xD Player Mode
1 - Enable xD player mode. Do not erase blocks when resolving mapping conflicts. Media marked as write-protected.
0 (default) — xD player mode disabled

All other bits in the Attribute fields are reserved and should be set to 0.

Setting MMC-4 Clock Speed and Card Power Management Bits:

The MMC-4 Card Power Management bits are Byte 3, bit 5 and Byte 3, bit 6.

b C-4
Most attribute bits are set by placing a check to the left of an option. This is not true [Compatiiiy Mode =]
for Byte 3, bit 4, Byte 3, bit 5; and Byte 3, bit 6. A dropdown box sets or clears e o)
these bits. Dropdown A, shown to the right, is used to set or clear Byte 3, bit 4. [liow High Speed Mods
Dropdown A
Dropdown B, shown to the right, is used to set Byte 3, bit 5 and Byte 3, bit 6 by MM

selecting the appropriate option in the dropdown box. The table below shows how
each the dropdown choice correlates to the MMC-4 Card Power Management bits.

| Compatitiliy Mode

WLl

Dropdown option Byte 3, bit 6 Byte 3, bit 5
(Current allowed)

500rmed, / Card Requested
200mA (default) 0 0 Dropdown B
300mA 0 1
400mA 1 0

500mA or whatever
the card requests




USB2230 Software Release Notes
Page - 14 -

Programming the NVStore Data

Fmi USB Mass Storage Class Drive Manager Q@@
File Edit Yew Help

Once the eeprom.dat file has been created and loaded into A=A GRS
USBDM, you are ready to program the NVStore data into = Semscosie — [1og  Branding | configuration | Hub |

B orive - LunijH

your device. E Drive F - LurD OEM Branding | nformation -
Drive I-Lun3
B oriveH - Lunz FReset Defaylts Update Mow
. . endor D x|0424
Press the “Update Now” button on either the Branding or s

Configuration Tab of the USBDM application. Both L Pwduct:z T
buttons will update all of the information displayed on b e

any tab in USBDM. The operation will report that the et |
Update completed successfully once the data has been
programmed.

Product Sting, | 2230 Card Rleader + DA

Serial Number Sting: 000022232230 (12 hex digits]

Inquiry Reparted D ata
Irquiy Product. 2230
Inquiry Manufacturer,  |SMSC

Ready UM




USB2230 Software Release Notes
Page - 15 -

LUN Configuration and Icon Sharing

LUN Configuration

LUN (Logical Unit Number) is the term given to each available media type in the USB2230. The USB2230 has a total of 4
LUNSs available for use: Compact Flash, Memory Stick, Smart Media, and Secure Digital/Multimedia Card. OEMs can specify
the number and order of LUNSs exposed to the user by setting the LUN Configuration section of the Configuration tab in
USBDM and updating the NVSTORE with these new settings.

Example: The example on the right shows the correct settings for a 2230 LUN Configuration
device that exposes icons for MS, SM and CF in that order. Note the (03 # of lcons to Display
following bytes:

g [0 Compact Flash CF LUINHO - ID
Number of Icons to Display: “03” (The user will see 3 icons) |00 Memary Stick b5 LUN#T -ID
MS LUN #: “00” (Memory Stick will be the 1% icon displayed) (01 Smart Media SM LUN#2 - 1D
SM LUN #: “01” (Smart Media will be the 2" icon displayed) FF Sacure DigtalMMC |SOMME | g3 10

CF LUN #: “02” (Compact Flash will be the 3 icon displayed) _
SD/MMC LUN #: “FF” (An icon for SD/MMC will not be displayed) FF Nao IFFFF NAND Frofie

Note: LUN numbering always starts at “00”.

Icon Sharing

In addition to LUN configuration, the USB2230 can be further customized to allow more than one LUN to share an icon. This
functionality would most likely be used for devices that contain multi-card adapters (adapters that can read more than one type
of card.) So if you wanted to use a “5-in-1" or a “6-in-1" adapter, the USB2230 could be configured to only display a single
icon to the user, rather than an icon for each individual media type. Alternatively, if you wanted to use a “4-in-1" adapter for
Memory Stick, Smart Media, Secure Digital and Multimedia Card, but have a separate adapter for Compact Flash, you could
configure the USB2230 to display 2 icons to the user (one for the 4-in-1 adapter and one for the Compact Flash) as shown in
the example on the right.

Example: The example on the right shows the correct settings for a 2230 device

that exposes 2 icons: 1 for (CF) and 1 for (MS, SM and SD/MMC) in that order. LUN Configuration
Note the following bytes: (02 # of lcons to Display

00 Compact Flash CF LUN#D - ID
Number of Icons to Display: “02” (The user will see 2 icons) [ = .as
CF LUN #: “00” (Compact Flash will be the 1% icon displayed) |01 Memoy Stk M EEGE =l
MS LUN #: “01” 01 Smart Media SM LUNHZ - IO
SM LUN #: “01” } (These media will all share a single icon) [0 Secue DigitalMMC [SDMMC | yga o
SD/MMC LUN #: “01” [FF NAND  [FFFF MAND Profile



USB2230 Software Release Notes
Page - 16 -
LUN Power Confiquration

The LUN Power Configuration allows the user to customize which GPIOs control power to which LUNSs.
Without this feature, users designing card readers that utilize multi-card sockets (sockets which can accept different
flash card types) must include one FET for each card that the socket supports. Therefore, if a socket can accept
any card type, the board design must include 4 FETs even though only 1 FET is active at a time. In order to reduce
cost, only one FET is needed per socket. Users can set the LUN Power Configuration to have a single GPIO
control power to the FET to deliver power to the multi-card socket, instead of requiring 4 GPIOs to power 4 FETs
independently.

An additional feature for the 2230 is that it has 3 internal FETs which can be utilized instead of external
FETs. The Lun Power Configuration feature allows any card (except CF cards) to be powered either by an external
FET or internal FET. (CF cards can ONLY be powered by an external FET). Also, any card (except CF cards) can
be powered by any combination of internal FETs. These features are configured via the NVSTORE settings.
These configurations are described below.

In order to use this feature the user must set the “Use LUN Power Configuration” bit (Attribute byte

3 bit 2) and assign a valid hexadecimal number to the “LUN Pwr Cfg” byte (byte 172),“ LUN Power
Mask 1", and “LUN Power Mask 2" in the NVSTORE.

The format of the NVStore LUN Pwr Cfg byte is as follows:

Bit
7 | 6 5 | 4 3 | 2 1 | o
SD Power GPIO | SM Power GPIO | MS Power GPIO | CF Power GPIO

The Power GPIO field for each of the sockets shall be defined as follows:

Bit 1 Bit 0 Power GPIO
0 0 Use external FET, connected with GPIO 8,9,10 and/or 11
0 1 Use Internal FET, connected with GPIO 8, 10, or 11
1 0 Reserved
1 1 Reserved

By default the LUN Power Configuration byte will be as follows:

LUN Power Configuration
7/6|5[4[3|2|1]|0 Definition
CF 0 O Use External FET
MS 0 1 Use Internal FET
SM 0 1 Use Internal FET
SD/MMC |0 1 Use Internal FET
54h

The above chart shows SD being powered by internal FET, SM powered by internal FET, MS powered by internal FET, and
CF powered by external FET.

Note: When the appropriate attribute byte LUN Power GPIO is changed, the behavior of the Power GPIOs will change to that
specified above regardless of LUN configuration.



LUN Power Masks

The LUN Power Masks are 4-bit fields that represent which GPIOs or FETs are configured for use with each LUN.

USB2230 Software Release Notes

The mask definition is different, depending on how the LUN is configured.

Power Mask Table

Config | Mask [FET(S) PIN(s)

00 0001 [External GPIO 8

00 0010 [External GPIO 9

00 0100 ([External GPIO 10

00 1000 [External GPIO 11

01 0001 [Internal FET O GPIO 8

01 0010 [Internal FET 1 GPIO 10
Internal FET 0 and GPIO 8 and

01 0011 (Internal FET 1 GPIO 10

01 0100 |Internal FET 2 GPIO 11
Internal FET 0 and GPIO 8 and

01 0101 (Internal FET 2 GPIO 11
Internal FET 1 and GPIO 10 and

01 0110 (Internal FET 2 GPIO 11
Internal FET 1 and GPIO 8 and
Internal FET 2 and GPIO 10 and

01 0111 (Internal FET 3 GPIO 11

01 1xxx [Invalid Invalid

LUN Power Mask 1

LUN Power Mask 1 contains the power mask setting for CF and MS controllers. The mask used depends on how

the LUN is configured in the LUN Power Configuration byte.

Bit

7 6 5 4

3 2 1 0

MS Power Mask
Default: 0001 — Internal FET 0

CF Power Mask
Default: 0010 — External FET GPIO 9

Default value for LUN Power Mask 1 is 0x12

LUN Power Mask 2

LUN Power Mask 2 contains the power mask setting for SM and SD controllers. The mask used depends on how

the LUN is configured in the LUN Power Configuration byte.

Bit

7 6 5 4

3 2 1 0

SD Power Mask
Default: 0100 — Internal FET 2

SM Power Mask
Default: 0010 — Internal FET 1

Default value for LUN Power Mask 2 is 0x42




USB2230 Software Release Notes
Page - 18 -

Example: The Icon Sharing example in the previous sections describes a device with 2 icons: 1 for (CF) and 1 for (MS, SM
and SD/MMC) in that order. Since MS, SM and SD/MMC are all sharing a socket in that example only 2 FETs would be
needed. The Lun Power Configuration feature can be used to assign two GP1Os to power these LUNs instead of the four
GPI1Os used by default. Suppose for example that the user would like the CF slot to be powered externally by GPIO 9 and the
combo slot to be powered internally by FETO. First the user would set the attribute bit “Use LUN Pwr Config.” Then the user
would set the LUN Power Configuration byte to 0x54, the LUN Power Mask 1 to 0x12, and the LUN Power Mask 2 to 0x11.
(See tables below for how this value is found)

0x54 Example:

LUN Power Configuration
7/6|5/4]13[2|1]0 Definition
CF 0 0 Use External FET
MS 0 1 Use Internal FET
SM 0 1 Use Internal FET
SD/MMC | 0 1 Use Internal FET
54h

For MS, SM, and SD combo slot: From the Power Mask Table above we know that if the LUN Power Configuration for the
media slot type is set to 0x01 and the desired power is from Internal FET 0, then the Power Mask for that media slot type is
0x0001.

For CF slot: From the Power Mask Table above we know that if the LUN Power Configuration for the media slot type is set to
0x00 and the desired power is from External GP109, then the Power Mask for that media slot type is 0x0010.

This information can be used to determine the LUN Power Mask bytes as follows:

Bit
7 6 5 4 3 2 1 0
MS Power Mask CF Power Mask
0001 — Internal FET O 0010 — External FET GPIO 9
1 2
LUN Power Mask 1 is 0x12
Bit
7 6 5 4 3 2 1 0
SD Power Mask SM Power Mask
0001 — Internal FET O 0001 — Internal FET O
1 1

LUN Power Mask 2 is Ox11



USB2230 Software Release Notes
Page - 19 -

Using Device Firmware Upgrade (DFU)

Overview

Device Firmware Upgrade (DFU) is the process by which device firmware is updated through a standard USB cable,
eliminating the need to remove, reprogram, and replace flash memory. This operation is accomplished by placing special code
into an external flash memory chip at the time it is initially programmed. (Note: the external flash memory must have access
time less than 66 nanoseconds in order for the firmware to run properly.) This code can then later be called upon to essentially
change the USB device into a flash programmable device. Then new firmware can then be uploaded to the device and
reprogrammed into the flash. Once the operation is complete, the device configures itself back to a normal USB device and
begins utilizing the new firmware. Please note that you can not perform a device firmware upgrade if you are running
from the internal USB2230 ROM code. You must use an external flash with less than 66nS access time if you want to
have device firmware upgrade capability.

