USB2223 Software Release Notes
Page-1 -

sSmsc

SUCCESS BY DPESIGN

Austin Design Center
11000 North Mopac Expressway
Stonelake Bldg. 6 Suite 500
Austin, Texas 78759

USB2223 Software Release Notes

v0.0.0.365

WHQL 1D: 816545
USB-IF TID: 40001955

Updated 011-30-04

The information contained herein is confidential and proprietary to SMSC, shall be used solely in
accordance with the agreement pursuant to which it is provided, and shall not be reproduced or disclosed
to others without the prior written consent of SMSC. Although the information is believed to be accurate, no
responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to this document and
to specifications and product descriptions at any time without notice. Neither the provision of this
information nor the sale of the described semiconductor devices conveys any licenses under any patent
rights or other intellectual property rights of SMSC or others. The product may contain design defects or
errors known as anomalies, including but not necessarily limited to any which may be identified in this
document, which may cause the product to deviate from published specifications. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product
failure could cause or contribute to personal injury or severe property damage. Any and all such uses
without prior written approval of an officer of SMSC will be fully at the risk of the customer. SMSC is a
registered trademark of Standard Microsystems Corporation (“SMSC”).

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY
AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF
DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL,
INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR
REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT;
NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER
ORNOT ANY REMEDY OF BUYER ISHELD TO HAVE FAILED OF ITSESSENTIAL PURPOSE, AND WHETHER OR
NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

USB2223 Software Release Notes
Page- 2 -
Software Compliance

The software in this release conforms to the following industry flash card specifications. SMSC has tested to the best of its
ability to ensure that this software conforms to these specifications. However, no other warranty is assured, express or implied,
other than provided by SMSC's standard terms and conditions.

SmartMediaTM Electrical Specification Version 1.40
SmartMediaTM Physical Format Specifications Version 1.40
SmartMediaTM Logical Format Specifications Version 1.30
MultiMediaCard System Specification Version 3.31

SD Memory Card Specifications Version 1.1

Memory Stick Standard Format Specification Version 1.40-00
Memory Stick Pro Standard Format Specifications Version 1.01-01
Memory Stick Duo Standard Format Specifications Version 1.10-00
CompactFlash Specification Rev 2.0

Universal Serial Bus Specification Rev 2.0

USB Mass Storage Class, Bulk Only Transport Version 1.0

RBoOoo~NooOk,wNE

o

USB2223 Software Release Notes

Page- 3 -

Table of Contents
YIS To T o T o Y SRR 5
THENON-VOIALITE SEOM @ DIBEActeee ettt ettt h et eese e be s bt eheeheeaeaaeeae e besaeebeebeeaeeae e e enbesbeebesbeeaeeneeneanbeseenbeneas 9
Using Flash ROM 10 StOr@the NV SEOr € DAtacccuevuerieriesiesieeieeeereeesees e stestesseeees e stes e stessessesseessessensessessessesseesesnssnsessessessenns 9
L0 LS T aTo R AT U =) 9
Creating thE EEPROM DAT FilE ..ot sttt e e s et s e st ssesae e s e e e en e sa e tessesaeeneeneenseseensesneerenneeneenes 10
Attribute Bit Definitionsand NV Store Editable VaIUES ..o e 10
THE ALIFTDULES CBICUIALONoieiiecrce ettt E et R et e Rt e R et e R et e r et neen e rer e e enis 13
Programming the NV SEOr€ Data.......cc.coevereieeiireeeereeses et s e e e e e e s te s e s e e e eeseeseesbesaeese e e enteseessesseaneensensentesnesrennennennen 14
LUN Configuration and 10N SNAITNQ......ceoueueierere ettt sttt se e be e e b e saesbeeae e beseesbesbeaaeeneeasebeseesbesneeneanes 15
[@0 1T [N = i o] o FE TSR 15
Kete g IS 0= 1 o SRR 15
(Il oY= g @fo gl Lo U] = Ud o] ISR 16
Using the USB Drive Manager Application (for Windows XP ONlY) ..o s 17
LS L1 {0 T = ST USRS 18
QLIS == Lo 12T T o S 18
USING .dat fIIESWIth USBDIMocuiiieieieeiesie st sie s e et e et teste e es e e e e seestesbesseese e e esaesaesbestesaeeseeneensenseseessesaeeneeneeneeseentenseans 18
Using the USBDM Application to Perform Device Firmware Upgrade (DFU)ccccvieeerire v 21
Using the OEM. X t0 UPUALE FiTIWAIE.....c.uecveiuiieeeeeeeeesesteste s e eseeae e stesteste s e esee e esaeseestestesseeseeneensesseseesaesaeeseeneenseseessensenes 23
Using Device Firmwar@ UPGrade (DFU)coieiiieciseeeeeesese sttt ee e sse e st stessesseeseesesssessessessesneensensensessessessessennes 24
L@ Y L= SRR 24
Files Required fOor DFU fOr WINGOWSooiiiiieeeiee ettt sttt a et sbesaeehe e e et e seesbesbesaeeae e e eneeseeseesae e 24
Creating the 128KB DFU Capable Flash Binary “ Doth.Din"ooo e 26
Preparing a DeviCe fOr DFU OPEIationNcieeieiriieiesie sttt rees ettt st aesseeeeseesbesbesaesaeeneaneeseesbesaesaesaesneeneeseeseeseesns 27
Choosing @ Flash EEProm fOr YOUE DEVICE.........ccuiuiiiieiieieseeee sttt ettt s he et e e be e e b e s bt sbe s e e s e neeseesbesaesbeeneaneaneans 27
SELING UP T8 HAIAWAI €.ttt bbbt ae st e e et e s £ e eEe s beeheeh £ e aeeme e s e besbeebesbeeaeemee e enbeseeebenae e 27
Performing a Firmwar e Upgrade with the DFUTest Application(Windows ONlY)cccccvveveveseneneeereeese e 28
Creating @ DFU UpPlOadabl@ Fil@c.ociieeieeere ettt st s e es e e ensestesaessesneeseeneenseseenseseessennenns 29
USING the DFULEXE ULHITY ..ottt s e e e e s ee st e st e e sees e e neensese e b e sbesaeeseeneenee e e teneesrennennnenes 29
USING the DIFULEXE ULHITY ...cueeieece ettt st s e e e e s te st e sa e e seeseeseense e e b e sbesaeesenneenee e e eeseenrenneennenes 30
[TU T o g o = L O Yo o =1 oo 31
DI IVET OVEIVIBW ...ttt s e et E R e R ne R R e R A e SRR e R s e e R R e Ao R n e e R e R e s e Rt ne e R e et e e r et nenr e rns 31
Performing a Firmware Upgrade with the DFU_App Application(Mac 10.X ONIY) ..o 32
VY aT= R (ol g To [BT U N o o TSP 32
Using an engineering version of DFU_APP @PPIICALTION.cc.iiiiiieiiiieeee ettt s b e s 32
Creating a Customer VErSION OF DIFUcouiiiiiie ettt b et e b e b e bt e be e e et e seesbesaeebeeneenean 33
Using @ CUStOMEY VEISION OFf DU AP ..vereeieieriese ettt ee bt she e e e e beseesbe s et shesae e e eseese e besaeene e e enbeseeebesaeeneannans 34
Performing a Firmwar e Upgrade with the DFU Application(Mac 9.X ONIY) ..ot 35
Using DFU appliCatioN(IMBC 9.X) ..vcueieeieiesiisesesteseeseeeeseestesees e stessesseeseessessessessesaessesseesesssensessessessesseesenssnnsesssssessessenneens 35
TRESM SC DU AP ..ottt a R R s R R et R Rt s e et s e R e e R R et ne R et s e r et ne R e e s rer e e nnen s 36
Using the USB2223 CUSLOM 1CONS PACKAGE.cueiuirieriireieeertese st steseeeeseestesaessesseesessestessesseessesesssessessessessssssessensessessessessennes 54
Contents of the USB2223 CUStOM 1CONS PACKAGEueieeeerieresestiseeeeeeereeseseeste e sseseesaes e seestessessesseessessessessessnssesssessensnns 54
Creating the Required SEHICON INi FIlES.......ccuiieeiisice sttt er e se e e sa e testeseesaesaeesee e enteneeneeneeans 54
Manually Installing the Custom [cons APPlICATON FIlESoiiiiii et e b 56
Creating a Windows Installer for the Custom 1cons AppliCation FIlES.........cccoiiiiiiiiieeee e 58
Troubleshooting the CUStOM [CONS APPIICALIONoiuiiuiriiiee ettt ettt se e et et s b e et e ae e e e e e besbesbesaeeneeeeneas 58
Using the Production Line Descriptor Update Utility (PLDU) ..ot e s 59
Creating the PLDU Qi FlE... ..ttt et bbb e e et e st e e et e besbesbesaeeae e e eneeseesbesaeeneennans 59
A SAMPIE PLDU TNi FIlE....eieeieeeee ettt et b e bt bt et e st e se e b e s bt ebeeh e e ae e s e e e e besbeebesbeeneenbene e besaesbennas 60
Setting Up the PLDU APPIICALIONveiuiiiieecieriesese st sttt e e e e ste e s te s e s s e esaesaestessessessesseeseeseensessessessesseeseeneensessnssessessensenns 61
Using the PLDU t0 Update DEVICE DESCIIPIONS. . cueiueiueeeeeeeiesiisiesiestesseeseetesees e ssessesseeseessessessessessessesssssssssessessessessessessensenes 61
Using the Production Line TSt ULIlItY (PLTU)....ccuciiiiiiiieeeeeieeeiesees et ste et sse e e eaeseesees e ssesaessesseessessensessnssessessennes 63
Creating the PLTU INi FIl......ciiiiie ettt e e sttt se e s e s e e te s besaesseeseeseeneenseseeseessesneeneeneenseseenresneasennnans 63
=T o] T o I IO T S 64
S Sl aTo O o g1 o I O I o] o 1T 11 oo TSP 65
UsSiNg the PLTU t0 TESt MUIIPIE DEVICES.......coveiueieeeieeeie ettt sttt b e sb e sae b e e e e se e b e sbesaeeae e e et e seesbesee e 65

Known Issueswith the USB2223 ProducCtion LiNE ULHTITIES........ocuiei ittt st e ettt siae s s e e s s eab e e s s enrae e s sares 66

USB2223 Software Release Notes

Page- 4 -

Using the QuickTest Production Line Read/Write TSt ULIITY ..o s b 67
USING the EPRIM UPDT .@XE ULTITY ...ttt sttt bt bt bt ae e e e e e sbeeb e s bt s aeeneensebeseeebesneeneenes 68
USING the ChECKROM .EXE ULHITYuecuieeerei ettt ettt e e e se e st e tesee st e eneeneene e eeseeseenneeneenaeneenseseenrennen 70
1. Supportsdevices connected only at theroot NUD TEVEL. ... e 71
Using the Windows XP Special Memory Stick Format REQISITY K@Y ...ocuviieieieiice e 71
L0 LS T g o Rt A= T = L 11T 2 72
L0 LT aTo R AT Y=o Lo | LU | 73
Using the Dos Production Ling Utility (DOSPLTU) ...ciiiiiiiiciiieieiereesesesees e ste sttt sre s s sse e eseee s ssesseessensansesssssessessennes 74
USING the USB2223 Wt LINUXeeuiiieietiie ettt e et b et sa e e e se et saeeb e e ae e s e e es e besbeebeebeemeeneeneabeseesbennas 78
Media Tested With the USB2223..........cociiieiiieisise sttt s ettt s et e st e s e s e seebe s eneebe st eneesessessesessenaenensenen 79
USB2223 Performance BENCNIMAI KS ..ottt ettt s b e bt e ese e besbesb e sbe s st e ne e e ebeseesbenaeeneenes 80
LT L@ NS To T e gL o LA =T o] =TSO 81
KNOWN FirMWar € REIBLEA I SSUES..... oottt sttt h et h st e e e e se et e s be s et e e e besbeebeeheemeeneensebesaeebenaeennenes 82
LT 0 TSP 82

L@ T Y o= OSSOSO 82

S L= Y o= SO SP 82

SIM DBVICES: ...ttt sttt sttt ettt b e s et b et e st e Rt £ e st b e £ e Rt b £ e R Rt £ e ARt £ e R e Rt £ e R e e Rt AR e A e Rt e b et e Rt R e Rt e R et et b e be e e b 82
SD/MMC DBVICES: ...ovineetertiietirteietestete st et steeesesseseesesteneesesseneesesben e e st sEea e e st e b en e e st e b em e e Rt e b et e Rt e b e e e Rt e b et e st e b e b enesbenbenenbenbns 82

BTSN (oI R L= Fo L= o I (o T T 1101717Z= < 83

USB2223 Software Release Notes
Page-5-

Revision History

0.0.0.212:

0.0.0.304:

- ROM Mask O1.

Firmware:

- Modified the firmware to improve the transfer speeds of certain high-end Lexar Compact Flash cards.
- Fixed a bug in the Compact Flash media identification code, related to identifying the media supported PIO
mode of operation and setting the right mode on the host.

- Modified the code such that when Vbusis removed, the device can be put into suspend if the UDC and
PHY are held in reset. Operation of the 2223 is changed so that if Vbusisremoved it will suspend and
wakeup only when Vbusis reattached.

- Modified the code to reduce the suspend current to below 500uA when using DFU enabled firmware
(both.bin) running externally.

- Fixed a bug with Memory Stick media surprise removal during aread or write.

- Fixed a bug with Secure Digital media surprise removal during aread or write.

- Added Memory Stick 2 bit ECC error checking.

- Added support for Sony High Speed Memory Stick.

- Added support for the Sony Memory Stick Format Application.

Applications:

- Modified the Setlcon utility (v1.2.0.6) to fix a bug which caused a“No disk in drive’ error message to
appear in Windows XP SP1 under certain conditions.