SMSC’s Device Firmware Upgrade (DFU) package gives manufacturers the ability to easily utilize DFU to
dynamically update the firmware and descriptor information in their devices. This allows for in circuit programming of new
device firmware both on the assembly line, and by the end user in the field. This affords both the manufacturer and the end user
a great opportunity to utilize the feature enhancements and bug fixes of new code immediately once it becomes available.

In order to help customers evaluate the DFU technology, SMSC provides a DFU package that consists of the DFU
driver, device firmware, sample DFU applications and source code. This document serves to describe the use of these tools,
and the implementation of Device Firmware Upgrade in a typical device application.

Files Required for DFU for Windows

USBDM.exe —A sample DFU application that demonstrates the procedure for updating the firmware and NVStore data.

eeprom.dat —A text file containing the changeable descriptor information used to update the NVStore. This file can be created
and edited by changing the data in the Branding and Configuration tab in the USBDM application and saving the data.

hex2bin.exe —A batch capable utility that converts INTEL HEX, MOTOROLA 'S', or TEKTRONIX HEX files to Binary
Format.

dfu.exe —A utility used to add, remove, or check for the presence of a DFU file suffix. Any firmware image that is to be
uploaded to a device via DFU, should contain a valid DFU file suffix.

dfu2230.hex —The DFU execution code that is inserted into the lower 64kb of a 128kb flash when it is initially programmed.
This hex file is merged with the 128K binary file "fmc.bin" with the “hex2bin.exe” utility to create the 128kb flash image
(included with the USB2230 firmware).

fmc.hex —The USB2230 device firmware that is inserted into the upper 64kb of a 128kb flash when it is initially programmed.
This hex file is converted to a 128kb binary file with the “hex2bin.exe” utility, and then merged with the 64kb “dfu.hex” file to
create the 128kb flash image (included with the USB2230 firmware).

fmc.dfu —A firmware image that can be uploaded to the device. This file is created by the user. This document explains in
detail how to make downloadable DFU images through the use of the “DFU.exe” utility, which appends a DFU file suffix to
the firmware file to be uploaded to the device. (This file is created by the user.)

Application Source Code —All of the source code for the USBDM sample application.



USB2230 Software Release Notes
Page - 20 -

Creating the 128KB DFU Capable Flash Binary “both.bin”

128KB Flash EEPROM

In order to prepare a device for DFU operation, the flash must be programmed with
both the DFU code, and the normal USB2230 device code. The device code is
converted to a 64KB binary file, and appended to the DFU code, which has also
been converted to a 64KB binary file. Together they form the 128KB binary file ]
which is uploaded to the flash eeprom. When this file is uploaded to the flash, the Device
DFU code occupies the lower 64KB block, and the device code occupies the upper 64K Code
64KB block.

In normal operation, a DFU capable USB2230 device executes only the device 64K DFU
code in the upper 64KB block of memory. This code allows it to function as a Code
normal USB 2.0 flash media controller. However, when the device is switched to
DFU mode, the DFU code in the lower 64KB block begins executing and the
device ceases to be a flash media device. Essentially, it changes to become an eeprom programming device. In this mode it is
capable of reprogramming the USB2230 device code in the upper 64KB block of flash memory. Once the operation is
complete, the device switches code execution back to the upper bank and begins operating with the newly updated code. At this
point is ceases to be an eeprom programming device, and returns to being a flash media device.

To create the 128KB DFU capable flash binary file that will initially be programmed into the flash eeprom, you will need two
files:

1) fmc.hex (The device code)
2) dfu.hex (The DFU code)

The “dfu.hex” file is provided by SMSC, and provides programming support for a limited number of eeproms. The “fmc.hex”
file is the standard USB2230 device firmware. These two files, “dfu.hex” and “fmc.hex,” are both converted to 64KB binary
files with the “hex2bin.exe” utility, and then appended to each other with a DOS copy command. Together they become the
128KB binary file “both.bin”. The procedure for creating “both.bin” is outlined below.

fmc.hexx %fmc.hinx s ot by
dfihax > Edfu_hin S e / o In/

Note that this entire procedure can be accomplished easily using a simple DOS batch file:

hex2bin -L65536 dfu.hex dfu.bin
hex2bin -L65534 fmc.hex fmc.bin
copy /Y /B dfu.bin /B + fmc.bin /B both.bin /B



USB2230 Software Release Notes
Page - 21 -

Preparing a Device for DFU Operation

In order to prepare a device for DFU operation, the flash must initially be programmed with the “both.bin” code. The
“both.bin” file contains both the device code as well as the DFU code. The DFU code must preexist on the flash in order for it
to be capable of receiving a DFU upload. The DFU code remains dormant in the lower 64KB of memory until it is called upon
to perform a device firmware upgrade operation.

Note: The external flash used to program the "both.bin" must have access time less than 66 nanoseconds.

Once the flash has been programmed with the “both.bin” file, it may be inserted into the 2230’s flash socket in
preparation for DFU operation.

Choosing a Flash Eeprom for Your Device

SMSC provides customers the “dfu.hex” file that supports only the following flash eeproms.
SST39XF010, SST29SF010, SST29SF020, SST29SF040, SST29VF020, SST29VF040, SST39XF020, SST39XF040,
STM29f010b, M29W010B, M29W200BT, M29W200BB, M29W400BT, M29W400BB, M29W040B, MX29FO00LT,
MBM29LV400TC, MBM29LV200TC, STM29W010B, PM39LV010, PM39LV020, PM39LV040, AM29LVO001BT,
AM29LVV001BB, AM29LV002BT, AM29LVV002BB, AM29LV200BT, AM29LVV200BB, S29AL004DT, S29AL004DB,
S29AL008DT, S29AL008DB AM29LV010B, AM29LVVOO4BT, AM29LV004BB, AMLV040B.
Note that for all flash devices > 1Mbit that support a “bottom boot sector”, the flash should be configured so that the boot
sector addresses appear in the lower 64KB and are configured for “BYTE WIDE” access if applicable.
Note that for all flash devices > 1Mbit that support a “top boot sector”, the flash should be configured so that the top boot
sector addresses does NOT appear in the lower 128KB and are configured for “BYTE WIDE” access if applicable.

While all of these flash support DFU firmware uploads, only the SST39xx010 supports NO EEPROM operation.

If you wish to use another flash in your device, it would most likely require some modification to the existing DFU
code by SMSC to support the electrical characteristics of the new chip. If this is the case, please contact SMSC sales to have
the project scheduled.

If you do decide to use another flash eeprom, there are a few requirements to look for to make sure it will work with
DFU. First of all it should be 128KB and byte writable. It needs to have an access time of less than 66 nanoseconds in order for
the external firmware to operate properly. Also, it should have equivalent programming characteristics as the supported chips,
i.e. block size, erase size, read/write/erase speed, command set, and command address. Provided the chip meets all of the above
requirements, there is a good chance that it will support DFU.

Setting up the Hardware

Either a USB 1.1 or 2.0 controller may be used for the DFU operation, however some USB 2.0 host controller drivers
such as OMI’s have been found to have defects which prevent DFU from performing normally. If you are going to use a USB
2.0 host controller, it is recommended that you use Microsoft’s host controller drivers in order to achieve the best results. Once
the board is attached and powered up, it should enumerate as a normal USB flash media controller. When you see the drive
icon(s) appear, the device is ready. The following section describes the next step in the process, which is setting up the
software application to perform the DFU.



USB2230 Software Release Notes
Page - 22 -

Using the USBDM Application to Perform Device Firmware Upgrade (DFU)

The following files are needed to perform a device firmware upgrade with the USBDM application:

The USBDM application executable (USBDM.exe)

The device code (both.bin) *Must be preprogrammed in the device flash in order to accept DFU
A HEX to BIN converter (hex2bin.exe)

Utility to add the .dfu suffix (dfu.exe)

The updated firmware image. Steps to create this file are explained below (fmc.dfu)

agrwdE

* Note that if you also want to perform an update of the serial eeprom, you will need a 6th file, “eeprom.dat” which contains
the descriptor information for the serial eeprom.

A firmware update can only be done using this application if a valid both.bin file is already programmed onto the device. See
the section of this document entitled “Creating the 128KB DFU Capable Flash Binary ‘both.bin’” for steps on how to create
the both.bin file.

Creating the .dfu File:

The .dfu file is a DFU uploadable firmware image. It is essentially USB2230 firmware converted to binary format using the
hex2bin.exe utility, with a DFU suffix appended to it. For information on creating the .dfu file, please see the section of this
document entitled “Creating a DFU Uploadable File”. Please note that the USBDM application uses the device ID field (DID)
to check firmware version information. The DID field should be filled with the major and minor firmware version (for this
example, v4.73, the DID would be 0x0473).

This procedure can be completed using a simple DOS batch file:
hex2bin -165534 fmc.hex fmc.bin

dfu fmc.bin -did 0x0473 -pid 0x2230 -vid 0x0424
ren fmc.bin fmc.dfu

‘m! USB Mass Storage Class Drive Manager
Eile Edit Wiew Help

5 z|_l\ﬂ e F:t|ﬂD%EJ| |E|
il USB Mass St/ 43 UsB M5 Device Info WEranding} Cnnfiguratinnl Hub }
File Edit iew A Drive I-Lun3
E Drive H - Lunz Inquiry Identification
] F - LunO
=1 ] v Lot Unit Name: Diive | - Lun3 Detach
=53 U M5C D Manufacturer: [SMSC
. . A orive 1 Product 2228 HE-5D/MME
USBDM is used for the firmware update. g orivet e
. . ) Serial Number:  [J00000000254
To begin the firmware update, start USBDM & orvert e
by double clicking on the icon. .
Built For MCU: 2225
Chip ID/Rev: [0x28-0
Media Fresent Mone
Configured For: Unknowr
Ready UM
Ready HUM




USB2230 Software Release Notes
Page - 23 -

Updating the Firmware:

To perform a firmware update, click on the “Upload Firmware” button at the top of the application. ac

DFU

You will then be prompted to select the .dfu file that you wish to Find *. dfu file and click "Open
upload to your device. Navigate to the .dfu file (if it is not already Look i | 9 DFU |« @k E-
listed in the current folder) and click open. Pl
File name: |fmc.dfu
Files of typer  [* hu files | Cancel
I” Open as 1ead-anly

You will see a pop up box on your screen that displays the status of the
firmware upload. This status will cycle through “Waiting for DFU
Driver to Load,” “Switching to DFU Mode,” “Uploading New
Firmware,” “Validating New Firmware,” and “Firmware Upload Wiaiting for DFLJ Driver to Load
Successful.” Once the loading is complete you will be prompted to
unplug the device and reattach it to continue (or to restart the host if the
device is internally mounted). Once the device is reattached, the device
will enumerate and the information for the updated firmware will be
loaded into the USB Drive Manager application.

Device Status

50% 100%

[e=]
&8

Note: The first time USBDM is used for DFU on a Windows XP host, the found new hardware wizard will be seen when the
dfu driver is used during the firmware update process. This will only happen the first time a DFU is performed on a host.
When this comes up, choose to have windows automatically install the driver. Choose to continue loading the SMSC DFU
driver even though it is unsigned. While this is occurring, you may receive a message from USBDM asking you if you wish to
continue waiting for the device to respond. Select yes to continue waiting.

Using USB Drive Manager to Create a Consumer Firmware Update Executable

USBDM can be used to create a very simple, easy to use, and easy to distribute firmware update that OEMs can give to their
customers to allow firmware upgrades. To create the executable, you only need two files:

1. The Drive Manager application (USBDM.exe).
2. The updated firmware image (fmc.dfu).

Note: Ensure that the DID set in the DFU file matches the Major and Minor firmware revision.

Simply drag and drop the .dfu file on the USBDM.exe icon in f -
Windows. You will see a popup box asking if you would like to - —
create an OEM consumer version of the DFU application. Click yes

and the application will build the consumer firmware update e i R

executable. The executable will be given the default name of
“OEM.exe.” You can rename this file to whatever you like. This is
the file that is distributed to the customer to allow firmware

upgrades. Ho e

Note: The target device must be preprogrammed with a valid
“both.bin” file to allow firmware upgrades.



USB2230 Software Release Notes
Page - 24 -

Using the OEM.exe to Update Firmware

2) You will be prompted to attach a supported USB device.

Firmware Update Instructions:

This prompt also displays which firmware version the executable will
use to update your device. For this example, Firmware Version 3.00 is
used.

Attach a supported USE device and click continue. ..

Firrnweare Version 3.00

3) Connect your device (if not connected already) and click _ _
“Continue.” E =it Continue

Note: This application allows consumers to make firmware updates to their device provided that 1) a valid both.bin file is
already programmed on the target device and 2) the firmware that they are attempting to upgrade to is equal to or newer than
the firmware version already on the device. This application will not allow an update to a version of firmware that is older than
what is currently on the device. You will be asked if you would like to update your device firmware, click “yes” to verify the
update and the application will begin to update your device.

Device Status

The application will show the status of the update. It will cycle
through “Waiting for DFU Driver to Load,” “Switching to DFU
Mode,” “Uploading New Firmware,” “Validating New Waiting for DFU Driver to Load
Firmware,” and “Firmware Upload Successful.”

50% 100%

=
o

4) The USB Drive Manager application will prompt you to either reboot your
computer (if an internal USB device was updated) or unplug the device and
plug it back in (if an external device was updated). iﬁ';ﬁﬁ:fu fﬂ;ﬂf;ﬂ?:l UISFBngtev;:; Please

unplug the device and plug it back in
o conkinue,

oK

After this is completed, you will see the device status pop up Device Status

return with the message “The Update Completed Successfully.”

The firmware is now updated on your device. The lindse anrieted Suscesrili
]

0% S0% 100%




USB2230 Software Release Notes
Page - 25 -

Creating a DFU Uploadable File

In order for a file to be uploadable via a DFU operation, it must contain a valid DFU file suffix. The DFU file suffix
contains a CRC of the entire file, a DFU signature, and the VID, PID, and DID for the device to be upgraded. The following
table was extracted from the USB Device Firmware Upgrade Specification (Rev 1.0), and shows the composition of the DFU
file suffix.

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC. (Calculation specified in the
following section).

-4 bLength 1 16 The length of this DFU suffix including
dwCRC.

-5 ucDfuSignature 3 uc The unique DFU signature field.

-8 bcdDFU 2 BCD DFU specification number.

-10 idvVendor 2 ID The vendor ID associated with this file.
Either FFFFh or must match device's
vendor ID.

-12 idProduct 2 ID The product ID associated with this file.
Either FFFFh or must match device’s
product ID.

-14 bcdDevice 2 BCD The release number of the device
associated with this file. Either FFFFh or a
BCD firmware release or version number.

In the SMSC DFU application, DFU downloadable files are given the extension “.dfu”. This is strictly arbitrary; the
files can be of any extension as long as the application is designed to handle them. In order to create your own DFU
downloadable file, you begin with the firmware file that is going to be used to upgrade the device. If the new firmware file is
not already in binary format, it should be converted to binary using the Hex2Bin utility provided. Once in binary format, the
“dfu.exe” utility is used to append a valid DFU file suffix to the firmware file (See the next section titled “Using the DFU.exe
Utility”). Once the DFU file suffix has been added, you may rename the file with a .dfu extension to indicate that it is DFU
downloadable. The entire procedure for creating the DFU downloadable file is summarized below.

frmc.hex fmec.hin fmc.hin fmc.difu
Firmware ) Firmware Firmware DFU
. Hesx2h . DF L. R
File - File e File e | Diowniloa dable
{Hex Format) {Bin Format) (With DFU Suffix) Firmware




USB2230 Software Release Notes

Using the DFU.exe Utility

Page - 26 -

The “DFU.exe” utility can be used to add a DFU suffix to a file, or to check for the presence of a valid DFU suffix on
an existing file. If required, the “DFU.exe” utility can also be used to remove a DFU suffix from a file. The “DFU.exe” utility

is run from a command box in Windows.

The usage of DFU.exe is: DFU.exe <filename> [options]

To check for the presence of a DFU file suffix: DFU.exe <filename>

To remove a DFU suffix from a file: DFU.exe <filename> -del

To add a DFU suffix to a file: DFU.exe <filename> -did <val> -pid <val> -vid <val>
Example of adding a DFU suffix to “fmc.bin”: DFU.exe fmc.bin -did OxFFFF -pid 0x2230 -vid 0x0424

"W WINNT S System32' cmd.exe

E:s>xdfu
uzsage: dfu fname [options]
to check for a suffix use: dfu fname

to remove a suffix unsze: dfu fname —del

to add a suffix use: dfu fname —did val —pid val —wvid val

e.g.. dfu myfile —did BxA182 -pid 2345 —wid B17

sets idDevice BxA182 idProduct AxA72? idUVendor BxBAAF

Once the DFU suffix has been added to the file, the last step is to give it a file extension that matches the type
expected by your application. The dfuTest sample application is programmed to accept DFU uploadable files that have the

“.dfu” extension. Finally, to check and make sure that the file has a valid suffix:

[ ] O\ WINNT . System32' cmd

Liwrdfu fmc.dfu
idDevice:
idProduct:
idUendor: BxB424
valid dfu suffix found

R




USB2230 Software Release Notes
Page - 27 -

Using the USB2230 Custom Icons Package

The USB2230 custom icons package allows OEMs to assign custom icons to the drives associated with the USB2230
flash media controller. This allows the end user to easily distinguish between the different media types in Windows Explorer.
A new feature available in Setlcon is the ability to dynamically change icons based on media state. In other words, you can
specify that one icon appear if there is media in the reader slot, and another icon appear when there is no media in the reader
slot. Also, the dynamic icon functionality enables the detection of MMC, MS Pro, and xD, allowing the user to display custom
icons for those media types as well.

Contents of the USB2230 Custom Icons Package

The USB2230 Custom Icons Package consists of the following:

Setlcon.exe- The custom icon application.

Smasc.ini- A sample Windows ini file.

Sample Icons- The sample icons distributed with this package are for evaluation use only.

Eeprom.dat- A text file containing the changeable descriptor information used to update the serial eeprom with the USBDM
utility.

Creating the Required Setlcon Ini Files

In order for the Setlcon application to work properly, an ini file with a specific file name and format must be installed on the

host computer. The ini file tells the Setlcon application which icons are associated with which drives, and provides a full path
to each icon. The following four paragraphs describe the procedure for creating, naming, formatting and installing the ini file
on the host PC.

1) Setting the Ini File Name:
Windows XP - The name of the ini file should be the same as the device's Manufacturer string, but be no
longer than 8 characters. If the Manufacturer string is greater than 8 characters, then only the first 8
characters of the string should be used. If the Manufacturer string is less than 8 characters, then the ini file
should use the entire Manufacturer’s string.
Example: If MFG string is "Standard Microsystems Corp", the ini filename should be "Standard.ini"

Example: If MFG string is "SMSC", the ini filename should be "SMSC.ini"

(Note: The Manufacturer’s string may be set or viewed using the USBDM Branding Tab. See the “Using the
USB Drive Manager Application” section of this document for more details.)



USB2230 Software Release Notes
Page - 28 -

Creating the Required Setlcon Ini Files (Cont.)

2) Setting the Ini Section Name:

Windows XP - The name of the section should be same as the first 5 characters of the Device's Product ID
string enclosed in square brackets, including any spaces if present.

Example: If the Product ID string is “223 USB Controller", the section name should be "[223 U]"
Example: If the Product ID string is "223US", the section name should be "[223US]"

Example: If the Product ID string is "223", the section name should be "[223]"

Example: If the Product ID string is ", the section name should be "[]"

(Note: The Manufacturer’s string may be set or viewed using the USBDM utility Branding Tab.)

3) Creating the Ini Section Content:

Under the Ini Section name should be a two line entry for each media type. The format for the two line entry
is "Prod=Path\IconName.ico", where "Prod" is the string following the dash (-) in the Disk Drives section of
the Device Manager for that drive (as seen in the screenshot to the right).
Path\lconName.ico is the full path and icon name for the icon to be used

=101 %]

O, pevice Manager

| acon wew || & ..|m‘||§

for that drive. "ProdLABEL=Label Name" — (A declaration used to alam

display a descriptive label in Windows Explorer for disk volumes with no =& FeoriTan
names) where "ProdLABEL" is the same as "Prod" as explained above =Yl
appended with the word "LABEL" and "Label Name" is the label that is it
to be displayed for the corresponding drive. [ BCUBZHs M5

{3 SMSC USE 2 HS-SD/MMC
(3D SMSC USE 2 HS-5M

" (3 WDC WD102BA

3l Display adapters

-1} DVDJCD-ROM drives

¥-52 Floppy disk contrallers

¥|-= Floppy disk drives

£-52 1DE ATAIATAF contrallers
]-@ Keyboards

]-- Mica and other pointing devices

Note: The string length of "Label Name" should be less than 32 characters
and should only contain alpha-numerical characters and special characters
'space' (' ") and 'under score' ("_".

@ Moniters

+- BB Network sdapters

t- ' Ports (COM&.LPT)

+)-fi2 Sound, video and game contrallers
-3 Storage volumes

-/ System devices
¥]-83 Universal Serial Bus controllers

Example: CF=\Program Files\lcons\CF.ico

Example: CFLABEL=Compact Flash Drive

Example: SD/MMC=\Program Files\lcons\SDMMC.ico

Example: SD/MMCLABEL=SDMMC Drive (Note there is no slash “/”)

Important Notes:

1) The full path to the icon should be less than 64 characters.

2) The file containing the icon should only be an .ico, .dll or .exe file.
3) There should not be any extra spaces before and after the '=" sign

To use the dynamic icon functionality, you also need to add lines for each LUN number and interface type

(i.e. CF, SM, XD, etc.) for both the media present “L# " and media not present “L# NM?” states. Please see
the sample ini file that follows for clarification.

4) Placing the Ini File in the Correct Location on the Target PC:

In order for the custom icon application to work correctly, the ini file must be placed in one of the Windows
System directories, depending on which operating system is being used. Those directories are:

Windows XP - "Windows\System32"



USB2230 Software Release Notes
Page - 29 -

Manually Installing the Custom Icons Application Files

In order to perform a manual installation of the custom icons application files, the following steps should be

performed:

1. Copy the Setlcon.exe file to a location on the target computer’s hard drive. (i.e. “C:\Program
Files\Icons\Setlcon.exe™)

2. Copy the icon files to a location on the target computer’s hard drive. (i.e. “C:\Program Files\lcons\”)

3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.