- Modified the Windows 98 Safe Removal Utility (v1.0.0.4) to display more descriptive error messages when
an error occurs while stopping the device.

- Modified the Attributes Calculator Utility (v.08) to allow both encoding and decoding of attribute values.
Please note that you must have the Microsoft Dot Net framework installed on your PC in order to run the
Attributes Calculator utility.

- Added a Japanese version of the SMSC FormatPro utility to the application software distribution package.

-External Evaluation Build
Firmware:

- Added support for the ST 93C66-W EEPROM.
- Added firmware extensions for the new USBDM utility which is used for DFU firmware upload and
descriptor updates.

Applications:

- Modified the DosPLTU utility (v1.4) to add LUN info on error messages for RW tests so that the user
would know which LUN failed the tests.

- Released theinitial version of the USBDM application (v1.0) which is used for DFU uploads and descriptor
updates, as well as for creating consumer DFU updatesin a single distributable exe. See the section of this
document entitled “Using the USB Drive Manager Application” for more details.

- Modified Setlcon.exe (v1.2.0.8) to enable dynamic icon supprt. Dynamic icon support allows the OEM to
display adifferent icon for each mediatype (CF, SM, SD, MMC, MS, MSPRO) and for each media state
(either media inserted, or no media present.) This version of Setlcon isfully backwards compatible with
previous versions and their associated ini files. See the section of this document entitled “ Using the USB2223
Custom Icon Package” for more details.

- Modified the 98SafeRemoval Utility (v1.0.0.5) to prevent the app window from popping up during
initialization.

- Updated the USB2223 Software Installer to add dynamic icon functionality and the updated

98SafeRemoval utility.

0.0.0.322:

0.0.0.323:

USB2223 Software Release Notes
Page- 6 -
-External Evaluation Build

Firmware:

- Fixed alogic error in code that checks for MS protected blocks.

- Removed firmware support for the SMSC M S Pro format utility.

- Added a new attribute bit, “ Attach on card insertion / Detach on card removal” which forces the deviceto
either attach or detach depending upon the presence or absence of media.

- Made several code space optimizations to reduce overall code size.

- Added support for 256MB Smart Media.

- Implement M ode Sense Page 5 and Vendor Page Support to comply with USB Boot Device specification
(as yet unpublished.)

- Made several firmware changes to fully comply with the Memory Stick specification.

- Fixed a bug with MS surprise removal in Linux.

- Fixed some issues with the CE pull-up resistor on CF and SM and corrected the sequence of eventsin the
power-up/down macros for all media.

- Changed the read_format_capacity function to support the SCSI-mmc2 specification. Thisimplementation
isapplicable to all mediatypes.

- Fixed abug in end user DFU code. When reading the NV Store using the new dfu commands, the residue
was not being decremented. Since the SMSC drvlib.dll ignores the residue mismatch, this had no noticeable
effect, however to be fully compliant with the specification, the change was made.

Applications:

- Modified the DosPLTU utility (v1.5) to add support for EHCI and OHCI host controllers.

- Modified the USBDM application (v1.004) to include support for creating end-user DFU executables
(OEM .exe) that will upgrade firmware versions prior to 300. Please note use must be using external flash in
order to upload new firmware with DFU.

- Modified the USBDM application (v1.004) and the Attribute Calculator (v.15) to include support for the
new attribute bit, “Attach on card insertion / Detach on card removal” which forces the device to either attach
or detach depending upon the presence or absence of aflash card.

- Updated the Cardreader Software Installer (v2.5) to include the Microsoft Hotfix for Windows XP (SP1).
This hotfix corrects the Setlcon issue where icons would not be properly updated until a card was either
inserted or removed. Note that this hotfix will be included in Microsoft’s upcoming Windows XP (SP2)
update. It can also be downloaded from Microsoft’ s website via Windows Update (KB 833998).

- Modified Setlcon (v1.2.1.1) so that it no longer auto arranges the icons on the user’ s desktop.

-ROM Mask 02

Firmware:

- Fixed a bug that prevented some MMC cards from being accessed.

Applications:

- Changed the Card Reader Software installer (v2.6) included in the DFU and Driver Package to remove the

MS Hotfix 833998 for Windows XP. This hotfix is now available from the Microsoft Windows Update site.
SMSC will continue to provide an installer that includes the hotfix as a separate download (~25 MB).

USB2223 Software Release Notes
Page- 7 -

0.0.0.337: -External Evaluation Build
Firmware:

- Fixed abug with the firmware not responding on an embedded host during a media surprise removal

- Added anew attribute bit for LUN Power Configuration feature and new EEPROM byte for LUN Power

GPIO to alow customers to update which GPIOs control power to which LUN. Thisimplementation is

for customers who wish to control which GPIOs control power to the FETs to deliver power to a multi-

card socket, instead of requiring 4 GPIOs to power 4 FETs independently (default)

Fixed abug with SM_CE pull-up being enabled after power up and resume from suspend. To meet xD

specification thisinternal pull-up should be disable, so removed enabling of this pull-up from firmware

- Fixed an issue with BIOS booting from Memory Stick Pro by changing the media identification process
for MS Pro

- Fixed abug with MS Pro failing to enumerate rarely after a surprise removal of the USB cable during a
format.

Applications:

- Modified Setlcon (v1.2.1.2) to first determine the drive where Windows isinstalled and form the total

path before updating the registry.

Modified the CheckROM (v1.3) and EprmUpdit (v1.7) applications to add support for EHCI and OHCI

host controllers.

- Modified the USBDM application (v1.302), DFUTest Application (v2.3.0.4), DescUpdt application
(v1.0.0.9), and Attributes Calculator (v1.8) to include support for new chip design attribute bits, these
changes are not applicable to 2223.

- Modified Attribute Calculator (v.15) to grey out attribute bit options that are not available for the device

that is selected in the “Filter by Chip” option

Modified the USBDM application (v1.302), DFUTest Application (v2.3.0.4), DescUpdt application

(v1.0.0.9), and Attributes Calculator (v1.8) to include support for “Use LUN Pwr Config” attribute bit

and LUN Pwr Cfg byte.

- Removed support for obsolete application Susb and Writeee

- Modified USBDM (v1.302) to alow for editing a .dat file without a device attached. A virtual deviceis
seen if thereis no valid device attached.

- Added functionality to automatically detach and reattach device after firmware upload is completed
using USBDM (v 1.302). User is no longer prompted to complete this action since it is done for them.

- Added support to CheckROM, EprmUpdt, and DosPLTU to specify host controller number. In order to
use this option the end user has to know how many host controllers of the given type are present in the
system and also the enumeration order of the host controller to which the device is attached. If these
details are not known, this information can be found by trial and error methods.

- Added “-d” optionin DosPLTU (v1.8) to prompt for media during R/W tests.

USB2223 Software Release Notes
Page- 8 -
0.0.0.365: -External Evaluation Build

Firmware:

- Time-out values for Smart Media have been adjusted to comply with version 1.20 of xD specification.

- Improved the detection of MS-Pro cards. This solved an issue with MacOS 9.X where the MS Pro was
not being correctly identified on the first insertion

- ,ggjde(tj check for Vbus at the end of k_msg_initialize in dev_mngr so we can force a suspend if Vbusis

sent.

- Fixed abug where self powered 2223 board occasionally fails device surprise removal on large sizes of
xD

- Added “generic” default configuration to be displayed when thereis no valid eeprom available.

Added reporting of unique MCU types for 2223. When you use the USBDM application, the Info tab

will now tell you if the firmware being used is built for 2223.

Added code to turn off the CF interface when powering down.

- Added afix to properly identify the capacity for SD cards with > 512 byte block length (2GB SD card).

Initialized lun data medium_type code to O (default medium type/currently mounted medium type) in

initialize controller function for SD, SM, CF, and Nand. Some BIOSs don't like uninitialized random

data for medium type.

Initialized rdt to k_successin dfa_lun_mode sense() before use. rdt was checked w/o being set to a

value when k_mode _page flexible disk (page 5) is requested. rdt was being initialized only for vendor

page and all page requests. Thiscaused SM LUN to stall mode sense 10 page 5 request.

- Fixed Memory Stick response to Mode Sense 6 and 10. Sony specific codesfor MS, MSPro, and MS-
ROM should be returned only for Vendor Page 20 only.

- Fixed Memory Stick's response to Mode Sense 6/10 with page code 3Fh (or 05h)

Applications:

- Added a check to properly update the serial number string upon overflow from “FFFFFFFFFFFF’ to
“000000000000" for DosPLTU (v1.9)

Changed attribute bits for FET power and HS SD mode USBDM (v.1.407) (Does not apply to 2223)
Added Hub tab to USBDM (v1.407) (Does not apply to 2223)

Added FF and 00 padding to short MFG and PRODUCT strings for USBDM (v1.407)

Upgraded CardReader Software Installer to now be a universal installer for all SMSC products. This
resulted in new ini filesthat included all PID’ s that use thisinstaller instead of only 2223's PID.

- Added LUN Power Mask 1 and LUN Power Mask 2 bytesto PLDU (v1.0.1.0). (Does not apply to 2223)

The Non-Volatile Store Data

USB2223 Software Release Notes
Page- 9 -

The NV Store is user modifiable data that is stored in either seriadl EEPROM or external program flash ROM and used by
the device during operation. Some of the values that can be modified in the NV Store data include the serial number,
VID/PID, Manufacturers ID String, Product ID String, LUN ID Strings, the modifiable device desciptors such as
bmAttributes and MaxPower, number of LUNs, LUN order, and other modifiable bytes which customize the operation of

the USB2223.

The NV Store datais programmed into the device using atext file “EEPROM.DAT”, which contains the bytes of data that

are written to the EEPROM.

SMSC provides a utility to program the NV Store data called “DFUTest.exe”. The procedure for using the DFUTest Utility
to write the NV Store data is described in the following paragraphs.

Using Flash ROM to Store the NVStore Data

If you are using external program flash you can, as a cost reduction measure, eliminate the need for a serial eepromin your
device by using the SST39VF010 Flash ROM, and the “NO EEPROM” version of the USB2223 firmware. The NO EEPROM
firmware uses a portion of the memory storage area in the SST39VF010 Flash to hold all of the NV Store data. Currently, the
SST39VF010 is the only chip supported by the NO EEPROM firmware. If you have a requirement to use another flash, please
contact SMSC Sales to inquire about adding support for your chip.

Note: The USB2223 contains internal masked ROM program code. If you are running the 2223 from internal ROM code, you
must use an external eeprom to store the NV Store data (V1D/PID/Manufacturer and Product 1D Strings, Attribute Bytes, etc.)

Using the DEUTest Utility

To usethe DFUTest utility to create the eeprom.dat file and program the USB2223 device via USB, the following files are

required:

The DFU application- (dfuTest.exe)
The driver library- (drvlib.dil)

The DFU driver- (smscdfu.sys)

The DFU ingtallation inf- (smscdfu.inf)

Eal SN

Before using the DFUTest application, you must add a
VID/PID entry for your device to the “smscdfu.inf” file.

Thisisrequired for the DFU driver swap to occur properly.

To start the dfuTest application, simply double click the
“dfuTest.exe” executable. Once the application starts, you
will see the user interface on the right.

To create the eeprom.dat file which will contain the data to
be programmed in the non-volatile store area, select
“Tools’ > “DAT Editor” >“New File” from the
application menu.

Bt uMsl Deacmptor Update § Firmssare Uipdsts for
Tiils Abat

EEPRDM FLASH Desonpions Updaths
Chick. 1o gt o chevice’s desoniplons:

Chick: e Bisfton basbows sbheen ou
e fshed updsing ol dewoes

Thizt woll iasiois tha nalive
ehrckonst Mtk Shotage Click:

[e, Ukl D iz gpabois
Alesiore windoss Direer M I
Fearraa® MAM D Flagh Fuamweasin Lipdaia

Chck, to foamal FAKID Flagh dave Chck: o upadate the dervice’'s Fimmavang.

Erase Meda Fomat Duve gt Firvrwsne: |

[T Enac sk befose |omatieg

'E:&l

USB2223 Software Release Notes
Page - 10 -

Creating the EEPROM.DAT File

When creating a new eeprom.dat file in the DFUTest DAT Editor, the dialog to the right appears. All fields should be filled out
completely, and the file should be saved using the “Save” or “Save As’ buttons.

Attribute Bit Definitions and NV Store Editable Values

VID- Vendor ID (2 bytes): Unique for every vendor. Assigned by the USB I mplementers Forum.

PID- Product ID (2 bytes): Unique to the product. Assigned by the Vendor.

Attributes (4 bytes): Only the 1% 2™ and 3" Bytes are used. The correct attribute value for your device can be determined using the
“Attributes Calculator” utility provided by SMSC. The hit definitions are as follows:

Byte 1, bit 0: Smart Media Timing (Not used for the USB2223) T |
1- NAND flash chips will use the slower, smart media compatible r/w .
cycletime. Thisisthe recommended setting. 147 Tt
0 - NAND flash chips will use the faster 50ns r/w cycle timing for chips that are e L O i
Capable Py : !:l-. l:ll.- ..-.l —
Byte 1, bit 1: Enumerate asHard Drive or Removable M edia (Not used for the ;)
USBZZZS) [T TN A s b Ba T
1 (default) - NAND flash hard drives always enumerate as removable media. P
0 - NAND flash hard drives enumerate as removable disks when write protected, ST
and as fixed disks when not write protected. - H !
Byte 1, bit 2: Reserved. (Thisbit isautomatically set by the USB2223 to its default e
value) i st i

1 (default) - Use GPIO5 as an SD card insert indicator.
0 - Use GPIO 5 as aHigh Speed indicator.