String: Setlcon Value: C:\Program Files\Icons\Setlcon.exe

4. Copy the ini file to the appropriate Windows System directory on the host PC. (See the previous section
“Creating the Ini Files” for details.)

5. Manually start the Setlcon.exe application by double clicking it, or simply reboot the host PC. The entry

placed in the registry during Step 3 will automatically start the application after the PC is rebooted.



USB2230 Software Release Notes
Page - 30 -

A Sample Ini File

[2230]

CF=C:\Program Files\Icons\CF.ico
CFLABEL=Compact Flash Drive
MS=C:\Program Files\Icons\MS.ico
MSLABEL=Memory Stick Drive
SM=C:\Program Files\Icons\SM.ico
SMLABEL=Smart Media Drive
SD/MMC=C:\Program Files\lcons\SDMMC.ico
SD/MMCLABEL=SDMMC Drive

LO_CF=\Program Files\SMSC\Cf.ico
LO_CFLABEL=Compact Flash Drive
LO_NM=\Program Files\SMSC\cf-gray.ico
LO_NMLABEL=Compact Flash Drive

L1 MS=\Program Files\SMSC\Ms.ico

L1 MSLABEL=Memory Stick Drive

L1 MSPR=\Program Files\SMSC\MsPro.ico
L1 MSPRLABEL=Memory Stick Pro Drive
L1 NM=\Program Files\SMSC\ms-gray.ico

L1 NMLABEL=Memory Stick Drive

L2_SM=\Program Files\SMSC\Sm.ico

L2 _SMLABEL=Smart Media Drive
L2_XD=\Program Files\SMSC\Xd.ico
L2_XDLABEL=xD Media Drive
L2_NM=\Program Files\SMSC\sm-gray.ico
L2_NMLABEL=Smart Media Drive

L3_SD=\Program Files\SMSC\Sd.ico

L3 _SDLABEL=SD Media Drive
L3_MMC=\Program Files\SMSC\Mmc.ico

L3 _MMCLABEL=MMC Media Drive
L3_NM=\Program Files\SMSC\sdmmc-gray.ico
L3_NMLABEL=SDMMC Media Drive




USB2230 Software Release Notes
Page - 31 -

Creating a Windows Installer for the Custom Icons Application Files

Using an automated installer is the 8referred method for installing and setting up the Custom Icons application to run
on an end user’s PC. As part of the USB2230 Custom Icons Application Package, a sample Windows installer is included
which demonstrates a practical example of using a Windows installer to install, setup, and run the Custom Icons application.
To use the installer, simply run it and then reboot the host PC once the installation is complete. When the reboot is complete,
the custom icons for the 2230 should appear in Windows Explorer.

Important Note: The ini files that are installed b% the SMSC provided installer are hard coded to match SMSC’s
VID/PID, Manufacturer String, and Product ID String. The EEPROM.DAT file that is included with the software distribution
contains the required data, and should be used to program evaluation boards to be used with the installer. Otherwise the ini files
will not match the data in your board, and the icons will not appear. In general, to create a Windows Installer you should
configure it to do the following:

1. Copy the Setlcon.exe file to a location on the target computer’s hard drive. (i.e. “C:\Program
Files\Icons\Setlcon.exe™)

2. Copy the icon files to a location on the target computer’s hard drive. (i.e. “C:\Program Files\lcons\”).
3. Adda String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.
String: Setlcon Value: C:\Program Files\Icons\Setlcon.exe

4. Configure the installer to do a conditional installation depending on the operating system, to co%y the ini
files to the appropriate Windows System directory. (See the section “Creating the Ini Files” for details.)

5. Configure the installer to run the “Setlcon.exe” application once the install is complete. Alternatively,
you could force the user to reboot the PC.

Troubleshooting the Custom Icons Application

Issue: Cause:
After installing the Custom Icons application and 1)  If you used the custom installer it is likely that the contents of your serial eeprom do not
rebooting, the custom icons do not appear. match the ini files that are installed with the installer. Read the section “Programming the

Serial EEPROM” and program the eeprom to match SMSC’s VID/PID, Manufacturers
String, and Product ID String for the 2230. An EEPROM.DAT file with this data is
included in the Setlcon software release for your convenience.

2)  If you created your own ini files and installed the application files manually, the cause is
most likely an incorrectly named or formatted ini file. Refer to the section “Creating the
Ini Files” and double check to make sure that the ini files are correctly named, formatted,
and placed in the proper location.

3)  Check to see that the “Setlcon.exe” application is running by checking the Processes tab in

the Task Manager.
After installing the Custom Icons application the Unplug the USB cable and then reattach it. Icons are only displayed when the device is attached with
drives still show the original icon. the Setlcon application running. If this does not correct the problem, try the troubleshooting steps
above.
In Windows XP (SP1) the custom icons do not This is a bug in Windows XP. Microsoft has developed a fix (KB823293).
appear after a reboot of the host. However if the
USB cable is detached and reattached, or media is
either inserted or ejected, the icon(s) appear.
In Windows XP, the drive media label is not This is a known issue in Windows XP. As a workaround, you can either hit F5 to refresh the label, or
updated when a card is inserted. remove and reinsert the media.
Card Reader Software Installer does not install When the Card Reader Software Installer is removed, the uninstall stops the device and removes all
properly when attempting to run the installer after registry entries associated with the device. The device must be unplugged and reattached before it

removing a previous version of the installer. will enumerate.




USB2230 Software Release Notes
Page - 32 -

Memory Stick Custom icon does not appear after
running the Card Reader Safe Removal Installer.

Limitation of the OS.




USB2230 Software Release Notes
Page - 33 -

Windows Installer Packages

The “Card Reader - Software Installer vXXX.exe” is a sample installer included in the USB2230 DFU and Driver Package and
USB2230 Eval Board Package. This installer demonstrates a practical example of using a Windows installer to 1) install, setup
and rlin the Custom Icons application. To use the installer, simply run it and then reboot the host PC once the installation is
complete.

Using the Production Line Descriptor Update Utility (PLDU)

Purpose: The PLDU is used to update device firmware and/or device descriptors such as the VID/PID, Manufacturer and
Product ID strings in a production line environment using Windows 2000 SP3 and SP4. Under Windows XP, this can be used
to update device descriptors or firmware if all the devices have same descriptor data. Otherwise, each device will enumerate as
a MSC device and the utility needs to keep swapping drivers which is a time consuming operation and not really effective
under a production line environment. This application is intended to be used by OEMs in their production line environment and
is not intended for other users. The utility features a simple interface that displays success or failure of the programming
operation in graphical form using either a green box with a checkmark (PASS), or a red box with an “X” (FAIL). The PLDU is
capable of programming one device at a time and takes approximately 12 seconds to complete.

Features:
Firmware update.
Descriptor (NVRAM) update.
Read descriptor (NVRAM) data from device.
GUI editor to edit and create DAT files.
Graphical and Text status display.
Automatic serial number increment after every descriptor update.
Break up of serial number to YY-MM-DD-S-SN format where
YY - Year (2 digits)
MM - Month (2 digits)
DD - Day (2 digits)
S - Station number (1 digit)
SN - Serial number (5 digits)

Nougk~wpeE

Application Behavior:

1. When the application is run with no SMSC devices plugged in, all controls should be disabled.
2. While the application is running, the controls should be dynamically enabled and disabled as
the device is plugged and unplugged.
3. The button controls on all tabs except the "Production™ tab will always be disabled.
4. The "Update Device" button will be enabled only after loading a DAT file.
5. If the "Update Firmware" button is clicked, the utility removes reference to a previously
loaded DAT file and disables the "Update Device" button.
6. Any changes made to the YY-MM-DD-S-Sno controls will be lost if user switches to a different
tab and returns to the "Production” tab. The changes should be saved immediately to a DAT
file before switching tabs. If the user needs to switch tabs to make changes in those tabs,
then those changes should be made first and lastly switch to the "Production” tab. Now the
user can make necessary changes to the formatted serial number controls and can be saved to
a DAT file that will include all the changes done on the other tabs as well. However, NOTE
THAT THIS IS THE BEHAVIOR ONLY WHEN A DAT FILE HAS NOT BEEN LOADED ALREADY AND THE
BUTTON
"Update Device" IS DISABLED.
7. When a DAT file is loaded and the "Update Device" button is enabled, following behavior is
to be expected;
a. Changes made to serial number controls in "Production” tab will be lost if user changes
tabs. However, these changes will be active for the user to save to a DAT file or update



USB2230 Software Release Notes
Page - 34 -

to the device immediately after the changes are made and before switching tabs.

b. Changes made to controls on other tabs will be lost and can never be saved to a DAT file
or updated to a device.

c. Changes made to serial number controls, though available for an immediate update to a
device, will be lost after the update completes if those changes don't reflect the
current date (YY-MM-DD).

Button Behavior:
1. Update Device
a. Enabled only after a DAT file is loaded
b. Disabled whenever a firmware update is done
¢. When clicked, app reads the serial number from the Y'Y-MM-DD-S-Sno controls and embeds
this serial number into the DAT file that is loaded in memory to write to the device.
d. After every update, the DAT file is updated to reflect the last serial number used to
write to the device and also automatically increments the serial number.

2. Update Firmware

a. Prompts for a DFU file (only the first time) and uses this file to update the device's
firmware.

b. Always ignores any changes done to the controls in all tabs. The utility always reads
the descriptor data from the device and embeds this into the DFU file image before
writing the DFU file image to the device. Thus, after a firmware update, the device's
descriptor data should be the same as it was before the update.

c. If a DAT file was previously loaded, clicking this button would unload the DAT file and
disable the "Update Device™ button.

3. Load DAT File

a. Loads a DAT file into memory.

b. Enables the "Update Device" button

c¢. Any changes done to controls on all tabs are lost while switching tabs.

d. Changes done to YY-MM-DD-S-Sno controls are available for saving to a DAT file or
writing to device only immediately after the changes are made.

e. When a DAT file is loaded, the YY-MM-DD-S-Sno controls are set to reflect current date,
same station number digit as in the DAT file and either a default value of *00000" or
DAT file's last 5 digits of serial number value incremented by one. The default value
of "00000" is used whenever the DAT file's YY-MM-DD digits do not match the current date.

4. Save DAT File
a. Saves the values from the controls to a DAT file.
b. Refer to earlier sections to find out when changes to controls are lost.
c. After saving to DAT file, this DOES NOT automatically load that DAT file into memory.



Setting Up the PLDU Application

1.

USB2230 Software Release Notes
Page - 35 -

First attach a USB2230 device to the host. To start the PLDU application, simply double click “PLDU.exe”

executable.

After the main program dialog opens, the production tab
displays four options:

a. Update Device—Updates NV Store descriptor data
such as VID/PID, Manufacturer and Product 1D
strings from the “EEPROM.DAT” file. Note —
this option is not available until a DAT file is
loaded.

b. Update Firmware—Updates the device firmware
using a DFU update file with the .dfu extension.

c. Load DAT file-Loads a DAT file into memory.

d. Save DAT file—Saves the values from the
controls to a DAT file.

Using the PLDU to Update Device Descriptors

1.

W Production Line Utility
Bl Edt Yiew e

' S MEE Device:

A oerve - Lonl
[ Y T
A oorveFoumd

Production | Branding | Configuration | Hub | Info
Marndsctuing Line
St [Fiepartea by amice |
o bt e DIAT Hio) o
Update Fasmase
Sl o [T be witd in davice updats| g
s MM DD Stshon Sl
M =lfo =I5 =f = oo Load DAT Fis |

Save DAT Fie

St
Wialing for ned action.

MM [SoRL

The first operation that should be performed on a USB2230 device
coming off the production line is to update its descriptors. To do this,
first press “Load DAT file”. The application will prompt you to select
the EEPROM .dat file that will be used to program the descriptors.
Once the EEPROM.DAT file has been selected the option to Update

Device will now be available.

Click the “Update Device” button. The PLDU application will swap

the mass storage class driver for the SMSC DFU driver.

Once the DFU driver swap has completed, the data from
the eeprom.dat file that is loaded is programmed into the
device. The operation takes about 12 seconds to complete.
Provided the programming was successful, the Status box
displays a green box with a checkmark and reports
success. At this point the user simply detaches the device
and reattaches the next device to be programmed. The
PLDU automatically updates the EEPROM.DAT file to
the next unique serial number.

T Production Line Utility
Fle Edt Yew Help

Find *.dat file and click “Open®.

Look i | (3 DFU and Descriptor Update | e Bk E-
ecprom.dat

Filename:  [zeprom.dat Dpen
Files of type: " dat fles | Caneel

I Dpen as read-anly

3 DFU Devices
A cruoence

Production | Branding | Contigueation | Hub | infe |

Marsdcharg L

|

Upshales Farimate:

DAT fla]

Serial No [T be used in device Lpdain)

¥t M 00 Sison  Sesal

5 =l =05 =z =] oot Unioad DAT Fis
Save DAT File

Shabue
The Updste NVSTORE tuccesded

N




USB2230 Software Release Notes
Page - 36 -

Using the Production Line Test Utility (PLTU)

Purpose: The PLTU application is used to test the basic functionality of USB2230 devices in a production line environment
using Windows 2000 (SP3) only. The application creates a subdirectory on the media for each LUN, copies a 'Test File' to the
subdirectory, deletes the 'Test File," and then deletes the subdirectory.

Features:
1. Capable of testing 5 devices with 4 LUNs each simultaneously.
2. After testing, the application cleans up the registry entries involving the OEM's VID, PID, Inquiry MFG and Product
strings.
3. Graphical and Text status display of test results.
4. GUI editor to edit and create ini files.

Creating the PLTU ini File

Before using the PLTU you must create or edit an ini file. A sample ini file is shipped with the PLTU application which can be
modified for your setup. The ini file should contain the following lines:

OEMVID = VID
This is the original equipment manufacturer’s VID (Vendor ID) of the device whose descriptor has already been updated.
The “VID’ is specified as a four digit hexadecimal number.

OEMPID =PID
This is the original equipment manufacturer’s PID (Product ID) of the device whose descriptor has already been updated.
The “PID’ is specified as a four digit hexadecimal number.

INQUIRY_MFG = Inquiry MFG String
This is the string returned by the device as part of the Vendor information in the Inquiry data. This can be of maximum 8
characters.

INQUIRY_PRODUCT = Inquiry Product String
This is part of the string returned by the device Product information Inquiry data. This can be of maximum 5 characters.

TEST_FILE = path to Test file
Specifies the full path to the file that is to be used during file copy tests.

DEV1 LUNO = Drive Letter
DEV1 LUNL1 = Drive Letter
DEV1 LUN2 = Drive Letter
DEV1 LUNS3 = Drive Letter

DEV2_LUNQO = Drive Letter
DEV2_LUNL = Drive Letter
DEV2_LUN2 = Drive Letter
DEV2_LUNS3 = Drive Letter

DEV3_LUNO = Drive Letter
DEV3_LUNL = Drive Letter
DEV3_LUN2 = Drive Letter
DEV3_LUNS3 = Drive Letter

DEV4 _LUNO = Drive Letter
DEV4 LUNL1 = Drive Letter
DEV4_LUN2 = Drive Letter
DEV4_LUNS3 = Drive Letter

Creating the PLTU ini File (Cont.)




DEV5_LUNO = Drive Letter
DEV5_LUNL1 = Drive Letter
DEV5_LUN2 = Drive Letter
DEV5_LUNS3 = Drive Letter

USB2230 Software Release Notes
Page - 37 -

These lines specify the Drives that are associated with the multiple LUNSs of the respective devices to be tested. If the
‘Drive Letter’ is not specified for a particular LUN, then it means that the corresponding LUN of that device is NOT to be
tested. If the ‘Drive Letter’ is not specified for all LUNs for a particular device, then it means that the entire device is

either NOT present or NOT to be tested.

A Sample PLTU ini File

OEMVID
OEMPID

TEST_FILE

DEV1_LUNO =
DEV1_LUNI1=
DEV1 LUN2 =
DEV1_LUN3 =

DEV2_LUNO =
DEV2_LUN1=
DEV2_LUN2 =
DEV2_LUNS3 =

DEV3_LUNO =
DEV3_LUN1=
DEV3_LUN2 =
DEV3_LUN3 =

DEV4_LUNO =
DEV4_LUN1 =
DEV4_LUN2 =
DEV4_LUNS3 =

DEV5_LUNO =
DEV5_LUN1 =
DEV5_LUNZ2 =
DEV5_LUN3 =

=0424

= 2230
INQUIRY_MFG
INQUIRY_PRODUCT = 2230

=SMSC
= C\TEST\IMEG.R01

F
G
H
|

J
K
L
M

N
O
)

Q

R
S
T
U

NOTE:

There can be spaces before and after the '=' sign, but the total number of characters for an entire line (including

spaces) should be less than 255.



Setting Up the PLTU Application

1.

2.

First attach a USB2230 device to the host. To start the PLTU application,
simply double click “TestDevice.exe” executable. The application will
prompt you to select the location of the ini file when it is first started.

Provided the ini file contains the correct path to the
key files on the local machine, the main program
dialog opens. The station is now ready to begin
testing devices. At this point you should attach the
devices to be tested and ensure that they have good
media with sufficient free space to hold the file
being used for testing.

Using the PLTU to Test Multiple Devices

2.

Once all of the devices have been attached, the user
simply presses the “Start Test” button to begin
testing devices in accordance with the contents of
the ini file being used. After the testing has
completed, the user receives a graphical
representation of the test results in the form of a
green box with a black checkmark to indicate
“PASS,” or a red box with a black “X” to indicate
“FAIL.”

USB2230 Software Release Notes

Page - 38 -
open el B3|
Lok in: [ 5 PLTU JE e e e
- $ TestDevice.ini
File name: Open I
Files of type:  [IniFiles ["Ini =l Cancel
™ Open as read-orly
A
' Production Line Device Test Utility (Using C:4Documents and Settings',qatestiDeskt x|
~IniFil Status:
OEMVID: Ox [0424 Inuins MG, [SMSC i File (CxDocuments and =]
Seltings\gatestiDeskiapsFLTUATestDevice.inil loaded
OEM PID: 0 [20FC iy Prot [210 sucoessfully

Test File: IE MTESTHIMEG.ROT

Load ini File Edit ini File

r~ Test Devic

Start Test
Exll
4 Production Line Device Test Utility {Using C:\Documents and Settings'gatest!Deske x|
= Ini Fil Status:
DEM VID: Dx IU#Z# Inquiry MFG: [SMSC -
Device 1: (il
OEM PID: Ox | 20FC Inguiry Prod: [210 Drive F : - Passed
Drive G : - Passed
Test File: IE STESTAVIMEG.ROT Drive H :—Passed
Drrive: | -~ Passed
i Fil it ini Device 2.
Load ini File Edit ini File Drived - — Passed
Drive K @ - Passed
Drive L : - Passed
Tost Devio Dive M —Passed
Device 3
Drive M : —Passed
[ st | Diive 0 - - Passed
Drive P : -~ Passed
Drive ) :—Passed
Device 4 o
Ex' Drive R : - Passed
Drive 5 —Passed
Drive T @ - Passed LI

Once the test has completed, the user should remove all of the tested devices and then attach the next set of devices to
be tested. Once all of the devices are attached and enumerated (as indicated by the presence of drive icons in Windows
Explorer), the user repeats step 1 to test the next set of devices.




USB2230 Software Release Notes

Known Issues with the USB2230 Production Line Utilities

Issue:

Workaround:

Page - 39 -

Status:

The PLDU and PLTU applications are designed to be used
with Windows 2000 (SP3) host systems using the Microsoft
mass storage class driver. While the applications may work
with other operating systems, only Windows 2000 (SP3) is
supported.

N/A

N/A

Some EHCI host controller drivers such as Orange Micro’s do
not work properly with the DFU driver swapping performed
by the PLDU and PLTU applications.

We highly recommend that you use the Microsoft supplied
EHCI drivers for the test systems running the PLDU and
PLTU applications.

N/A

The PLTU does not distinguish between general device write
failures and media specific write failures. This means that the
test will fail if no media present in the drive, media is full,
media is unformatted, media is corrupt, media is write
protected, etc.. Under such circumstances, the test results do
not reflect the status of the device, but rather the failure of the
media. Hence, it is recommended that the test is performed
again on the device with known good media.

Only use known good media to perform the PLTU testing.

N/A

Due to caching by the OS, the 10 transfer may not be fully
completed before the test results are displayed by the
application. It is recommended that the user wait for 5 to 10
seconds before disconnecting the devices.

Wait 5-10 seconds after completion of the PLTU tests before
removing the devices from the host.

N/A

User may experience errors when running applications if
certain files used by applications are marked read only.

Make sure that all files used with these utilities are not marked
read only.

N/A

PLDU displays a program error when attempting to update
the firmware using an external version of the 2230 firmware.

Use USBDM application for device firmware updates. PLDU
may still be used for Descriptor Updates.

Will be fixed in future
release.




USB2230 Software Release Notes
Page - 40 -

Using the QuickTest Production Line Read/\Write Test Utility

The QuickTest utility is a streamlined version of the full Production Line Test Utility discussed previously. QuickTest can test
a maximum of (4) USB2230 devices at a time, with a maximum of 4 LUNs each. The testing procedure is very simple

InVOIVI ng these on Iy 4 Steps E| QuickTest Production Line Utility {using filter driver) - \Bigdawg’,DATest\ US
I Fil Status:
. R . OEMMID: O0x [0424  Inguiy MFG: |SMSC Iri Fil N
1. Writes to media on each LUN starting from _ (T
LBA 1024 OEM PID: 0 2234 Inguiry Prod 2231 Inaded successhully
. . ax Devices: |4 Il ax LUM s 4
2. Reads from media on each LUN starting
fl’0m LBA 1024 Read /Wite Test Size in KB:  |256
3. Compares the data read against the data LoadiniFie | EdtiniFie |
written to the media
4. Updates the status for each LUN in the Test Devie
application
Start Test |
E xit |
E

The testing is performed on all the LUNs of the device serially. However, tests on multiple devices are performed
simultaneously using multiple threads. The QuickTest utility requires the presence of the SMSC password filter driver to send
BULK-ONLY commands, totally by-passing the native file system. On windows 2000 systems, Service Pack 3 should be
installed.