Byte 1, bit 3: Behavior of iSerial bytein device descriptor i i fisd atiy [T
1 - Always report iSeria as zero in the device descriptor. T T
O(default) - Report non-zero iSerial in device descriptor if serial number isvalid. T L e

Byte 1, bit 4: Usethe Inquiry Manufacturer and Product 1D Strings Mebrlm i Bt T e e
1 — Usethe Inquiry Manufacturer and Product 1D Strings. lesacn T Blnd M
0 (default) - Use the USB Descriptor Manufacturer and Product ID Strings. PR EiP - i ok

Byte 1, bit 5: Set the state of the activity LED when suspended, regar dless of its f &4

idle state. e] 3oy -

1-Theactivity LED GPIO is set to High when suspended.
O(default) - The activity LED GPIO is set to Low when suspended.
Byte 1, bit 6: Reverse SD Card Write Protect Sense
1- SD cards will be write protected when SW_nWP is high, and writable when SW_nWP islow
0 (default) - SD cards will be write protected when SW_nWP islow, and writable when SW_nWP is high
Byte 1, bit 7: Make SD Cards Write Protected Always (Read Only)
1 - SD cards will always be write protected, regardless of the state of the card's write protect switch
0 (default) - SD cards will only be write protected when the write protect switch on the SD card is engaged
Byte 2, bit 0: Smart Media CIS Checking
1 —Ignore CIS check for Smart Mediato allow the USB2223 to work with non-compliant cards.
O(default) — Enforce Strict CIS checking for Smart Media cards.
Byte 2, bit 1: Idle processing (Not used for the USB2223)
1 —idle processing on. Device will perform required erase operations while idle.
O(default) — idle processing off. Device will wait until awrite is received before doing required erase operations.
Byte 2, bit 2: Compact Flash Compatibility M ode (Note: This bit should no longer be used. It was originally added to allow
compatibility with off brand Compact Flash cardsthat the 2223 was misidentifying. This bug has subsequently been fixed,
eliminating the need to use this compatibility bit.)
1 — Compact Flash will operatein slow PIO-0 mode only.
O(default) — Compact Flash will operate at the fastest mode the card reports it can support.
Byte 2, bit 3: Change the Device Responseto a Get Status Command
1 - Device will report itself as SELF POWERED in response to a GET STATUS from the host.
O(default) — Device will report itself as BUS POWERED in response to a GET STATUS from the host.

USB2223 Software Release Notes
Page- 11 -
Attribute Bit Definitions (cont.)

Byte 2, bit 4: Change the USB Version the Device Reportsto the Host (Warning: Setting this bit will result in the device being
non-compliant with the USB 2.0 specification.)
1 - Devicewill report itself as USB version 1.1 in the bcdUSB device descriptor.
O(default) — Device will report itself as USB version 2.0 in the bcdUSB device descriptor.
Byte 2, bit 5: Usea Common Media Insert / Media Activity LED.
1 - The activity LED will function as acommon media inserted/media access LED.
O(default) — The activity LED will remain in itsidle state until mediais accessed.
Byte 2, bit 6: Perform Software 1-bit ECC Error Correction on Smart M edia. (Not Used for the USB2223).
1 —Thedevice will perform Full Speed 1-bit ECC error correction in software for Smart Media transfers. Please be warned that
setting this bit will result in approx. 50% transfer performance drop for Smart Media due to the processor overhead required to do
ECC checking in software.
O(default) — The device will not correct 1-bit ECC errors during full speed Smart Media transfers.
Byte 2, bit 7: Bypass Status Byte Check for Smart M edia Cards. (Not Used for the USB2223).
1 - The device will bypass the Smart Media status byte check in the extra data area, speeding up the map building process. Caution:
Setting this bit makes the design noncompliant to the Smart Media specification.
O(default) — The device will not bypass the Smart Media status byte check. (Smart Media spec compliant).
Byte 3, bit 0: Attach on Card Insert / Detach on Card Removal.
1 - The device will attach to the host when mediais inserted and detach from the host when mediais removed.
O(default) — The device will aways remain attached while powered, regardless of the presence or absence of media.
Byte 3, bit 1: Provide Support for Using an xD Door on the device (Not Used for USB2223)
1 — Adds support for using an xD door by moving the activity LED to GPIO 12, using GPIO 1 as an xD door input, and using
GPIO 4 as amedia detect pin (See hardware schematic)
O(default) — All GPIOs retain their normal function.
Byte 3, bit 2: Usea Single GPIO for LUN Power Control.
1 - Allows customers to have configurable GPIO control power to a FET, delivering power to a multi-card socket, instead of
requiring 4 GPIOs to power 4 FETsindependently. If you set thisbit, you must also set the LUN power configurations byte 172 in
the NV Store data. Refer to section “LUN Power Configuration” section for additional information about this feature.
O(default) — All GPIOs retain their normal function.
Byte 3, bit 3: Usea Variable PID for Single LUN Devices. (Not Used for the USB2223)
1 - Allowssingle LUN devicesto report adifferent PID depending on the type of mediainserted. Please note that in order to use
this feature, the device must be configured for asingle LUN, and have the * Attach on Card Insert/ Detach on Card Removal” bit
Set.
O(default) — A single PID is reported regardless of what mediais inserted into the device.
Byte 3, bit 4: Ignore HS SD Max current. (Not Used for the USB2223)
Byte 3, bit 5: Switch to HS SD mode. (Not Used for the USB2223)

All other bitsin the Attributefields arereserved and should be set to 0.

USB2223 Software Release Notes
Page- 12 -

NV Store Editable Values (cont.)

Language I D (2 bytes): 0409 is the Language Code for English. Other language codes may be found in the USB 2.0 specification.
Serial Number (12 Hex Digits Max): Unique to each device. The serial number can be up to 12 hex digits, written in the eeprom.dat file as
unicode.
Manufacturers String (28 Characters M ax): Used to hold a descriptive manufacturer string.
Product ID String (28 Characters M ax): Used to hold a string to identify the product. The user will see this string during the USB
enumeration process in Windows.
Format Signature- Do not change. For the USB2223, this should remain “atal”.
Lun Pwr Config (1 byte) — Should be avalid hexadecimal number. Default = E1. Refer to the “Lun Power Configuration” section for
additional information on how to calculate this byte. Only used if attribute byte 3, bit 2 is set.
Idle Time Limit (1 byte) — (Not used for 2223) Should be greater than or equal to 0x0 and less than or equal to OxA. When set to 0x0, this
feature isturned off. Setting it to avalue between 0x1 and OxA will set the idle time limit to between 1 and 10 minutes depending on the
value entered. Time limit is set in minute increments.
Lun Power Mask 1 (1 byte)— (Not used for 2223) Defines which GPIO or FET isused for MSand CF
Lun Power Mask 2 (1 byte)— (Not used for 2223) Defines which GPIO or FET isused for SD and SM.
bmAttributes (1 byte)- Per USB Specification.

80 — Device is bus powered.

CO —Deviceis self powered.
M axPower (1 byte)- Per USB Specification. Do not set this value greater than 100mA.

01-2mA

31-98mA
GPIO 0/1 LED Blink Interval (1 byte)- Programmablein 10msintervals. Hi bit indicatesidle state: 0-Off, 1-On. The remaining bits are
used to determine the blink interval up to amax of 128 x 10ms.
GPIO 0/1 Blink After Access Time (1 byte)- This byte is used to designate the number of seconds that the GPIO 0 LED will continue to
blink after a drive access. Setting this byte to “05” will cause the GPIO 0 LED to blink for 5 seconds after a drive access.
LUN ID Strings (7 bytes each)- There are four LUN ID strings corresponding to LUNs 0,1,2 and 3.
Inquiry Manufacturer (8 Bytes) and Product (5 Bytes) ID Strings: If bit 4 of the 1% attribute byte is set, the device will use these strings
in response to a USB inquiry command, instead of the USB Descriptor Manufacturer and Product 1D Strings.
Number of Iconsto Display, CF Lun#, MSLun#, NAND Lun #, SD/IMMC Lun #, SM Lun # These bytes are used to specify the
number of LUNSs the device exposes to the host. These bytes are also used for icon sharing- Assigning more than one LUN to asingle icon.
(See the section of this document entitled “LUN Configuration and Icon Sharing.”)
NAND Profile (2 Bytes): (Not used for the USB2223) Thisis where the NAND performance profile is specified for controllers that use it.

USB2223 Software Release Notes
Page- 13 -

The Attributes Calculator

SMSC provides asmall utility called the Attributes Calculator which can be used to calcul ate the attribute val ues for your
device. In order torun theutility, you must have the latest Microsoft NET framework installed on your PC. The NET
framework can be obtained through a normal Windows Update, or you can download it manually from the Microsoft website
at: http://msdn.microsoft.com/netframework/downl oads/howtoget.aspx . To use the utility, simply select each of the Attribute
byte tabs and check the boxes for the bits you want to use. The attribute bytes are calculated in real-time and displayed at the
top of the application. If you hover the mouse pointer over any of the bits, a complete definition and option summary is
displayed on the right. Y ou can also use the Attributes Calculator to decode attribute byte values. When you type a value into
the field for any of the attribute bytes, the corresponding attribute bits are displayed in the tab control below. The Attributes
calculator has the ability to filter by the chip that you are using. This feature will grey out the attribute bits that do not apply to
that specific chip and not allow these bits to be selected.

&" Attributes Calculator v.18

[Attribute Byte Yalues Bt tl'_‘,-" Chlp |USBEEE3 j
.B_lrltE 1 Byte 2 E_I,Ite 3 Byte 4
| 00 | (414 | a0 | Q0 This bit iz currently not used,

Attribute Hex ¥Yalue

0x00000000
-‘*‘-ttrlhutEB}'tE'l 1 Attribute Byte 2] Attribute Byte 3] Attribute Byte 4
Attribute Byte 1
il
[
I
[Report iSenal Byte as Zero in Device Descriptar Options:

[Usze Inquiny Manufacturer and Product 1D Skings
[Set the Activity LED GPIO to High 'When Suspended
[Beverse SD Card ‘\Write Pratect Senze

[Make 5D Cards “white Protected Alaays

Programming the NVStore Data

Once the eeprom.dat file has been created with the DFUTest application, you
are ready to program the NV Store data into your device.

Press the “Update Descriptors’ button on the DFUTest application to program the
NV Store data. A dialog like the one on the right will appear. Enter the current
VID/PID/DID for the device, browse to the path of each of the three required files,
and select “OK”. The operation will report completion once the data has been
programmed.

Note that if you are using the DFUTest application in a production line
environment to program multiple USB2223 devices, you can check the box on
theright titled “ Auto increment serial number.” This will increment the serial
number each time adevice is programmed, ensuring that all serial numbers
remain unique. Once you have completed programming the NV Store data, press
the “Restore Windows Driver” button to unload the DFU driver and load the
Windows mass storage class driver.

USB2223 Software Release Notes

Page- 14 -
1 i
ey iy T s [IFRLEFLE b e, e
v ey o Dol el e o e e

Tom ol mebie B

- e rat

o s 1 D e L I:' .]
hp b L o, P

E covmat el Dt D LislSe

Tt g SELT Figat e Chos b ok Mo dibon: | Wi

S bl | i D |
T Lol ool s Tl o,
Ba |
m i ;]
._‘ - — —
[| Pl a0
L TRttt
| [
P
I ey
P s Tl
| B l
, 1] | Lams I
™

DIFELE FL i aacares. Lo
Ol o i e el o i

Fik e famr P e
v ey e

T ol ki B B

- ot

Hm-d---ml:ul I:' :]
e] o, sy

E ot P AL Dt [Y= Y

Dt g BT Fgady e Choe b ol P b | W il

imriinde | remales [—

T Lo e s b o

USB2223 Software Release Notes

LUN Configuration and | con Sharing

LUN Configuration

LUN (Logical Unit Number) isthe term given to each available mediatypein the
USB2223. The USB2223 has atotal of 4 LUNs available for use: Compact Flash,
Memory Stick, Smart Media, and Secure Digital/Multimedia Card. OEMs can specify
the number and order of LUNSs exposed to the user by setting 5 bytesin the NV Store
data. (See the section entitled “Using the DFUTest DAT Editor”).

Example: The example on the right shows the correct settings for a 2223 device that
exposesiconsfor MS, SM and CF in that order. Note the following bytes:

Number of Iconsto Display: “03” (The user will see 3 icons)
MSLUN # “00” (Memory Stick will be the 1% icon displayed)

SM LUN #: “01” (Smart Mediawill be the 2" icon displayed)

CF LUN #: “02" (Compact Flash will be the 3% icon displayed)
SD/MMC LUN # “FF” (Aniconfor SD/MMC will not be displayed)

Note: LUN numbering always starts at “00”.

| con Sharing

In addition to LUN configuration, the USB2223 can be further customized to allow
more than one LUN to share anicon. This functionality would most likely be used for
devices that contain multi-card adapters (adapters that can read more than one type of
card.) So if you wanted to usea“5-in-1" or a“6-in-1" adapter, the USB2223 could be
configured to only display a single icon to the user, rather than an icon for each
individual mediatype. Alternatively, if you wanted to use a“4-in-1" adapter for
Memory Stick, Smart Media, Secure Digital and Multimedia Card, but have a separate
adapter for Compact Flash, you could configure the USB2223 to display 2 icons to the
user (one for the 4-in-1 adapter and one for the Compact Flash) as shown in the
example on theright.