QuickTest.exe requires the SMSC password filter driver (Smscpswd.inf) to be installed in order to function properly. This
driver is no longer installed by the card reader installer and must be installed manually before running QuickTest. In order to
install the password filter drivers, copy Smscpswd.inf and Smscpswd.sys to your system. Open the device manager and double
click on the USB Mass Storage Device entry in the Universal Serial Bus Controllers section. In the driver tab, select update
driver. The wizard will assist in installing this driver. When given the choice, specify to have the wizard display a list of
known drivers for this device. Choose “Have Disk™ and browse to where you copied the smscpswd.inf file and select it. This
should give you the option to install “USB Mass Storage Device with Password Protection (WinMe).”

Limitations of the QuickTest Utility:

1. Does not distinguish between general device write failures and media specific write failures. This means that the test
will fail if no media is present in the drive, the media is full, unformatted, corrupt, write protected, etc.. Under such
circumstances, the test results do not reflect the status of the device. Hence, it is recommended that the test is
performed again on the device with known good media.

2. The time taken to complete the tests depend on the following:

e Test size - This can be from 64KB to 5000KB. The bigger the size, the more time it will take to complete the
tests.

e Number of devices connected- The field "Max Devices" specifies how many devices to test at once (should
be 1 <= N <= 4). However, it is not necessary that the actual number of devices connected be equal to the
number specified in the "Max Devices" field. For example, the "Max Devices" field can specify 4 but the
actual number of devices connected may be <4 or >4. However, the utility will either test only the actual
number of devices connected or the "Max Devices", whichever is less. Though tests on multiple devices are
performed simultaneously, the time taken for the tests to complete on multiple devices will be a little more
than that for a single device.




USB2230 Software Release Notes
Page - 41 -

Using the EPRMUPDT .exe Utility

EPRMUPDT.exe is a DOS based utility used to write and / or read EEPROM data to / from the USB2230 device. This utility is
designed to be used by OEMs in a production line environment with as little human intervention as possible.

EprmUpdt Usage:
EprmUpdt [-h|-u] [-Vv] [-c] [-w"oFileName"] [-r"iFileName"] [-t"HostController”]
[-1"LogFileName"] [-p"xxxxyyyy"]

N-u print help/usage
Vot verbose, optional, default is off
“C e confirm scanned serial number (last 3 digits) before updating EPPROM

-w"oFileName"........ name of DAT file (with full path) that is to be written to device EEPROM

-r"iFileName"........ name of formatted text file (with full path) that is to be created by reading device EEPROM

-I"LogFileName"......Iog the serial number to the specified log file

-t"HostController"...specifies the host controller type to which the device is attached. This should be "UHCIn",
"OHCIn" or "EHCIn", where 'n" is a number (0 to 9) specifying the host controller in the enumeration order.
This is an optional parameter and if not specified, a default value of "UHCI" will be used. Similarly 'n is also
optional and if it is not specified, a default value of ‘0" will be used.

-PUXXXXYYYY" ... specifies that multiple MSC devices may be connected to the system and that the utility should
find the device by matching the specified Vid and Pid. The value "xxxx" denotes the Vid and the value
"yyyy" denotes the Pid. Both the Vid and Pid are to be specified as 4 digit HEX numbers. The -p option is
optional and if not specified, or contains an invalid value, then the utility would default to finding the first
MSC device using the class, subclass and protocol values.

e [P infinite loop, till user presses 'CTRL C' to quit

1. All options can be specified using both UPPERCASE and lowercase letters.

2. The double quotes (") around file names for -w, -r and -l options is optional. If the path names does not contain
blank spaces, then the double quotes are not necessary. If the path names contain blank spaces, then the
double quotes are mandatory.

3. The file names for the -w, -r and -I options are to be specified with full path information. If the files are in the
current directory, then the path information is not necessary.

4. The double quotes around the 'HostController' in -t option is optional.

Features:

1. Uses a template EEPROM.DAT file, modifying the serial number alone by scanning it
off the keyboard buffer, to update the device EEPROM.

2. Reads the contents of the device EEPROM and generates a formatted text file that
vividly describes all the fields of EEPROM structure.

3. The options for writing and reading EEPROM data can be specified together or alone.

4. Provides an option (-c) to confirm the scanned serial number (last 3 digits) with
the user before updating the EEPROM data.

5. Provides an option (-v) to turn on or off the additional debug / status comments.
6. Provides an option (-I"LogFileName™) to log the serial number to the user specified log file.
7. Allows processing devices one after another in a loop till user wants to exit (by

pressing 'Ctrl C") by specifying the -i option in the command line. Otherwise, the
utility will exit back to the command prompt after it is done with a single device.



USB2230 Software Release Notes
Page - 42 -

Using the EPRMUPDT .exe Utility (cont.)

8. Displays the status by showing a big "ERR", "FAIL" or "PASS" along with other relevant information.

"ERR"

"FAIL"

"PASS"

- Means an error occurred outside of the main process of updating or reading to / from the device.
This can happen if there are any errors while parsing the input arguments, or invalid usage, or
invalid file paths, or any errors while starting the host controller and root hub. The application will
exit with code 2 during such circumstances.

- Means an error occurred during the process of updating or reading to / from the device. This can
happen if no matching devices are found, or verification of last 3 digits of serial number fails, or
error while writing data to device, or error while reading data from device, or verification of read
and write data fails. The actual reason for the failure is given below the "FAIL" status and the
application exits with code 1 during such circumstances. If the -i option is specified, then the
application proceeds to prompt for scanning the serial number again. At this point, it is left to the
user discretion, whether to connect a new device or proceed with the existing device. For example,
if the failure is due to last 3 digits serial number mismatch, it could be due to human error rather
than a device error and so the user may want to proceed with the same device again.

- Means no error occurred and the process of updating or reading to / from the device completed
successfully, including all necessary verifications and the application exits with code 0. If the -i
option is specified, then the application proceeds to prompt for scanning the serial number again. At
this stage, the user can safely remove the existing device and connect a new device and enter the
serial number again.

9. The utility will return with one of the following exit codes.

0 - Indicates "PASS"
1 - Indicates "FAIL"
2 - Indicates "ERR"

10. The utility will work with all types of host controllers (UHCI, OHCI & EHCI) and the host controller to which the device is
connected is specified by the -t option. The -t option specifies the type of the host controller as well as the number in
the PCI enumeration order of the host controllers. These two together identify a unique host controller which the
application enumerates to detect the test device. Note that this is optional and that the default values will be used if it

is not specified.

examples:

-t"UHCI" - Test on the 1st UHCI host controller
-t"EHCI0" - Test on the 1st EHCI host controller
-t"OHCI2" - Test on the 3rd OHCI host controller

11. The utility was searching for the MSC device by looking in to the DeviceClass, DeviceSubClass, and DeviceProtocol
values of all connected devices and using the first matched device for further operations. This lead to limitations like
the "The MSC device that is to be processed by the utility has to be the first MSC device in enumeration order."
Moreover, the Class, SubClass and Protocol values of a MSC device are 0, 0, and 0 which are the values of any USB
composite class device. This meant that the limitation had to be extended further as "The MSC device that is to
be processed by the utility has to be the first Composite class device in enumeration order”. This was modified in v2.0
of the utility so that the utility can now find a device by searching for its Vendorld (Vid) and Productld (Pid). This is
accomplished by using the "-p" option and specifying the Vid and Pid as 4 digit Hex numbers. For backwards
compatibility reasons, this is provided as an optional option. Test systems which do not have any other composite
class or MSC devices need not specify this option.



USB2230 Software Release Notes
Page - 43 -

Limitations of the EPRMUPDT .exe Utility:
1. Supports devices connected only at the root hub level.

2. When "-p" option is specified with a Vid and Pid and multiple devices of same Vid and Pid are connected to
the system, the utility will process only the first device in the enumeration order.

3. There is no bus traffic after SPT EEPROM write call. Still, the EEPROM write call should pass and the
application will report the status of the write. Use only one of the -w or -r options and don't combine both the
options. If both the options are used, then the write should pass but the read should fail because of a known
issue.

Using the Windows XP Special Memory Stick Format Registry Key

Windows XP has the capability to apply a Sony factory format on Memory Stick cards by adding a special key to the registry:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\PerHwIdStorage\
USBSTOR#DiskSMSC 2230 _U_HS-MS | "DeviceGroup"="MemoryStick"

This key has to be customized to match the inquiry data returned from the device. The inquiry data is made up of the first 8
characters of the Manufacturer String, followed by the first 5 characters on the Product String. In the example registry key
above, the strings are:

Manufacturer String = “SMSC” (Note that SMSC is followed by four spaces denoted by underscores to make up the 8
characters.)

Product String = “2230 USB2230” (Note that only the first 5 characters, including the space, are used.)
This registry key works for Windows XP only. It will not work for any other operating system. Once the registry key has been

added, when a user formats a Memory Stick card from using Windows, the Sony factory FAT format will be applied, including
the creation of the “MEMSTICK.IND” hidden file.



USB2230 Software Release Notes
Page - 44 -

Using the KillReqg Utility

KillReg is a DOS based application to stop a device and clean its related registry entries during an automated uninstallation
process. KillReg is designed to be called from a Windows Installer script. It is used during installation and uninstallation of
USB97C210/223/2224/2228/2230 devices under all Windows operating systems to remove the device entries from the registry.
This allows the SMSC Win2K or Windows native driver to be loaded if the device has previously been installed without a
driver, or with an incorrect driver. KillReg is also used during the uninstallation process to completely remove the registry
entries for a particular device.

Requirements:
KillReg requires an ini file to be present in the Windows directory. The name of this ini file should be passed as command line
argument to the application from the installer script.

INI File Requirements:
1. The ini file should be in the Windows directory.
2. The ini file should contain the following lines;

VID =VID
PID = PID1[,PID2,PID3,...,PID30]

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sample ini File:

VID =0424

; The following line shows how
; to specify multiple PIDs

PID = 20FC, 223A, 211A, 2230

; The following line is used by SwapDrvr.exe
; only and NOT by KillReg.exe

INFFILE = smscpswd.inf

4

NOTE:

1. The ini file is also used by the application "SwapDrvr.exe", which will expect the line specifying the INFFILE. KillReg
ignores this line.

2. Multiple PIDs separated by a comma can be specified to uninstall all the PIDs associated with a single VID.



USB2230 Software Release Notes
Page - 45 -

Using the Swapdrvr Utility

Swapdrvr is a DOS based application used by a Windows installer to load the password filter driver in Windows XP. The only
USB2230 application that requires the password filter driver be loaded when running XP is the QuickTest production line test
utility. The Cardreader Software Installer Safe Removal.exe also requires the use of Swapdrvr. If you are not using these
utilities or do not want to include it in your installer, you can skip this section.

Requirements:

1. The device should be connected while this application is invoked from a Windows installer. The application will prompt the
user to connect the device during run time.

2. Swapdrvr needs an ini file to be present in the Windows directory. The name of this ini file should be passed as command
line argument to the application from the installer script.

3. The installer application should have already placed the required INF and SYS files in their correct locations.

INI File Requirements:
1. The ini file should be in the Windows directory.
2. The ini file should contain the following lines;

VID =VID
PID =PID
INFFILE = Inf file name

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sample ini File:

VID = 0424
PID =2230
INFFILE = swapdrvr.inf




USB2230 Software Release Notes
Page - 46 -

Using the Dos Production Line Utility (DosPLTU)

DosPLTU is a DOS based utility intended to be used by OEMs to streamline their production testing, requiring as little human
intervention as possible. This utility supports checking the device firmware version, checking and / or updating the
device EEPROM with a template DAT file, and performing R/W tests on all the logical units (LUNS) supported by the device.

DosPLTU Usage:

DosPLTU [-h|-u] [-v] [-f"version"] [-t -n"loopcount™ -s"testsize"]
[-e"DATFileName" | -w"DATFileName" | -x"DATFileName"]
[-1"LogFileName"] [-c"HostController"] [-d"CfgFileName"]
[-p"xxxxyyyy"]

h-U print help/usage

Vo verbose, optional, default is off

-f"version".......... version number that is to be checked against the firmware version of the device

e AT perform R/W tests

-n"loopcount”........ specifies the number of times the R/W tests are to be performed. This is optional and a default
value of 10 will be used if this is not specified

-s"'testsize"......... specifies the test transfer size in KB for the R/W tests. This is optional and a default value of 64KB

will be used if this is not specified

-d"CfgFileName"......name of the configuration file (with full path) that specifies the media types for each supported
LUN. This is optional and if not specified, then testing would be done on all LUNs for one media type, with
out prompting the user to insert other types of media

-¢"DATFileName"......name of DAT file (with full path) that is to be checked against the device EEPROM. This
option cannot be specified with -w or -x options

-w"DATFileName"......name of DAT file (with full path) that is to be written to device EEPROM This option cannot
be specified with -e or -x options

-X"DATFileName"......name of DAT file (with full path) that is to be checked against the device EEPROM and if
necessary that is to be written to the device EEPROM. This option cannot be specified with the -e or -w
options

-I"LogFileName"......name of the log file (with full path) to which the test status messages are logged

-c"HostController"...specifies the host controller to which the device is attached. This should be "UHCIn", "OHCIn"
or "EHCIn", where 'n" is a number (0 to 9) specifying the host controller in the enumeration order. This is an
optional parameter and if not specified, a default value of "UHCI" will be used. Similarly 'n" is also optional
and if it is not specified, a default value of '0' will be used.

-PUXXXXYYYY" . specifies that multiple MSC devices may be connected to the system and that the utility should
find the device by matching the specified Vid and Pid. The value "xxxx" denotes the Vid and the value
"yyyy" denotes the Pid. Both the Vid and Pid are to be specified as 4 digit HEX numbers. The -p option is
optional and if not specified, or contains an invalid value, then the utility would default to finding the first
MSC device using the class, subclass and protocol values.

e [T infinite loop, till user wants to quit

1. All options can be specified using both UPPERCASE and lowercase letters.

2. The double quotes (") around file names is optional. If the path names do not contain blank spaces, then the
double quotes are not necessary. If the path names contain blank spaces, then the double quotes are
mandatory.

3. The file names are to be specified with full path information. If the files are in the current directory, then the

path information is not necessary.

The double quotes around the 'version' in -f option is optional.

The value of 'version' is specified as a max 4-digit decimal integer number.

The double quotes around the 'HostController' in -t option is optional.

The double quotes for -n and -s options are optional.

No ok



USB2230 Software Release Notes
Page - 47 -

Option Groups and Priority Levels:

1.

The options are classified into 5 groups as described below.

a. Usage -"-h"or "-u"

b. Firmware check -

c. EEPROM check / update -"-g", "-w" and "-x"

d. R/W tests -t [M-n", =" and M-d"]

e. Miscellaneous -yt et I, Mptand -

The utility has a proirity level for each group of options. The priority level
and processing details are described below.

a. Usage group - Has the highest priority (level 0). If this is specified, then the utility would just display the program

usage and exit. All other options are ignored and are not processed.

b. Firmware check group - Has the next highest priority (level 1). The utility processes this option before EEPROM
check and R/W test options. If the device firmware does not match the version specified with this option,
then the utility would display an error message and exit without processing any other option.

c. EEPROM check / update group - Has a priority level of 2. If "-f" option is specified, the utility would process this
option after successfully checking the device firmware version. Otherwise, this would be processed first. It is
important to note that this group has 3 options ("-e", "-w" and "-x") which are mutually exclusive. That is,
only one of the 3 options can be specified. If any error occurs while processing this group, the utility ignores
the R/W test option and exits after displaying the corresponding error message.

d. R/W test group - This has the lowest priority (level 3) and is processed last after successfully processing other
specified options. This group has three additional options ("-n", "-s" and "-d") that may or may not be
specified. Refer to the usage for more details about these options.

e. Miscellaneous group - Has no priority level at all. The options under this group are very general and only help the
user to control how the tests are done and how the results are displayed. These options, by themselves, do not
affect the types of tests or their order in any way.

DosPLTU Features:

=

~

Checks the firmware version of the device.

Checks the device EEPROM against a template DAT file and returns an error if any mismatch is found. This is
achieved by using the "-e" option and is useful in testing devices whose EEPROM has already been updated.
Updates the device EEPROM always with a template DAT file with out checking for any mismatch. After every
update, the serial number is automatically incremented and the DAT file is updated. This is achieved by using the "-
w" option and is useful in updating the device EEPROM for the first time.

Checks the device EEPROM against a template DAT file and updates the device EEPROM if any mismatch is found.
If the EEPROM is updated, the serial number is automatically incremented and the DAT file is updated. This is
achieved by using the "-x" option and is useful in testing devices whose EEPROM may or may not have been already
updated.

Performs R/W tests on all LUNs supported by the device. The tests are performed using the loop count and test size
values specified with "-n" and "-s" options. The R/W test option also takes in an optional -d option that specifies the
device configuration. When this option is specified, the tests are performed on each LUN prompting the user to insert
the supported media types for the LUN. This option is useful in cases, where LUN sharing is done in devices by
having a combo socket and it is necessary to test all the media types supported by the socket. For a sample device
configuration file, please look in to "Device.cfg" file.

Provides an option (-v) to turn on or off the additional debug / status comments.

Provides an option (-I"LogFileName") to log all messages to the user specified log file.

Allows processing devices one after another in a loop till user wants to exit by specifying the "-i" option in the
command line. Otherwise, the utility will exit after it is done with a single device.

Displays the status by showing a big "ERR", "FAIL" or "PASS" along with other relevent information.

"ERR" - Means an error occurred outside of the test process. This can happen if there are any errors while
parsing the input arguments, or invalid usage, or invalid file paths, or any errors while starting the
host controller and root hub.

The application will exit with error code 1 during such circumstances.



USB2230 Software Release Notes
Page - 48 -

"FAIL" - Means an error occurred during the process of testing. This can happen if no matching devices are
found or any of the tests fails. The actual reason for the failure is given below the "FAIL" status.
The application will exit with error code > 1 during such circumstances.

"PASS" - Means no error occurred and the process of testing completed successfully.
The application will exit with error code 0 during such circumstances.

10. The utility will work with all types of host controllers (UHCI, OHCI & EHCI) and the host controller to which the
device is connected is specified by the -c option. The -c option specifies the type of the host controller as well as the
number in the PCI enumeration order of the host controllers. These two together identify an unique
host controller which the application enumerates to detect the test device. Note that this is optional and that the default
values will be used if it is not specified.

examples:

-c"UHCI" - Test on the 1st UHCI host controller
-cC"EHCI0" - Test on the 1st EHCI host controller
-c"OHCI2" - Test on the 3rd OHCI host controller

Note: In order to properly specify the number in the PCI enumeration order of the host controllers the end user has to
know how many host controllers of the given type are present in the system and also the enumeration order of the host
controller to which the device is attached. If these details are not known, this information can be found by trial and
error methods.

11. The utility will return with one of the following exit codes.

0 - Indicates "PASS"

1 - Indicates "ERR"

2 - Indicates "FAIL" (Device not found error)

3 - Indicates "FAIL" (Firmware mismatch error)

4 - Indicates "FAIL" (Error while reading device EEPROM)

5 - Indicates "FAIL" (Device EEPROM and template DAT file mismatch error)
6 - Indicates "FAIL" (Error while writing to the device EEPROM)
7 - Indicates "FAIL" (Error verifying updated EEPROM data)

8 - Indicates "FAIL" (Error while initializing disk(s) for R/W tests)
9 - Indicates "FAIL" (Error while writing to disk)

10 - Indicates "FAIL" (Error while reading from disk)

11 - Indicates "FAIL" (Error verifying read and write data)

12 - Indicates "FAIL" (Error creating the log file)

12. The utility was searching for the MSC device by looking in to the DeviceClass, DeviceSubClass, and DeviceProtocol
values of all connected devices and using the first matched device for further operations. This lead to limitations like
the "The MSC device that is to be processed by the utility has to be the first MSC device in enumeration order".
Moreover, the Class, SubClass and Protocol values of a MSC device are 0, 0 and 0 which are the values of any USB
composite class device. This meant that the limitation had to be extended further as "The MSC device that is to
be processed by the utility has to be the first Composite class device in enumeration order”. This was modified in
v2.0 of the utility so that the utility can now find a  device by searching for it's Vendorld (Vid) and Productld (Pid).
This is accomplished by using the "-p™ option and specifying the Vid and Pid as 4 digit Hex numbers. For
backwards compatibility reasons, this is provided as an optional option. Test systems which do not have any other
composite class or MSC devices need not specify this option.

NOTE:

As mentioned above, when the device EEPROM is updated, the DAT file is updated with the serial number incremented by
one. During such cases, there is a chance for the serial number to overflow from "FFFFFFFFFFFF" to "000000000000". When
this overflow occurs, there will be a warning displayed to indicate the overflow. However, the testing on the current device
continues normally as the overflow will matter only with the next device that is to be tested. Even if the tests on the current
device pass successfully, the return value will be "ERR" to indicate the serial number overflow error.



USB2230 Software Release Notes
Page - 49 -

Limitations of the DosPLTU.exe Utility:

=

Supports devices connected only at the root hub level.

2. Inorder to properly specify the number in the PCI enumeration order of the host controllers the end user has to know
how many host controllers of the given type are present in the system and also the enumeration order of the host
controller to which the device is attached. If these details are not known, this information can be found by trial and
error methods.

3. The utility does not distinguish between actual device failures and media specific failures during R/W tests. Hence, it

is recommended that the R/W tests are done on devices with known good media.

It is recommended that no other USB devices are connected to the system, especially when the system is booting.

It is recommended that the utility is used on systems having Pentium 11 or Il processors (400 - 800 MHz processor

speed). The utility seems to fail more as the processor speed increases. On systems having Pentium4 processors with

speed as high as 1.4 to 2.4 GHz, the utility works reliably around 80% of the times and varies with different system
configurations.

o s

Device Configuration File Structure:

The device configuration file is used with the "-d" option for performing R/W tests on all supported media types of each LUN
of the device. The utility prompts the user to insert different media, one by one, in order to perform the tests. For this, the
utility needs to know the device configuration, ie., how many LUNSs the device supports and the different media types
supported by each LUN. These are specified in the device configuration file.

The number of LUNS supported by the device is indicated by the following line;

MAX_LUNS=n
where 'n' is a number (> 0 and <= 4) that specifies the number of LUNs

The media types supported by each LUN are indicated as shown below;

Lx=t1,t2,...,t16
where X' is a zero based LUN number, that should be < 'n' specified above
and 't1''t2',...,'t6" are media types that should be one of the valid media types.