Example: The example on the right shows the correct settings for a 2223 device that
exposes 2 icons. 1 for (CF) and 1 for (MS, SM and SD/MMC) in that order. Note the
following bytes:

Number of Iconsto Display: “ 02" (The user will see 2 icons)
CF LUN # “00” (Compact Flash will be the 1¥ icon displayed)

MSLUN # “01"
SM LUN #: “or” } (These mediawill all share asingleicon)
SD/MMC LUN #: “01”

Page - 15 -

LT [eltinr - 1 [PRINE OAT
=

DT E s

WHh e TN Al s [T

Fupl Byel Heel Baed
i M @ @ (@ e DD
Lasrguasge I} | B8 el Pl < NIRRT

Flwsimlan Aoy 3L
Pt 5wy 73 e 1=

Froman Tgraraw | gyl -] Lk Aty g e

Foich o Fomrsgt = ply1”
Lo Og G6|X0 ke Tewini i@ bdlobin |30 &)

(LS S (] Fird b i [Bt [{m@er (a7

Lunl |.': Luml B0 AT

L - [1H TP o

ey M gon sy D g [Ruir

by Mo 10 Bl |50

et W loort 02 el o MWl GefT
= e

coad Vil P 1 oo S IS B 1]

HEHT Sadde T JoF 1 Wi HE & Ba|Pp

GAE = 5 L§

NET Fedbiar - 1| PR ORT

=
AT Elibd
WD e e AD o [T
Fupi Bl Bl Eaed
e M @ @ [@ s [OoDDD
Lirguanga [O] 1EE Tl i (B (NECNEENENEN] |

L N T _ila
Frodiicd 5w R e

Frommal Sgraia® | gigl | Lrrh At 1 g b

Ferich Fre Pt glg1*

Len®va Og 06| e Towimi e/ poikshan A =)
Bobe i mamy in [m Fieh el i T Bk [fugen (sl
Ll [IF Lam [
Lo i [Lamdil v

ey Mo g I g D

by P! 0 Bhmg |)
i o' kmorn —

1 Flmi g HEEund Ojpn

= L ey
ShmC R [f SEwnd kin
HEHT Badde N 5 s Wali HEE - G| ry

SWE = L§

USB2223 Software Release Notes
Page - 16 -

LUN Power Configuration

The LUN Power Configuration allows the user to customize which GPIOs control power to which LUNSs.
Without this feature, users designing card readers that utilize multi-card sockets (sockets which can accept different
flash card types) must include one FET for each card that the socket supports. Therefore, if a socket can accept
any card type, the board design must include 4 FETs even though only 1 FET is active at a time. In order to reduce
cost, only one FET is needed per socket. Users can set the LUN Power Configuration to have a single GPIO
control power to the FET to deliver power to the multi-card socket, instead of requiring 4 GPIOs to power 4 FETs
independently.

In order to use this feature the user must set the “Use LUN Power Configuration” bit (Attribute byte
3 bit 2) and assign a valid hexadecimal number to the “LUN Pwr Cfg” byte (byte 172).

The format of the NVStore LUN Pwr Cfg byte is as follows:

Bit
7 | 6 5 | 4 3 | 2 1 | o0
SD Power GPIO | SM Power GPIO | MS Power GPIO | CF Power GPIO

The Power GPIO field for each of the sockets shall be defined as follows:

Bit 1 Bit 0 Power GPIO
GPIO 8
GPIO9
GPIO 10

GPIO 11

—
—

R IOO
R OO

By default the LUN Power Configuration byte will be as follows:

Bit
7 | 6 5 | 4 3 | 2 1 | o
SD Power GPIO | SM Power GPIO | MS Power GPIO | CF Power GPIO
1 | 1 1 | o 0o | o 0o | 1
OxE1

The above chart shows SD being powered by GPIO 11, SM powered by GPIO 10, M S powered by GPIO 8, and CF powered
by GPIO 9.

Example: The Icon Sharing example in the previous sections describes a device with 2 icons: 1 for (CF) and 1 for (MS, SM
and SD/MMC) in that order. Since MS, SM and SD/MMC are all sharing a socket in that example only 2 FETs would be
needed. The Lun Power Configuration feature can be used to assign two GPIOs to power these LUNs instead of the four
GPIOs used by default. Suppose for example that the user would like the CF dot to be powered by GPIO 9 and the combo slot
to be powered by GPIO 10. First the user would set the attribute bit “Use LUN Pwr Config”. Second the user would set the
LUN Power Configuration byte to OxA9. (See table below for how this value is found)

Bit
OxA9 Example: 7 | 6 5 | 4 3 | 2 1 | 0
SD Power GPIO | SM Power GPIO | MS Power GPIO | CF Power GPIO
1 | o 1 | 0 1 | o 0o | 1
OxA9

USB2223 Software Release Notes
Page- 17 -

Using the USB Drive Manager Application (for Windows XP only)

The USB Drive Manager (USBDM) application can be used to perform al of the same functions that DFUTest performs, plus
some additional functions such as creating end-user firmware updates contained within asingle, easily distributable exe, and
having the ability to instantly read the NV Store data from the device without the need for adriver swap.

Note: In order to use all of the features of the USBDM program, you must use a firmware version 300 or later. Firmware
versions after 300 include support for the SCSI pass through commands required for USBDM to retrieve NV Store data from
the device.

Note: USBDM will not work for updating a SM SC standal one hub.

Note: The USBDM Application is supported in Windows XP only.

Getting Started: T BA b %
= | .I|E. |.- | A

To start the USB Drive Manager application, simply = [|Tesen| Cimtpuiten| ek | Mt

double click on the “USBDM.exe” executable. Once S A

the application opens you will see the screen shown to TR S =

theright if there is a device attached to the host e

computer. If thereisno device present, avirtual device Pt

will be listed instead of the USB MSC Device it

information shown in this example. Thisvirtual device [¥1 T

allows a.dat file to be edited without the need for a B P

device to be attached to the host compuiter. N

The USBDM Toolbar

‘m/ USB Mass Storage Class Drive Manager

File Edit ©Options ‘iew Help
20| - |

The toolbar buttons shown above are displayed at the top left hand side of the application. Starting from left to right, they
perform the following functions:

=

B A Ep
Erase

Fmt | DFU

Button 1: Refresh Drive List Button 5: Format Drive (Not Used With 2223)
Button 2: Load .dat file Button 6: Upload Firmware

Button 3: Save .dat file Button 7: Copy

Button 4: Erase Media (Not Used With 2223) Button 8: Paste

*|f you do not see these buttons displayed, go to “View” in menu bar and make sure there is a check next to the “Toolbar”
option.

*Clicking on the “Help” option above the toolbar and selecting “ About Drive Manager” will display the version of the
USBDM application.

Thelnfo Tab

Theinfo tab is displayed whenever a USB mass storage
class deviceis attached to the host while USBDM is
running. Thistab displays the key fields in the NV Store
datafor the device. Note: Unless the device contains the
SMSC USBDM firmware extensions which are found in
firmware versions 300 and higher, most of the datafields
will display INVALID.

Attach a device containing the USBDM firmware
extensions (firmware versions 300 or higher) to the PC
viaaUSB cable. The USB Drive Manager application
will read the NV Store data for this device if there exists
valid data. It will display information for each drive that
isavailable on the device. The example to the right has
information for Drive F, Drive G, Drive H, and Drive .
Y ou can toggle between the information for each of these
drives by single clicking on the Drive entry under the
“USB MSC Device” folder on the | eft side of the
application.

USB2223 Software Release Notes
Page- 18 -

e Gl fem pew
- = m O s .
B twis | o || “_
il P L Wils | Deendlag | Coslguivian | b
[T
' vy e
Ll LS [Lo [T
...... -
——
il 11
Vi B
T
L
whiinl
= e e

Note: The detach button seen on this tab will momentarily detach the target device from the system.

The Branding Tab

The Branding tab is used to write vendor specific data to the
NV Store. Programmable fieldsinclude: Vendor 1D, Product
ID, Language ID, Product String, Manufacturing String, and

Serial Number String. Any of thisinformation can be
changed on the device. Once you have entered the
information for your device, click on the “Update Now”
button to program the NV Store.

Vendor |1D: Unique for every vendor. Assigned by the USB

I mplementers Forum.

Product 1D: Unique to product. Assigned by vendor.
Language | D: 0409 is the Language Code for English.
Other Language Codes may be found in the USB
specification.

Product String: 28 characters max. Used to identify the
product. This string will be used during the USB
enumeration process in Windows.

e Bl fem e

H - |E. ||- J:.F:l' B | W |
. ";-l':-r'.'..; - m. =—" Il.n..-l.n.-| .c“.ll_l.“.i..; .";
i < D bl o i

Yergia il g M

e P T g
s P i

maas e sk

e e
T

Manufacturing String: 28 characters max. Used to identify the manufacturer.
Serial Number: 12 hex digits max. Must be unique to each device.

Using .dat fileswith USBDM

The Load .dat file button can be used to populate these fields from avalid .dat file. After clicking the Load .dat file button, you
will be prompted to specify a .dat file. Once the .dat file has loaded, the text fields will be updated to reflect the datain the .dat
file. Any changes made to the text fields can also be saved into a .dat format using the Save .dat file button at the top of the

application.

The Configuration Tab

The Configuration tab contains all of the other NV Store
programmable fields not found in the Branding Tab.

The Configuration Tab is where you set:

The NV Store signature which is always
“ATA1" for the USB2223

The attribute bits

The LUN assignments

The LUN IDs

NAND Profile (Not Used for USB2223)
Miscellaneous settings such as the USB
descriptors bMaxPower and bmAttribute

These user programmable fields are described in
detail in the following paragraphs.

Signature: The signature should remain set to ATAL
for USB2223.

USB2223 Software Release Notes

L T R ey g E e e]

=HE BN

Fitams ML Mk FB P doiead

[L = R TR L]
Tolt st it bt ool L ot
T 4T P B e

Fim | L Py [y g
il e

T g
b Bl r
Li]

umn i !

™ iy

| b gy AT el PR) ey
st ey FP fugh wdg
P [[

Lo Frivad

s C—
i Figge ki
sbyrd o e I ¢ H e
e g P

LW Lot ml- L

o i

Page- 19 -

s
o i P R

T ot .
Bl e? | Wb LED

. A L e oM el

L ELE_

1 bt
¥ Rk e

b Lo

T il T L

Attribute Bits: The attribute bits are used to customize the functionality of the USB2223 firmware. A complete list of all
programmable attribute bits and their function islisted in the section of this document entitled “ Attribute Bit Definitions and
NV Store Editable Values.” In the image shown above “Use GPIO5 asan SD Card Insert Indicator” isthe only option selected.
Placing a check to the left of an option sets an attribute bit. If the box is unchecked, the attribute bit will be cleared. Any of
these options may be checked or unchecked depending on the various needs for the product being programmed.

LUN Configuration: The LUN configuration section is where you program
LUN assignments and ID strings. The first editable field isthe “# of iconsto
display.” Thisiswhere the user can specify how many icons he or she would IF
like to appear in Windows Explorer. If thisfield is set to “FF”, the program
assumes that you are using the default value of “04” and will display icons for
CF, MS, SM, and SD. If thisfield is any other value besides “FF”, you must
specify the LUN# assignments in the boxes below starting with LUN 00 and
going to (# of Iconsto Display -1). Note that more than one interface (CF, [#F

LUK Confgaatzn

FF H of Ioaes b Doispleg

MS, SM, or SD) can share a LUN. Thisiscalled Icon Sharing, and isused in

applications where the device utilizes a combo socket and the OEM wishesto
have only a singleicon displayed for one or more interfaces. For more information, see the section of this document entitled
“LUN Configuration and Icon Sharing.” Remember L UN numbering always starts at 00.

The configuration to the right directs the firmware to show three LUN’sin the

order of CF, SD/MMC, and SM. Note that Memory Stick is not enabled in

this configuration.

Of Iconsto Display: 03

Compact Flash (1¥ LUN): 00
Memory Stick (will not display): FF
Smart Media (2™ LUN): 02

Secure Digital/MMC (3 LUN):01

LUK Corbgan slas

|23 B ol loons s Displss

I-'-" Compact Flarh [cF

I'-= Hereny Ghih |u3

2 Sl Wedka BT

[pcure Digraanmar; [S0NME
|:'. HAKD 4 |FFFF

[FF Compact Fas F LLBHD -1
F Mersoey Sk My LLIMHT - 10
[FF St Meds TH LLBIHE -ID
[FF Smoums DigeabMME [SDHHD omis3-i

MAMD u [FFFF KD Frolia

LUk - 10
LLIFIHL « 1D
LLIFIHD < 1D
LLRE] - 1D
RAKD Faafia

Misc. Settings: The Misc. Settings section is used to program the other miscellaneous NV Store

USB2223 Software Release Notes
Page - 20 -

editable values. They are: e e
3 bMaForm
1) bMaxPower (1 byte): Per USB specification. Do not set this value greater than 100mA x| Bk et
2) Blink Interval (1 byte): Programmable in 10msintervals. Hi bit indicates idle state: 0— |02 Bk Durskn
Off, 1-On. The remaining bits are used to determine the blink interval up to a max of 128 £[3 brAtiate
X 10 ms. :-|"-': Ichha Torwan Liwd
3) Blink Duration (1 byte): This byteis used to designate the number of seconds that the €[00 Lum Prar Ciz
GPIO 0 LED will continue to blink after a drive access. Setting this byte to “05” will w00 L Possss sk 1
cause the GPIO 0 LED to blink for 5 seconds after a drive access. [0 i, Posser Mash 2
4) bmAttribute (1 byte): Per USB Specification.

5)

6)

7)

80 - Deviceis Bus Powered

CO0 — Deviceis Self Powered
Idle Time Limit (Not used for the 2223) (1 byte): — Should be greater than or equal to 0x0 and less than or equal to
OxA. When set to 0x0, this featureis turned off. Setting it to a value between Ox1 and OxA will set the idle time limit
to between 1 and 10 minutes depending on the value entered. Time limit is set in minute increments.
Lun Pwr Cfg (1 byte): — Should be avalid hexadecimal number. Default = E1. Refer to the “Lun Power Configuration”
section for additional information on how to calculate this byte.
Lun Power Maskl1 (Not used for the 2223) (1 byte): - Defines which GPIO or FET is used for MS and CF
Lun Power Mask2 (Not used for the 2223) (1 byte): - Defines which GPIO or FET isused for SD and SM

The Hub Tab

The Hub tab is non-functional for the 2223
product. If a2223 (or any USB mass storage . R_Ar=
class device that does not support thistab’s R o
functions) is connected to the host when i
USBDM isrunning, the entries will be grayed i
out and inactive. Attempting to modify the
contents of the Hub tab will have no effect on
the operation of the device. Changing any
values on the Hub tab will have no effect, as T s e

these entries will be grayed out and inactive. HLE Dyl i 11 M P ol P

o LTl e e e e |

e Bl e e
= —_ |Wiwie Fiall | DWW | = '!_

min | Dewsding | Conligmwian ik

Pl T P I Ml F oy G Tl
i bl Nt RN I T —
P Divmiin " el [T S,y —

Pl ke Vi § s Pl Trs

USB2223 Software Release Notes
Page- 21 -

Using the USBDM Application to Perform Device Firmware Upgrade (DFEU)

The following files are needed to perform a device firmware upgrade with the USBDM application:

The USBDM application executable (USBDM.exe)

The device code (both.bin) *Must be preprogrammed in the device flash in order to accept DFU
A HEX to BIN converter (hex2bin.exe)

Utility to add the .dfu suffix (dfu.exe)

The updated firmware image. Stepsto create thisfile are explained below (fmc.dfu)

grwdhpE

A firmware update can only be done using this application if avalid both.bin file is already programmed onto the device. See
the section of this document entitled “ Creating the 128K B DFU Capable Flash Binary ‘both.bin’” for steps on how to create
the both.bin file.

Creating the .dfu File:

The .dfu fileisa DFU uploadable firmware image. It is essentially USB2223 firmware converted to binary format using the
hex2bin.exe utility, with a DFU suffix appended to it. For information on creating the .dfu file, please see the section of this
document entitled “Creating a DFU Uploadable File”. Please note that the USBDM application uses the device ID field (DID)
to check firmware version information. The DID field should be filled with the major and minor firmware version (for this
example, v3.00, the DID would be 0x0300).

This procedure can be completed using asimple DOS batch file:
hex2bin -165534 fmc.hex fmc.bin

dfu fmc.bin -did 0x0300 -pid 0x223A -vid 0x0424

ren fmc.bin fmc.dfu

Updating the Firmware:

To perform a firmware update, click on the “Upload Firmware” button at the top of the application. A

Y ou will then be prompted to select the .dfu file that you wish to Find * diu {ife dnd click “ipen’
upload to your device. Navigate to the .dfu file (if it is not already Lok | 3 DFLE -| = & e
listed in the current folder) and click open. B ve 7o)
e [(=]
Pinof by | sl =| Cawel
| Doperi ma puad-onis

You will see apop up box on your screen that displays the status of the firmware upload. This status will cycle through
“Waiting for DFU Driver to Load”, “ Switching to DFU Mode”, “Uploading New Firmware”, “Validating New Firmware”, and
“Firmware Upload Successful”. Once the loading is complete you will be prompted to unplug the device and reattach it to
continue (or to restart the host if the device isinternally mounted).
Once the device is reattached, the device will enumerate and the
information for the updated firmware will be loaded into the USB
Drive Manager application. \miing Fos DL Dvive i Load

% 50% 100%

USB2223 Software Release Notes
Page - 22 -

Using USB Drive Manager to Create a Consumer Firmware Update Executable

USBDM can be used to create a very simple, easy to use, easy to distribute firmware update that OEMs can give to their
customersto allow firmware upgrades. To create the executable, you only need two files:

1. The Drive Manager application (USBDM .exe)
2. The updated firmware image. (fmc.dfu)

Note: Ensurethat the DID set in the DFU file matchesthe Major and Minor firmwarerevision.

Simply drag and drop the .dfu file on the USBDM.exeiconin e e -
Windows. Y ou will see a popup box asking if you would like to r .
create an OEM consumer version of the DFU application. Click yes
and the application will build the consumer firmware update
executable. The executable will be given the default name of
“OEM.exe”. You can rename this file to whatever you like. Thisis
thefile that is distributed to the customer to allow firmware
upgrades.

Wi paiid rmi s ko cyesle an U E M cormurss
yurmon of He DFL spplcation?

Note: Thetarget device must be preprogrammed with avalid
“both.bin” fileto allow firmwar e upgrades.

USB2223 Software Release Notes
Page - 23 -

Using the OEM.exe to Update Firmware

The OEM executable icon is shown to the right. E

1) Double click on this executable to begin updating the firmware in your target device.

2) You will be prompted to attach a supported USB device.

Firwvmss | incnds Ireraricre

This prompt also displays which firmware version the executable will
use to update your device. For thisexample, Firmware Version 3.00 is
used.

Allacs a nuppaied LISE devos and ek o

Frresars Varmon 308

3) Connect your device(if not connected already) and click
“Continue”. £l Timsanin

Note: This application allows consumers to make firmware updates to their device provided that 1) avalid both.bin fileis
already programmed on the target device and 2) the firmware that they are attempting to upgrade to is equal to or newer than
the firmware version already on the device. This application will not allow an update to a version of firmware that is older than
what is currently on the device. You will be asked if you would like to update your device firmware, click “yes’ to verify the
update and the application will begin to update your device.

The application will show the status of the update. It will cycle
through “Waiting for DFU Driver to Load”, “ Switching to DFU
Mode”, “Uploading New Firmware”, “Validating New ming fos [FL Dirver 2 Lasd

Firmware”, and “Firmware Upload Successful”.
% 50% 1005

4) The USB Drive Manager application will prompt you to either reboot your

computer (if an internal USB device was updated) or unplug the device and —
plug it back in (if an external device was updated). H them o s e vl L0 e, planem
pebanl yiir cowpuber, T Dok, pleais

unpdi] Hhe derdce and Dhig & back i
halay e

After thisis completed, you will see the device status pop up
return with the message “ The Update Completed Successfully”.

The firmware is now updated on your device. The Lidais Conplelsd Siiocesshil
e ———
& 5% 133%

USB2223 Software Release Notes
Page - 24 -

Using Device Firmware Upgrade (DFU)

Important Note: The version 212 release of the USB2223 firmware includes the final version of the DFU loader “DFU.hex”.
This DFU loader isincompatible with previously released versions of the USB2223 firmware, but will be forward compatible
with all future releases. In order to have DFU firmware upgradeability for any 2223 device going forward, you must use the
version 212 DFU loader.

Overview

Device Firmware Upgrade (DFU) is the process by which device firmware is updated through a standard USB cable,
eliminating the need to remove, reprogram and replace flash memory. This operation is accomplished by placing special code
into an external flash memory chip at thetime it isinitially programmed. This code can then later be called upon to essentially
change the USB device into a flash programmable device. Then new firmware can then be uploaded to the device and
reprogrammed into the flash. Once the operation is complete, the device configures itself back to anorma USB device and
begins utilizing the new firmware. Please note that you can not perform a device firmwar e upgrade if you are running
from the internal USB2223 ROM code. You must use an external flash if you want to have device firmwar e upgrade
capability.

SMSC’s Device Firmware Upgrade (DFU) package gives manufacturers the ability to easily utilize DFU to
dynamically update the firmware and descriptor information in their devices. Thisalows for in circuit programming of new
device firmware both on the assembly line, and by the end user in the field. This affords both the manufacturer and the end user
agreat opportunity to utilize the feature enhancements and bug fixes of new code immediately once it becomes available.

In order to help customers evaluate the DFU technology, SM SC provides a DFU package that consists of the DFU
driver, device firmware, sample DFU applications and source code, and a DFU driver APl which customers can use to quickly
develop custom DFU applications. SMSC also provides a DFU package for Mac 10.X and 9.X systems. This document
serves to describe the use of these tools, and the implementation of Device Firmware Upgrade in atypical device application.

Files Required for DFU for Windows

dfuTest.exe —A sample DFU application which demonstrates the use of the API and the procedure for updating the firmware
and NV Store data.

drvlib.dll —=A dynamic link library loaded with “smscdfu.sys” which handles all of the non-DFU specific operations such as
PNP message handling and basic WDM and USB support.

smscdfu.sys -Thisisthe DFU driver which isloaded prior to performing a firmware or eeprom update operation. It is
responsible for handling the DFU specific function calls from the DFU application.

smscdfu.inf —The file responsible for loading the “smscdfu.sys’ DFU driver. The contents of thisfile should never be altered.

eeprom.dat —A text file containing the changeable descriptor information used to update the NV Store. Thisfile can be created
and edited in the DAT Editor (under the Tools menu) in the DFUTest application.

hex2bin.exe -A batch capable utility that converts INTEL HEX, MOTOROLA 'S, or TEKTRONIX HEX filesto Binary
Format.

dfu.exe -A utility used to add, remove, or check for the presence of a DFU file suffix. Any firmware image that isto be
uploaded to adevice via DFU, should contain avalid DFU file suffix.

dfu.hex -The DFU execution code that isinserted into the lower 64kb of a 128kb flash when it isinitially programmed. This
hex fileis converted to a 64kb binary file with the “hex2bin.exe” utility, and then appended to the 64kb “fmc.bin” file to create
the 128kb flash image. (Included with the USB2223 firmware).

USB2223 Software Release Notes
Page - 25 -

Files Required for DFU (cont.)

fmc.hex -The USB2223 device firmware that isinserted into the upper 64kb of a 128kb flash when it isinitially programmed.
This hex fileis converted to a 64kb binary file with the “hex2bin.exe” utility, and then appended to the 64kb “dfu.bin” file to
create the 128kb flash image. (Included with the USB2223 firmware).

fmc.dfu -A firmware image that can be uploaded to the device. Thisfileis created by the user. This document explainsin
detail how to make downloadable DFU images through the use of the “DFU.exe” utility, which appends a DFU file suffix to
the firmware file to be uploaded to the device. (Thisfileis created by the user).

Application Sour ce Code -All of the source code for the dfuTest sample application, as well asthe DFULIB.LIB link library
used to create custom DFU applications.

USB2223 Software Release Notes
Page - 26 -

Creating the 128KB DFU Capable Flash Binary “ both.bin”

128KB Flash EEPROM

In order to prepare adevice for DFU operation, the flash must be programmed with
both the DFU code, and the normal USB2223 device code. The device codeis
converted to a 64K B binary file, and appended to the DFU code, which has also
been converted to a 64K B binary file. Together they form the 128K B binary file -
which is uploaded to the flash eeprom. When thisfile is uploaded to the flash, the Device
DFU code occupies the lower 64K B block, and the device code occupies the upper 64K Code
64K B block.

In normal operation, a DFU capable USB2223 device executes only the device 64K DFU
code in the upper 64K B block of memory. This code allowsit to function asa Code
normal USB 2.0 flash media controller. However, when the device is switched to
DFU mode, the DFU code in the lower 64K B block begins executing and the
device ceases to be aflash media device. Essentially, it changes to become an eeprom programming device. In this modeitis
capable of reprogramming the USB2223 device code in the upper 64K B block of flash memory. Once the operation is
complete, the device switches code execution back to the upper bank and begins operating with the newly updated code. At this
point is ceases to be an eeprom programming device, and returns to being a flash media device.

To create the 128KB DFU capable flash binary file that will initially be programmed into the flash eeprom, you will need two
files:

1) fmc.hex (The device code)
2) dfu.hex (The DFU code)

The “dfu.hex” fileis provided by SMSC, and provides programming support for a limited number of eeproms. The “fmc.hex”
fileisthe standard USB2223 device firmware. These two files, “dfu.hex” and “fmc.hex,” are both converted to 64KB binary
files with the “hex2bin.exe” utility, and then appended to each other with a DOS copy command. Together they become the
128K B binary file “both.bin”. The procedure for creating “both.bin” is outlined below.

fmc.hex > Efmc.hin\/-
dfu.hex > gdfu.hin > /

Note that this entire procedure can be accomplished easily using a simple DOS batch file:

both.bin

hex2bin -L65536 dfu.hex dfu.bin
hex2bin -L65534 fmc.hex fmc.bin
copy /Y /B dfu.bin /B + fmc.bin /B both.bin /B

USB2223 Software Release Notes
Page - 27 -

Preparing a Device for DEU Operation

In order to prepare adevice for DFU operation, the flash must initially be programmed with the “both.bin” code. The
“both.bin” file contains both the device code as well asthe DFU code. The DFU code must preexist on the flash in order for it
to be capable of receiving a DFU upload. The DFU code remains dormant in the lower 64KB of memory until it is called upon
to perform a device firmware upgrade operation.

Once the flash has been programmed with the “both.bin” file, it may be inserted into the 2223’ s flash socket in
preparation for DFU operation.

Choosing a Flash Eeprom for Your Device

SMSC provides customers the “dfu.hex” file which supports only the SST 39V F010, M X29F001, AM 29L V010B,
AM 291 V040B, STM 29W010B, STM29F010B, MBM 29L V400TC, and the M BM 29L V 200T C flash eeproms. While al of
these flash support DFU firmware uploads, only the SST39V F010 supports NO EEPROM operation.

If you wish to use another flash in your device, it would most likely require some modification to the existing DFU
code by SMSC to support the electrical characteristics of the new chip. If thisisthe case, please contact SMSC sales to have
the project scheduled.

If you do decide to use another flash egprom, there are a few requirements to look for to make sure it will work with
DFU. First of all it should be 128K B and byte writable. Also, it should have equivalent programming characteristics as the
three supported chips, i.e. block size, erase size, read/write/erase speed, command set, and command address. Provided the chip
meets all of the above requirements, there is a good chance that it will support DFU.