The valid media types that are defined, for now (more could be added later), are
given below;
1=CF 2=MS 3=SM 4=XD 5=SD 6 =MMC

1. There should be no spaces before and after the equals ('=") signh
2. Number of LUNs specified is 1 based, ie. if the device supports 4 LUNs, specify MAX_LUNS=4
3. The LUN index ('x) is 0 based, ie. 1st LUN is indexex as LO.
4. Multiple media types are separated by commas (',") without any spaces in between as shown below
LO=1
L1=2
L2=3,4
L3=5,6

The utility parses this file to understand the device configuration. From the example file shown above, the utility understands
that the device supports 4 LUNs and the 1% LUN supports only CF media, the 2nd LUN supports only MS media, the 3rd LUN
supports SM and XD media and the 4th LUN supports SD and MMC media.



Media Tested with the USB2230

The following flash media cards were used during the development and testing of the USB2230.

USB2230 Software Release Notes

Page - 50 -

Compact Flash Sony 64MB Secure Digital Transcend 256MB
CompUSA 16MB Sony 128MB Infineon 64MB Transcend 512MB
CompUSA 64MB Sony 256MB Infineon 128MB Transcend 1GB
Efilm Pro 640MB Kingston 64MB Transcend 2GB
Lexar 32MB High Speed Memory Stick |Lexar 32MB MMC 4.2
Lexar 64MB Sony 16MB Lexar 64MB Phison 4GB
Lexar 256MB Sony 32MB Lexar 128MB
Lexar 512MB (24x) Sony 128MB Lexar 256MB MMC Micro
Lexar 512MB (80x) Lexar 512MB Transcend 128MB
Lexar 1GB Memory Stick Pro Lexar 1GB Transcend 256MB
Lexar 2GB Sony 256MB Memorex 32MB Transcend 512MB
Memorex 32MB Sony 512MB PNY 512MB RS-MMC
Memorex 64MB Sony 1GB PQI 64MB SanDisk 128MB
Memorex 256MB SanDisk 256MB PQI 128MB Transcend 128MB
PNY 64MB SanDisk 512MB PQI 256MB Transcend 256MB
PNY 256MB SanDisk Ultra Il 512MB SanDisk 32MB Transcend 512MB
PNY 512MB SanDisk Ultra Il 1GB SanDisk 64MB Smart Media
PQI 16MB SanDisk 128MB Fuji Film 16MB
PQI 64MB Memory Stick Duo SanDisk Extreme 256MB Kingston 64MB
SanDisk 32MB Sony 16MB SanDisk 512MB [-O Data 32MB
Sandisk 512MB Sony 32MB SanDisk 2GB [-O Data 64MB
SanDisk 1GB Sony 64MB SanDisk Ultra Il 2GB I-O Data 128MB
SanDisk Extreme 1l 1GB  |Sony 128MB SimpleTech 128MB Lexar 32MB
SanDisk Ultra 128MB Sandisk Transcend 4GB Lexar 64MB
Sandisk Extreme Il 2GB Mini Secure Digital Sandisk 4GB HC-SD Lexar 128MB
Sandisk Extreme IV 4GB Panasonic 32MB MMC Memorex 32MB
Transcend 8GB (120X) Panasonic 64MB Lexar 32MB Memorex 64MB

MicroDrive Panasonic 128MB Lexar 64MB Memorex 128MB
Hitachi 2GB SanDisk 32MB PQI 32MB PNY 128MB
Hitachi 4GB SanDisk 64MB PQI 64MB Samsung 32MB
Hitachi 6GB Toshiba 32MB PQI 128MB SanDisk 32MB
PQI 256MB SanDisk 64MB
Memory Stick Micro Secure Digital SanDisk 32MB SanDisk 128MB
Lexar 16MB SanDisk 128MB SanDisk 64MB Viking 64MB
Lexar 32MB SanDisk 256MB SimpleTech 64MB
Lexar 64MB Sandisk 512MB SimpleTech 128MB xD Picture Card
Lexar 128MB Transcend 128MB Fuji 64MB
Lexar 256MB Transcend 256MB High Speed MMC Fuji 128MB
PQI 128MB CompUSA 256MB Fuji 512MB
SanDisk 16MB High Capacity Secure Digital | CompUSA 512MB Olympus 64MB
SanDisk 32MB Sandisk SD-HC 4GB Connect 512MB Olympus 128MB
SanDisk 128MB Toshiba SD-HC 8GB PQI 512MB Olympus 256MB
Sony 8MB High Speed Secure Digital |Samsung 128MB Olympus 512MB
Sony 16MB Panasonic 512MB Sandisk 512MB

Sony 32MB

Panasonic 1GB

Transcend 128MB




USB2230 Software Release Notes

Page - 51 -
NAND Flash:
NAND ID Size (Bits) Size (Bytes)
OX6E 8M 1M
OXE8 8M 1M
OXEC 8M 1M
0x64 16M 2M
OXEA 16M 2M
OxF1 16M 2M
0x6B 32M 4M
OxE3 32M 4M
OXE5 32M 4M
OXE6 64M 8M
0x73 128M 16M
0x75 256M 32M
0x76 512M 64M
0x79 1G 128M
0x71 2G 256M
0xDC 4G 512M
0xD3 8G 1G
0xD5 16G 2G




USB2230 Performance Benchmarks

USB2230 Software Release Notes
Page - 52 -

The measurements were performed using HDBench v3.40 on a Windows XP (SP2) system with an ICH5 south bridge.
(Pentium 4, 2.8GHz, 512MB DDR). All benchmarks were measured on new (out of the box) media. Please note that the
benchmark performance of flash cards varies widely from manufacturer to manufacturer, and the performance of all
manufacturers’ cards degrade with use. In order to duplicate the results below, you must use brand new media and test on a

similarly configured host.

Memory Stick

High Speed Memory Stick
Memory Stick Pro

Smart Media

XD Card

Secure Digital

High Speed Secure Digital

Multimedia Card
High Speed Multimedia Card

High Speed (USB2.0)
Compact Flash
Memory Stick
High Speed Memory Stick
Memory Stick Pro
Smart Media
XD Card
Secure Digital
High Speed Secure Digital
Multimedia Card
High Speed Multimedia Card

927 KB/s
923 KB/s
924 KB/s
907 KB/s
910 KB/s
928 KB/s
930 KB/s

936 KB/s
939 KB/s

Reads
11393 KB/s
1550 KB/s
5880 KB/s
13768 KB/s
5237 KB/s
4675 KB/s
8875 KB/s
13429 KB/s

8183 KB/s
11377 KB/s

811 KB/s
926 KB/s
917 KB/s
585 KB/s
578 KB/s
936 KB/s
931 KB/s

897 KB/s
916 KB/s

Writes
6234 KB/s
800 KB/s
1302 KB/s

11377 KB/s
889 KB/s
988 KB/s
6086 KB/s
8875 KB/s

5231 KB/s
6390 KB/s

Lexar Media 64MB

SanDisk Ultra Il 1GB

Sony 512MB

Memorex 128MB

Fuji xD-Picture Card 512MB
SanDisk Extreme 256MB
Panasonic Pro High Speed 512MB

Transcend 256 MB MMC Micro
Transcend 256MB

Media Used for Testing:

SanDisk Extreme IV 4GB

Lexar Media 64MB

Sony MagicGate 128MB

SanDisk Extreme Ill 1GB
Memorex 128MB

Fuji xD-Picture Card 512MB
SanDisk Extreme 256MB
Panasonic Pro High Speed 512MB

Transcend 256 MB MMC Micro
Transcend 256 MB HS-MMC



GPIO Assignment Table

USB2230 Software Release Notes

Page - 53 -

The following is a table of GPIO assignments for the USB2230. Please note that multi-function GP10
operations are determined by attribute settings. Please refer to the software release notes for detail on
configuration settings.

Name Description Function
GPIO0 Not avaliable due to pin count

GPIO1 Flash Media Activity LED Media Activity LED

GPIO2 EE_CS EE_CS

GPIO3 V_BUS V_BUS

GPIO4 EE_DIN/EE_DOUT EE_DIN&DOUT/xD Card Identification
GPIO5 SD Card Detect SD Card Detect

GPIO6 A16 ( external ROM only ) /ROMEN ROMEN/A16 \

GPIO7 EE_CLK/Unconfigured LED EE_CLK/Uncfg LED

GPIO8 MS Power Control MS Power Control

GPIO9 CF Power Control CF Power Control

GPIO10 SM Power Control SM Power Control

GPIO11 SD Power Control SD Power Control

GPIO12 MS Activity/Transceiver ShutDown MS Activity/Transceiver ShutDown




Known Firmware Related Issues

USB2230 Software Release Notes

Page - 54 -

General:

Issue: Workaround: Status:

None. N/A N/A

CF Devices:

Issue: Workaround: Status:

No known issues.

MS Devices:

Issue: Workaround: Status:

When High Speed Magic Gate Memory Stick media is None. We believe this is a

formatted with a FAT file system on a MacOS 10.X host, the Magic Gate security

media becomes unreadable on machines with Windows protocol issue. We will

operating systems, but will continue to work normally with continue to investigate

Macs. and provide a fix in a
future release of the
USB2230 firmware if
possible.

SM Devices:

Issue: Workaround: Status:

Writes to 2MB Smart Media cards are not supported. None. 2MB Smart Media
cards can be read by the
USB2230, but writes
are not supported.
These cards are
considered obsolete and
there are no plans to
implement support for
them in the future.

SD/MMC Devices:

Issue: Workaround: Status:

Under certain conditions, the USB2230 device may fail to
recognize an SD/MMC card inserted while writing to either
CF or MS or SM cards.

Attempt to reinsert the card.

Currently under
investigation. May be
fixed in a future release
of the USB2230
firmware.

xD Devices:
Issue:

Workaround:

Status:

No known issues.




Issues Not Related to Firmware
Issue:

USB2230 Software Release Notes

Workaround:

Page - 55 -

Status:

Due to the write caching functionality of Windows, data
corruption can sometimes occur if the media is removed
improperly.

Before removing any piece of media, you should right click
the drive icon in Windows Explorer and select “Eject” from
the context menu. This will force the operating system to
perform a write of any cached data.

Limitation of the OS.

Reading or writing multiple media types simultaneously will
generally happen at the slowest media rate.

This is a limitation of the OS. If writes to a slow media type
like MS are made while reading from a fast media type like
CF or SM, then the read will slow to approximately the rate of
the write. This is because the OS must process each command
separately. It is not a limitation of the firmware.

Limitation of the OS.

If the USB2230 evaluation board does not have a properly
programmed serial number, only one drive will appear in
Windows Explorer.

Program a unique serial number into the board using the
“USBDM” utility.

Occasionally, surprise removal of the USB cable during
writes to any media type under Windows XP, results in the
failure of the device to re-enumerate after being reattached.

Reboot the host.

This appears to be a bug
in Windows XP. No mass
storage class USB devices
will enumerate once the
host is in this state.

When MSPro media is inserted and the device is enumerated
drive icons won't come up until media is ready to be read. Per
MSPro spec larger media could takes 10 seconds to be ready.

None.

Setting attribute byte 3, bit 1 to one may result in USB2230
not functioning properly.

Set attribute byte 3, bit 1 to zero as specified in the attribute
bit definitions section.

Itis an invalid
configuration to set this
bit; the next release will
prevent a user from being
able to set this.

Some Memory Sticks can not be formatted with the Sony
Format utility if “Physical Device Display” is not checked.

Check the “Physical Device Display” if the MS does not have
the option to format. After the first format, this box may not
need to be checked for future formats.

This is a limitation of the
Sony Format tool, and is
mentioned in the
applications help topics.