Setting up the Hardware

Either aUSB 1.1 or 2.0 controller may be used for the DFU operation, however some USB 2.0 host controller drivers
such as OMI’s have been found to have defects which prevent DFU from performing normally. If you are going to use a USB
2.0 host controller, it is recommended that you use Microsoft’s host controller driversin order to achieve the best results. Once
the board is attached and powered up, it should enumerate as a norma USB flash media controller. When you see the drive
icon(s) appear, the device isready. Currently only USB 2.0 may be used for the DFU operation when using Macintosh
operating systems. The following section describes the next step in the process, which is setting up the software application to
perform the DFU.

USB2223 Software Release Notes

Page - 28 -

Performing a Firmware Upgrade with the DEUTest Application(\Windows Only)
The following files are required in order to perform a device firmware upgrade:

1. TheDFU application- (DFUTeSteXe) Bxupmir Deaonptor Update | Firmssare Updiste for il

2. Thedriver library- (drvlib.dil) Tods About

3. TheDFU driver- (smscdfu.sys) ;

4. TheDFU ingtallation inf- (smscdfu.inf) Chick S bation Eelow when you e

5. The updated firmware image- (fmc.dfu) b e e Chck: fo upiahe et devace’s descnplors

Thit el iacioin the naliee

* Note that if you also want to perform an update of the bt i e Lipidaie Dseriptors
serial egprom, you will need a 6th file, “eeprom.dat”
which contains the descriptor information for the serial Flesors Windoses river] [T Mo incrament serial rube

eeprom. (See the section of this document entitled “The
Non-Volatile Store Area.”

. L. Frarrat MAMND Flazh Farwasin Lpdsia
Before using the DFUTest application, you must add a Chek by Rotm sl HAKID Flash thive Click o tdats tha devica's
VID/PID entry for your device to the “smscdfu.inf” '

file. Thisisrequired for the DFU driver swap to occur

Erasa hacks | Fomat Di Lipedate Fi |
properly. rasE ol W o Fimrasane:

[T Enacok erebihs et loaratiieg
To start the dfuTest223 application, simply double
click the “dfuTest.exe” executable. Once the [
application starts, you will see the user interface on the Ll
right. Pressing either the “Update Descriptors’ or
“Update Firmware” button causes the DFU driver to load. Thisdriver is required for the update to take place. From auser’s
perspective, the drive icon(s) will disappear once the device enters DFU mode. The DFU upload processis not completed until
the “Operation Complete” dialog appears. The application itself does not provide any indication of the progress of the update.
A typical firmware update takes about 1 minute to complete. To unload the DFU driver, press the “Restore Windows Driver”
button. This will restore the Windows mass storage class driver, and allow the device to be operated normally. Note: In order
for the new descriptor information to appear, you must unplug the device, and then plug it back into the host. On attach, the
device will begin using the new datain the NV Store area.

USB2223 Software Release Notes
Page - 29 -

Creating a DFU Uploadable File

In order for afile to be uploadable viaa DFU operation, it must contain avalid DFU file suffix. The DFU file suffix
contains a CRC of the entire file, a DFU signature, and the VID, PID, and DID for the device to be upgraded. The following
table was extracted from the USB Device Firmware Upgrade Specification (Rev 1.0), and shows the composition of the DFU
file suffix.

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC. (Calculation specified in the
following section).

-4 bLength 1 16 The length of this DFU suffix including
dwCRC.

-5 ucDfuSignature 3 uc The unique DFU signature field.

-8 bcdDFU 2 BCD DFU specification number.

-10 idvVendor 2 ID The vendor ID associated with this file.
Either FFFFh or must match device’s
vendor ID.

-12 idProduct 2 ID The product ID associated with this file.
Either FFFFh or must match device’s
product ID.

-14 bcdDevice 2 BCD The release number of the device
associated with this file. Either FFFFh or a
BCD firmware release or version number.

In the SMSC DFU application, DFU downloadable files are given the extension “.dfu”. Thisis strictly arbitrary; the
files can be of any extension as long as the application is designed to handle them. In order to create your own DFU
downloadable file, you begin with the firmware file that is going to be used to upgrade the device. If the new firmware fileis
not already in binary format, it should be converted to binary using the Hex2Bin utility provided. Once in binary format, the
“dfu.exe” utility isused to append avalid DFU file suffix to the firmware file (See the next section titled “Using the DFU.exe
Utility”). Once the DFU file suffix has been added, you may rename the file with a .dfu extension to indicate that it is DFU
downloadable. The entire procedure for creating the DFU downloadable file is summarized below.

fmc.hex fmc.hin fmc.bin finc.dfu
Firmware . Firmware Firmware DFU
File a2 File —_— File —el2TE e | Downloadable
{Hex Format) {Bin Format) (With DFU Suffix) Firmware

USB2223 Software Release Notes
Page - 30 -

Using the DEU.exe Utility

The“DFU.exe” utility can be used to add a DFU suffix to afile, or to check for the presence of avalid DFU suffix on
an existing file. If required, the “DFU.exe" utility can also be used to remove a DFU suffix from afile. The“DFU.exe” utility
is run from a command box in Windows.

The usage of DFU.exeis: DFU.exe <filename> [optiong]

To check for the presence of a DFU file suffix: DFU.exe <filename>

To remove a DFU suffix from afile: DFU.exe <filename> -del

To add aDFU suffix to afile: DFU.exe <filename> -did <val> -pid <val> -vid <val>
Example of adding a DFU suffix to “fmc.bin”: DFU.exe fmc.bin -did 0x0300 -pid 0x223A -vid 0x0424

L WINNTS System32h cmd.exe

E:sxdfu

nsage: dfu fname [options]

to check for a suffix use: dfu fname
to remove a suffix nsze: dfu fname —del
to add a suffix use: dfu fname —did val —pid val —wvid val

e.g., dfu myfile —did Bx@182 —pid 2345 —vid 817
sets idDevice BxB182 idProduct BxB72? idlUendor BxBAAF

Once the DFU suffix has been added to thefile, the last step isto give it afile extension that matches the type
expected by your application. The dfuTest223 sample application is programmed to accept DFU uploadable files that have the
“.dfu” extension. Finally, to check and make sure that the file has a valid suffix:

[5] O\ WINNT . System32 cmd

Liwordfu fmc.dfu
idDevice: BxFFFF
idProduct: Bx2BFC
idUendor: BxB424

valid dfu suffix found

R

USB2223 Software Release Notes
Page- 31 -

Building a DEU Application

SM SC provides the source code for the dfuTest223 sample application, which can be used to template your own
custom DFU applications. However, before devel oping your own application, you should understand the five steps the
application must perform to complete the DFU operation:

Initiate the update

Find the device driver attached to the target device’s VID/PID
Exchange the device' s driver with the DFU driver “smscdfu.sys’
Perform the update

Unload the DFU driver and restore the original device driver.

grwNpE

All of the above steps may be performed through the use of callsto the SMSC DFU API, which is made available to
the application when it islinked to the “dfulib.lib” library. A completelist of all the SMSC DFU API function calls, complete
with descriptions, usage and commentary is available in Appendix 1 of this document, “The SMSC DFU API”.

Driver Overview

The DFU application communicates to the ve e ae
device vialO Control Callsto the DFU driver HrE A
“smscdfu.sys’ as shown in the diagram on the -
right W I0CTLs Exported
' - dome bl PO mdein s
? WO e Lo Wniv el
The “smscdfu.sys” driver handles all of the
DFU specific requests, while it passes all other drulib.dil &) | smscausys
requests, such as PNP message handling and
USB standard traffic, on to the “drvlib.dll” for -
handling. l,
ushd.sy=
i
EHCD.sys
or
UHC D.5vs
or
OHCD.sys
e

| |

Host Controlier “ DFU Device

USB2223 Software Release Notes
Page - 32 -

Performing a Firmware Upgrade with the DEU App Application(Mac 10.X Only)

*Note: Before attempting to use this DFU application, ensure that your device is set up properly for DFU by
reviewing the section “Using Device Firmware Upgrade (DFU)”

The following files are required in order to perform a device firmware upgrade using Mac 10.X:

The DFU application- (DFU_App)
The updated firmware image- (fmc.dfu)
smsckext.kext

DFU_Drvr.framework
smsctoolslib.framework

agkrwhE

Wheretofind DFU_App

The 223-installer package will automatically load the DFU application in the hard drive that was selected during the
installation process. Open the Applicationsfolder in this hard drive. Once in the Applications folder open the folder created
during installation called “USB Mass Storage Software”. In this folder you will find a ReadME.txt and aDFU_App icon.
(Note: if your installer package does not include the DFU feature then you will only find a ReadME.txt). The DFU_App.app
may be copied to the desktop if desired for ease of use.

Using an engineering version of DFU_App application

[‘_l To start the DFU_App application, simply double click the DFU_App icon.

I
————

1 L] L

The application will open adiaog box, which allows you to browse | = LT

to the desired firmwareimage. Thefile you select must havea .dfu | === e

suffix. Refer to the previous section “Creating a DFU Uploadable = : # s

File” for instructions on how to create thisfile. Once you have | s s =

navigated to the .dfu file that contains the version of firmware you | - o

wish to upgrade to, click open. You must have avalid USB device ¥ s

attached to a 2.0 host controller in order for the firmware upload to S

complete properly. DFU for Mac 10.X is currently only supported -

for use with a 2.0 host controller. - 5 .
(2N =] Dwreice Drmrwars Updais

After opening the file, the firmware upload will begin. The first Pl Lipshta Wi o

screen you will see will verify that you wish to upgrade the firmware G g 7 . 17

of the USB device detected. (Y ou may upgrade to aversion of itcrmes S cavadipen nonta Suds o ity

firmware that is newer than the current firmware on the device, the

same as the version currently on the device, or older than the version

currently on the device.) Click yesif thisisthe upgrade that you T —

want. The application will then detach and reattach the device. You [
may get a pop up message warning you of aremoval of the device.

This message can be ignored. (™ Yes

After the device reattaches, the device will switch to DFU mode and
begin downloading the new firmware. The progress of this upgrade
will be shown on the message box. After the download is complete,
the new firmware will be verified and the message box will display
either a successful firmware update or afailure message.

A typical firmware update takes about 1 minute to complete. Once
the success message is displayed you must unplug and replug the
devicein order to complete the DFU process.

Creating a customer version of DFU

| Dwicn | irmmars Lpdais

USB2223 Software Release Notes
Page - 33 -

Frimdraie Upiddls HabuCliom

Diimarii ksa ey b Frimiaiv

liprae Frogress
M Dl Fomvmidia LIpata
Firmeawre Lipsie Imeruriens

Thi lirmrasrs updebs wil iucesoafal,

Pegse ey anil replig i= the device m ooatinee

The engineering version of DFU_App can be used to upgrade firmware or to create a customer version of the DFU_App
application. In order to prepare the DFU_App application for customer use afile named “fmc.dfu” that contains the firmware
required by the customer to be placed in the resource folder of the application. The file must be named “fmc.dfu” in order for

the application to properly recognize it as a customer version.

To navigate to the resource folder, right click on the DFU_App icon. Select
“Show Package Contents” from the drop down menu. There will be only one

Omen
Ger info

Color Labed

folder icon displayed in the DFU_App contents. It istitled “Contents’. Double Show Package Conanes

click on the “Contents’ folder.

Move to Trash

Dusplicate
Make Allas
Create Archive of “DFU_Apg™

Copy "DFU_App-

[Hsable Folder ACEiorm
Corfigure Falder Actsant

USB2223 Software Release Notes
Page - 34 -

The contents folder contains the items shown to the right. Drop afile
named fmc.dfu (that has the firmware you would like the customer version
of DFU_App to contain) into the “Resources’ folder. The next time the
DFU_Appisstarted it will now recognize the fmc.dfu file in the resources =
folder and act as a customer version instead of an engineering version. &
Refer to the previous section “Creating a DFU Uploadable File” for =
instructions on how the create fmc.dfu. .

At any time the fmc.dfu file can be moved from the resources folder and the =
DFU_App will act as an engineering version again, or it can be replaced il
with afile that isloaded with a different version of firmware. ——

Using a customer version of DFU_App

The process for uploading firmware using the customer version of DFU_App is extremely similar to the way the firmwareis
uploaded using the engineering version of this application. Theicon for the customer version of DFU_App isidentical to the
engineering DFU_Appicon. The only difference between the engineering version and the customer version is that when the
customer icon is double clicked instead of being prompted to navigate to the dfu file to upgrade to, the first screen the user will
seeisthe prompt verifying that they wish to upgrade. The customer

(R lE] Dwrance | ¥ Uplat
option does not give the option to choose different versions of firmware R
to upgrade to; whichever version was loaded into the fmc.dfu file T R PN
contained in the resource folder is the only upgrade that can be done on ; i
: Fragld wOL SBE DD UPIEE IS DiEA0E ridedie oo o 7
the device. bl b
The only option the customer version gives the user is whether or not TR -

they want to update to the version of firmware stored in the application.

The steps to upload the firmware are identical to the stepsin the

previous section “Using the engineering version of DFU_App” H ves
beginning with the screen shown to the right.

USB2223 Software Release Notes
Page - 35 -

Performing a Firmware Upgrade with the DFU Application(Mac 9.X Only)

*Note: Before attempting to use this DFU application, ensure that your device is set up properly for DFU by
reviewing the section “Using Device Firmware Upgrade (DFU)”

The following files are required in order to perform a device firmware upgrade using Mac 9.X:

The DFU application- (DFU)

The updated firmware image- (fmc.dfu)

Resource file with standard hard drive icons for four lun device (mscicons)
Resource file with dynamic icons (msciconsx)

Manufacturer specific driver(s) (Manufacturer String_PID i.e SMSC_223a)
Manufacturer String_Shimi.e. SMSC_Shim

ok wNE

Using DFU application(M ac 9.X)

Before using the DFU application the firmware must be loaded into the application itself.
Create avalid .dfu file with the desired firmware and drap ang drop it onto the DFU icon.
(For specific instructions on how to create the .dfu file refer to section “ Creating a DFU
Uploadable File’) Y ou may upgrade to a newer version of firmware, the same version of
firmware, or an older version of firmware

When avalid .dfu file isloaded in the DFU application
amessage box will display that the firmare write was a
success. At this point the firmware is only loaded into B Wrate new firmware to application.
the application, it has not yet upgraded the device. —
After this message box is seen you may begin to use the
DFU application for upgrading the firmware for your device.

1]

To start the DFU process, ensure that you device you wish to upgrade the firmware on is attached to the host e
computer and double click the DFU icon. DFU
[} Drssss ¢ Birmmars Lysdatr

The application will open a dialog box, displays the firmware version that the DFU
application was loaded with. Thisisthe version that will be programmed into your
USB device once you click continue.

KITaCh @ S B S e CCE Dl

[Tmiisha i Frware burian s |

T

After opening the file, the firmware upload will begin. During this process there will be a status dialog box titled “Device
Firmware Upgrade”’. This box will display the steps that are occurring during the upgrade. The final step has the message
“Please Unplug and replug device”. After the device isreplugged the firmware upgrade is complete. A typical firmware update
takes about 1 minute to complete.

USB2223 Software Release Notes
Page - 36 -

The SMSC DEU API

The following are the list of functions available through the SMSC DFU API, with descriptions, usage, parameters,
and commentary describing how they should be implemented in the application. The API is made available to the application
by linking to the “dfulib.lib” library at compile time.

Int32 Start_Firmware Update (char* fnane, char* infFile,char* sysFile,
char* drvLFile ulnt16 vid, ulnt1l6 pid, ulntl6 did)

This function allows the updating of the OEM descriptor fields.

Parameters
f name pointer to a conplete path that specifies where
the location of the new firmware .bin file resides.
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resi des.
drvLFile pointer to a conplete path that specifies where
the location of the SMSC DFU .dl | driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
CEM specific .sys driver to be replaced by the SMSC DFU driver. The driver swap is
done is preparation for the next API call which should follow in sequence. This API
call is Firmwvare_Update.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 37 -

API Functions

Int32 Firmware Update (voi d)

This function allows the updating of the existing application firmare.

Parameters

None

Comments

The function then uses the SMSC DFU driver to initiate a DFU class firmwvare update,
whi ch replaces the existing application firmvare with the new firmvare. After the
firmvare is successfully updated, the APl call End_Firmvare Update can be used to
restore the original application s device driver allow ng normal operation of the
device to continue.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 38 -

API Functions

Int32 End_Firmware Update (char* original Driverl nf Nane)

This function term nates the updating of the application firmvare and restores the
original application device driver.

Parameters

ori ginal Driver | nf Name pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished updating all device firmvare. This function swaps
the DFU driver out of the operating systemand restores the original application
device driver. You can plug in other devices for update BEFORE calling this function
This function serves as the terminating call to updating all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 39 -

API Functions

Int32 Start_Descriptor_Update (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl6 pid, ulntl6 did)

This function allows the updating of the OEM descriptor fields.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resides.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to send a vendor specific command to the device firmare,
instructing it to rewite its OEM descriptor table. Upon the next enumeration, the
new CEM descriptors will be exported

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 40 -

API Functions

Int32 Descriptor_Update (char* buffer, ul nt 32 si ze)

This function allows the updating of the OEM descriptor fields.

Parameters

buf f er pointer to a 256 byte buffer that contains
the formatted OEM data fields to update internal descriptors.
This is raw bi nary data.

si ze size of the buffer in bytes (256)

Comments

The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
CEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to send a vendor specific command to the device firmare,
instructing it to rewite its OEM descriptor table. Upon the next enumeration, the
new CEM descriptors will be exported

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page- 41 -

API Functions

Int32 End_Descriptor_Update (char* original Driverl nf Nane)

This function ternm nates the updating of the OEM descriptor fields and restores the
application driver.

Parameters

ori ginal Driver | nf Name pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished updating all devices. This function swaps the DFU
driver out of the operating systemand restores the original application device
driver. You can plug in other devices to update BEFORE calling this function |ast.
This function serves as the terminating call to updating all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 42 -

API Functions

Int32 Get_Error_String (1 nt32 errorCode, char* buffer)

This function ternmi nates the updating of the OEM descriptor fields and restores the
application driver.

Parameters

error Code the 32-bit signed error code received from any
DFU library function calls.

buf f er a mnimum of 512 byte buffer for string
st or age.

Comments

Call this function to translate an error code received fromthe DFU library, into a
NULL term nated text string. You nust provide 512 bytes of storage for the buffer
par amet er .

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 43 -

API Functions

ulnt32 Get_OS Version (char* osString)

This function returns an operating systemidentification code and string that
specifies which platformthe DFU library is running on.

Parameters

osString a mnimum of 512 byte buffer for string
st or age.

Comments

Call this function to determ ne which operating systemthe DFU library is executing
on. This is autility function that returns a string and code identifier as shown
bel ow. See the dfuDLL.h header file for a conplete list of operating system codes.

#defi ne OS_W NDOWS 95 0x00
#defi ne OS_W NDOAS_950SR2 0x01
#defi ne OS_W NDOAS_NT351 0x02
#defi ne OS_W NDONS 98 0x03
#defi ne OS_W NDON5_98SE 0x04
#def i ne OS_W NDOAS_NT40 0x05
#defi ne OS_W NDOAS_2000 0x06
#defi ne OS_W NDONS_XP 0x07
#defi ne OS_W NDOWNS ME 0x08
#def i ne OS_W NDOWS_NEWNTOS 0x09

#def i ne OS_W NDOWS_NEWCONSUMERCS 0x0a

USB2223 Software Release Notes
Page - 44 -

API Functions

Int32 UpdateFirmware (char* fname, char* infFile,char* sysFile
char* drvLFile,ulnt16 vid,ulntl16 pid,ulntl6
di d, char* original Driverl nf Nane) ;

This function allows the updating of the device firmvare nodul e.

Parameters

f nanme pointer to a conplete path that specifies where
the location of the new firmvare .bin file resides.

infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.

sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resides.

drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.

vi d vendor | D of the OEM specific device

pi d product 1D of the OEM specific device

did device ID of the OEM specific device

ori ginal Driver | nf Nanme pointer to a NULL term nated string that
describes the file nanme only (not path)
of the INF file used to enunmerate the device
inits original application state (i.e, “usbstor.inf”)

Comments

The function will install the INF file specified, copying the needed driver files to
the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
CEM specific .sys driver to be replaced by the SMSC DFU driver. The function then
uses the SMSC DFU driver to initiate a DFU class firmnare update, which replaces the
existing application firmvare with the new firmivare. After the firmvare is
successfully updated, the operating systemis instructed to swap the DFU device
driver with the original application's device driver allow ng normal operation of the
devi ce to conti nue.

The functions returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 45 -

API Functions

Int32 Start_Format_Drive (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl1l6 pid, ulntl16 did)

This function allows swapping the Mass Storage Class driver with SMSCDFU dri ver.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the | ocation of the SMSC DFU .sys driver file
resi des.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU dri ver.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes

Page - 46 -
API Functions
Int32 Format_Drive (ulnt8* Label, BOOL ForceMedi aEr ase)
This function does the formatting of NAND Fl ash Hard di sk drives.
Parameters
Label pointer to a 11 byte buffer that contains
the | abel of the volume. If this paraneter is NULL or points
to an enpty string, then the volume will contain no Labe
i nformation.
For ceMedi aEr ase speci fies whether the Flash nmedia is to be
erased before formatting the drive.
Comments
I f necessary, this function will install the INF file specified, copying the needed

driver files to the Wndows Systemdirectory and initiate a driver swap causing the
W ndows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send SCSI commands to the device firmare
to create a primary DOS partition and format it to a FAT12, FAT16 or FAT32 vol une.
The FAT type is determ ned by the capacity of the drive and cannot be specified by

t he user.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 47 -

API Functions

Int32 End_Format_Drive (char* ori gi nal Dri ver | nf Nane)

This function term nates the fornmat process and restores the original application
driver.

Parameters

ori ginal Driver | nf Nanme pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished formatting all devices. This function swaps the DFU
driver out of the operating systemand restores the original application device
driver. You can plug in other devices to format BEFORE calling this function |ast.
This function serves as the termnating call to formatting all devices. Before
calling this function, the DFU is fully installed and used for each device plugged
in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 48 -

API Functions

Int32 Start_Erase Media (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl6 pid, ulntl6 did)

This function allows swapping the Mass Storage Cl ass driver with SMSCDFU dri ver.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resi des.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU dri ver.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 49 -

API Functions

Int32 Erase_Media (voi d)

This function allows the erasing all valid pages of NAND Fl ash Hard disk drives.

Parameters

None

Comments

I f necessary, this function will install the INF file specified, copying the needed
driver files to the Wndows Systemdirectory and initiate a driver swap causing the
W ndows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send SCSI commands to the device firmare
to erase every valid page on the nmedia, restoring it to an un-witten state.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 50 -

API Functions

Int32 End_Erase Media (char* ori gi nal Dri ver | nf Nane)

This function ternminates the erase process and restores the original application
driver.

Parameters

ori ginal Driver | nf Nanme pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished erasing all devices. This function swaps the DFU
driver out of the operating systemand restores the original application device
driver. You can plug in other devices to erase BEFORE calling this function |ast.
This function serves as the termnating call to erasing all devices. Before calling
this function, the DFU is fully installed and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page- 51 -

API Functions

Int32 Start_Descriptor Read (char* infFile,char* sysFile, char*
drvLFile ulnt16 vid, ulntl6 pid, ulntl6 did)

This function allows swapping the Mass Storage Class driver with SMSCDFU dri ver.

Parameters
infFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .inf file resides.
sysFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .sys driver file
resides.
drvLFile pointer to a conplete path that specifies where
the I ocation of the SMSC DFU .dll driver lib file resides.
vi d vendor | D of the OEM specific device
pi d product 1D of the OEM specific device
did device ID of the OEM specific device
Comments
The function will install the INF file specified, copying the needed driver files to

the Wndows Systemdirectory. It then initiates a driver swap causing the Wndows or
OEM specific .sys driver to be replaced by the SMSC DFU dri ver.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 52 -

API Functions

Int32 Descriptor_Read (ul nt 8* buffer, ulnt32* size)

This function allows the reading of device's internal descriptors stored in the
EEPROM

Parameters

buf f er pointer to a 256 byte buffer that will contain
the formatted OEM data fields read fromthe device’'s internal
descriptors. This is raw binary data.

si ze pointer to an unsigned |ong integer that
contains size of the buffer in bytes. Upon successful
conpletion, this will contain the nunber of bytes returned in
the buffer.

Comments

If necessary, this function will install the INF file specified, copying the needed

driver files to the Wndows Systemdirectory and initiate a driver swap causing the
W ndows or OEM specific .sys driver to be replaced by the SMSC DFU driver. The
function then uses the SMSC DFU driver to send vendor specific commands to the device
firmvare to read it’'s internal descriptors. The data is copied to the specified
buffer.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 53 -

API Functions

Int32 End_Descriptor_Read (char* original Driverl nf Nane)

This function terninates the process of reading the device’'s descriptors and restores
the original application driver.

Parameters

ori ginal Driver | nf Name pointer to a NULL terminated string that
describes the file name only (not path)
of the INF file used to enunerate the device in
its original application state (i.e, “usbstor.inf”)

Comments

Call this function when finished reading descriptors of all devices. This function
swaps the DFU driver out of the operating systemand restores the origina
application device driver. You can plug in other devices to be read BEFORE cal |l ing
this function last. This function serves as the term nating call to reading
descriptors of all devices. Before calling this function, the DFUis fully installed
and used for each device plugged in.

The function returns zero for success, or one of the error codes described in the
df uDLL. h header file.

USB2223 Software Release Notes
Page - 54 -

Using the USB2223 Custom | cons Package

The USB2223 custom icons package allows OEMs to assign custom icons to the drives associated with the USB2223
flash media controller. This allows the end user to easily distinguish between the different media typesin Windows Explorer.
The application works with Windows 98 SE, Windows Me, Windows 2000 and Windows XP (SP1). A new feature availablein
Setlcon versions 1.2.0.7 and later is the ability to dynamically change icons based on media state. In other words, you can
specify that oneicon appear if thereis mediain the reader dot, and another icon appear when there is no mediain the reader
dot. Also, the dynamic icon functionality enables the detection of MMC and M S Pro, allowing the user to display custom icons
for those media types as well.

Contents of the USB2223 Custom | cons Package

The USB2223 Custom I cons Package consists of the following:

Setl con.exe- The custom icon application.

Oem_0424.ini- A sample Windows 98 ini file.

Smsc.ini- A sample Windows Me/2000 ini file.

Sample | cons- The sample icons distributed with this package are for evaluation use only.

Eeprom.dat- A text file containing the changeabl e descriptor information used to update the serial eeprom with the DFUTest
utility.

Creating the Required Setlcon Ini Files

In order for the Setlcon application to work properly, anini file with a specific file name and format must be installed on the

host computer. Theini file tells the Setlcon application which icons are associated with which drives, and provides afull path
to each icon. The following four paragraphs describe the procedure for creating, naming, formatting and installing the ini file
on the host PC.

1) Settingthelni File Name:

Windows 98 SE - The name of theini file should be of the type "Oem_xxxx.ini" where
xxxx isthe VID as a hexadecimal number.

Example: If VID is 0x0424, the ini filename should be "Oem_0424.ini"

Windows M e, 2000 and XP (SP1)- The name of the ini file should be the same as the device's Manufacturer
string, but be no longer than 8 characters. If the Manufacturer string is greater than 8 characters, then only the
first 8 characters of the string should be used. If the Manufacturer string is|ess than 8 characters, then the ini
file should use the entire Manufacturer’s string.

Example: If MFG string is " Standard Microsystems Corp", the ini filename should be " Standard.ini"
Example: If MFG string is"SMSC", the ini filename should be "SMSC.ini"

(Note: The Manufacturer’s string may be set or viewed using the Write223 utility ‘Option 1'. See the
“Programming the Serial EEPROM” section of this document for more details.)

(Note: For Windows Me aone, all blank spaces (" ") in the Manufacturer’s string should be replaced with
under scores ("_") intheini file name.)

USB2223 Software Release Notes
Page - 55 -

Example: If MFG stringis"SM SC", theini filename for Windows Me should be"S M_S C.ini" and for
Windows 2000, it should be "SM S C.ini"

Creating the Required Setl con I ni Files (Cont.)

2) Setting the Ini Section Name:

Windows 98 SE - The name of the section should be of the type [xxxx] where xxxx is
the PID as hexadecimal number.

Example: If the PID is 0x223A, the ini section name should be [223A]

Windows M e, 2000 and XP (SP1)- The name of the section should be same as thefirst 5 characters of the
Device's Product ID string enclosed in square brackets, including any spaces if present.

Example: If the Product ID string is 2223 USB Controller", the section name should be "[2223 U]"
Example: If the Product ID string is"223US", the section name should be "[223US]"

Example: If the Product ID string is"2223", the section name should be "[2223]"

Example: If the Product ID string is™", the section name should be "[]"

(Note: The Manufacturer’s string may be set or viewed using the DFUTest utility ‘ Read Device'.)

3) Creating the Ini Section Content:

Under the Ini Section name should be atwo line entry for each mediatype. The format for the two line entry
is"Prod=Path\IconName.ico", where "Prod" is the string following the dash (-) in the Disk Drives section of
the Device Manager for that drive (as seen in the screenshot to the right).
Path\lconName.ico is the full path and icon name for the icon to be used

L, pevice Manager

| action view H =&

for that drive. "ProdLABEL=L abel Name" — (A declaration used to alam

display a descriptive label in Windows Explorer for disk volumes with no ERCNTITTE
names) where "ProdLABEL" is the same as "Prod" as explained above TR o
appended with the word "LABEL" and "Label Name" isthelabel that is O T
to be displayed for the corresponding drive. P sC L2 s s

(2 SMSC USBE 2 HS-SD{MMC
- SMSC USE 2 HS-5M
2 WDC WD102BA
¢ @) Display adapters
¥ 45} DVDJCD-ROM drives
-5 Floppy disk controllers
+|- &= Floppy disk drives
-5 IDE ATAATAPI controllers
-7 Keyboards
- Mice and other pointing devices
-3 Monitars
B3} Network adapters
£ Ports (COM & LPT)
j-(fj(— Sound, video and game controllers
#-2) Storage volumes
j- System devices

#]-8g Universal Serial Bus controllers

Note: The string length of "Label Name" should be less than 32 characters
and should only contain a pha-numerical characters and special characters
'space’ (' ") and 'under score' ().

Example: CF=\Program Files\Icons\CF.ico

Example: CFLABEL=Compact Flash Drive

Example: SD/MMC= \Program Files\lcons\SDMMC.ico

Example: SD/IMMCLABEL=SDMMC Drive (Notethereisno slash “/")

Important Notes:

1) Thefull path to the icon should be less than 64 characters.

2) Thefile containing theicon should only be an .ico, .dll or .exefile.
3) There should not be any extra spaces before and after the '=" sign

To use the dynamic icon functionality, you also need to add lines for each LUN number and interface type
(i.e. CF, SM, etc.) for both the media present “L# " and media not present “L# NM” states. Please see the
sampleini file that follows for clarification.

USB2223 Software Release Notes
Page - 56 -
4) Placing the Ini Filein the Correct Location on the Target PC:

In order for the custom icon application to work correctly, theini file must be placed in one of the Windows
System directories, depending on which operating system is being used. Those directories are:

Windows 98 SE - "Windows\System"
Windows M e - "Windows\System"
Windows 2000 - "Windows\System32"

Windows XP (SP1) - "Windows\System32"

Manually I nstalling the Custom | cons Application Files

In order to perform a manual installation of the custom icons application files, the following steps should be

performed:

1. Copy the Setlcon.exe fileto alocation on the target computer’s hard drive. (i.e. “ C:\Program
Files\Icons\Setlcon.exe™)

2. Copy theicon filesto alocation on the target computer’s hard drive. (i.e. “ C:\Program Files\Icons\”).

3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.

String: Setlcon Value: C:\Program Files\Icons\Setl con.exe

4. Copy theini fileto the appropriate Windows System directory on the host PC. (See the previous section
“Creating the Ini Files’ for details.)

5. Manually start the Setlcon.exe application by double clicking it, or ssimply reboot the host PC. The entry

placed in the registry during Step 3 will automatically start the application after the PC is rebooted.

USB2223 Software Release Notes
Page - 57 -

A Samplelni File

[2223 U]

CF=C:\Program Files\Icons\CF.ico
CFLABEL=Compact Flash Drive

M S=C:\Program Files\Icons\M S.ico
MSLABEL=Memory Stick Drive
SM=C:\Program Files\Icons\SM.ico
SMLABEL=Smart Media Drive
SD/MMC=C:\Program Files\Icons\SDMMZC.ico
SD/MMCLABEL=SDMMC Drive

LO_CF=\Program Files\SM SC\Cf.ico
LO_CFLABEL=Compact Flash Drive
LO_NM=\Program Files\SM SC\cf-gray.ico
LO_ NMLABEL=Compact Flash Drive

L1 MS=\Program Files\SM SC\Ms.ico

L1 MSLABEL=Memory Stick Drive

L1 MSPR=\Program Files\SM SC\M sPro.ico
L1 MSPRLABEL=Memory Stick Pro Drive
L1 NM=\Program Files\SM SC\ms-gray.ico
L1 NMLABEL=Memory Stick Drive

L2 _SM=\Program Files\SM SC\Sm.ico

L2 SMLABEL=Smart Media Drive

L2 NM=\Program Files\SM SC\sm-gray.ico
L2 NMLABEL=Smart Media Drive

L3 _SD=\Program Files\SM SC\Sd.ico

L3 SDLABEL=SD MediaDrive

L3 _MMC=\Program Files\SM SC\Mmc.ico
L3 MMCLABEL=MMC MediaDrive
L3_NM=\Program Files\SM SC\sdmmc-gray.ico
L3 NMLABEL=SDMMC MediaDrive

USB2223 Software Release Notes
Page - 58 -

Creating a Windows I nstaller for the Custom | cons Application Files

Using an automated installer is the preferred method for installing and setting up the Custom I cons application to run
on an end user’s PC. As part of the USB2223 Custom I cons Application Package, a sample Windows installer isincluded
which demonstrates a practical example of using a Windows installer to install, setup and run the Custom Icons application. To
use the installer, smply run it and then reboot the host PC once the installation is complete. When the reboot is complete, the
custom icons for the 2223 should appear in Windows Explorer.

Important Note: Theini filesthat are installed by the SMSC provided installer are hard coded to match SMSC’s
VID/PID, Manufacturer String, and Product ID String. The EEPROM.DAT file that isincluded with the software distribution
contains the required data, and should be used to program evaluation boards to be used with the installer. Otherwise theini files
will not match the datain your board, and the icons will not appear. In general, to create a Windows Installer you should
configureit to do the following:

1. Copy the Setlcon.exe fileto alocation on the target computer’s hard drive. (i.e. “ C:\Program
Files\Icons\Setlcon.exe™)

2. Copy theicon filesto alocation on the target computer’s hard drive. (i.e. “ C:\Program Files\Icons\”).
3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.
String: Setlcon Value: C:\Program Files\Icons\Setl con.exe

4. Configuretheinstaller to do a conditional installation depending on the operating system, to copy the ini
files to the appropriate Windows System directory. (See the section “Creating the Ini Files’ for details.)

5. Configure theinstaller to run the “ Setlcon.exe” application once the install is complete. Alternatively,
you could force the user to reboot the PC.

Troubleshooting the Custom | cons Application

| ssue: Cause:
After installing the Custom Icons application and 1) If you used the custom installer it islikely that the contents of your serial eeprom do not
rebooting, the custom icons do not appear. match theini files that are installed with the installer. Read the section “Programming the

Serial EEPROM” and use the Write223 utility to program the eeprom to match SMSC's
VID/PID, Manufacturers String, and Product 1D String for the 2223. An EEPROM.DAT
file with this datais included in the Setlcon software release for your convenience.

2) If you created your own ini files and installed the application files manually, the causeis
most likely an incorrectly named or formatted ini file. Refer to the section “ Creating the
Ini Files’ and double check to make sure that the ini files are correctly named, formatted,
and placed in the proper location.

3) Check to seethat the“ Setlcon.exe” application is running by checking the Processestab in
the Task Manager.

After installing the Custom Icons application the Unplug the USB cable and then reattach it. Icons are only displayed when the device is attached with

drives still show the original icon. the Setlcon application running. If this does not correct the problem, try the troubleshooting steps
above.

In Windows XP (SP1) the custom icons do not Thisisabug in Windows XP. Microsoft has developed afix (KB823293). Software installersv2.5

appear after areboot of the host. However if the and later automatically install thisfix (requires reboot).

USB cableis detached and reattached, or mediais
either inserted or gected, the icon(s) appear.

In Windows XP, the drive medialabel is not Thisisaknown issuein Windows XP. As aworkaround, you can either hit F5 to refresh the label, or
updated when a card isinserted. remove and reinsert the media.

USB2223 Software Release Notes
Page - 59 -

Using the Production Line Descriptor Update Utility (PLDU)

Purpose: The PLDU is used to update device firmware and/or device descriptors such as the VID/PID, Manufacturer and
Product ID stringsin a production line environment using Windows 2000 (SP3) only. The utility features a simple interface
that displays success or failure of the programming operation in graphical form using either a green box with a checkmark
(PASS), or ared box with an “X” (FAIL). The PLDU is capable of programming one device at atime and takes approxi mately
12 seconds to complete.

Features:
Firmware update.
Descriptor (256 byte EEPROM) update.
Read descriptor (256 byte EEPROM) data from device.
GUI editor to edit and create DAT files.
Graphical and Text status display.
Automatic serial number increment after every descriptor update.
Break up of serial number to YY-MM-DD-S-SN format where
YY - Year (2 digits)
MM - Month (2 digits)
DD - Day (2 digits)
S - Station number (1 digit)
SN - Serial number (5 digits)

NogakwdpE

Creating the PLDU ini File

Before using the PLDU you must create or edit an ini file. A sampleini fileis shipped with the PLDU application which can be
modified for your setup. The ini file should contain the following lines:

DFUVID =VID
Thisisthe VID (Vendor ID) of the device whose descriptor / firmware is to be updated. The VID is specified as afour
digit hexadecimal number.

DFUPID =PID
Thisisthe PID (Product ID) of the device whose descriptor / firmware isto be updated. The PID is specified as afour digit
hexadecimal number.

DFUDID =DID
Thisisthe DID (Device ID) of the device whose descriptor / firmware is to be updated. The DID is specified as a four
digit hexadecimal number.

INF = path to Smscdfu.inf

Specifies the full path to the * Smscdfu.inf’ file that is to be used during swapping of Mass storage class driver to the DFU
driver. Thisinf file must contain aVID and PID entry for the device you are programming, or the DFU driver swap will
not execute and the operation will fail. An example entry for adevice with aVID of “0424" and aPID of “223A" is:

%Smsc.DFU.Desc% = SMSCDFU.Install, USB\VID_0424& PID_223A
Y ou should change the values above in bold to match the VID and PID of your device.

SY S = path to Smscdfu.sys
Specifies the full path to the ‘ Smscdfu.sys’ DFU driver.

DLL = path to Drviib.dll
Specifies the full path to the ‘Drvlib.dIl’ file that is to be used during swapping of the mass storage class driver to the
SMSC DFU driver.

DFUFILE = Path to DFU file
Specifies the full path to the DFU file that is used for firmware update.

M SCINFNAME = Mass storage class I nf name
Specifies the name of the original Mass storage class driver’s INF file name. Thisis used while swapping the DFU driver
back to the original MSC driver.

USB2223 Software Release Notes
Page - 60 -

A Sample PLDU ini File

DFUVID =0424

DFUPID =223A

DFUDID = FFFF

INF = C:\Dfufiles\Smscdfu.inf
SYS = C:\Dfufiles\Smscdfu.sys
DLL = C:\Dfufiles\Drvlib.dll
DFUFILE = C:\Dfufiles\Fmc.dfu
MSCINFNAME = Usbstor.inf

y

i There can be spaces before and after the ‘=" (equals) sign, but the total number of characters per line
(including spaces) should be LESS THAN (<) 255.

ii. All the paths specified above should be valid, as the application will make sure that those files do exist in
their respective paths. If apath is not valid, then the application would display a corresponding ERROR
message and terminate itself.

iii. Device Firmware Upgrade is currently not supported with the USB2223.

Setting Up the PLDU Application

1. First attach aUSB2223 deviceto the host. To start the PLDU
application, simply double click “DescUpdt.exe” executable. The
application will prompt you to select the location of theini file.

local machine, the main program dialog opens. Here you are given
two options:

a. Update Descriptors- Updates NV Store data such a
VID/PID, Manufacturer and Product ID strings from the
“EEPROM.DAT" file.

Update Firmware- Updates the device firmware using a
DFU update file with the .dfu extension.

Using the PLDU to Update Device Descriptors

1. Thefirst operation that should be performed on a USB2223 device
coming off the production line is to update its descriptors. To do
this, pressthe “Update Descriptors’ button on the main dialog
above. For the first device only, the application will prompt you to
select the EEPROM.DAT file that will be used to program the
descriptors. Once the EEPROM.DAT file has been selected the
program will swap the mass storage class driver for the SMSC
DFU driver.

Once the DFU driver swap has completed, the programming
dialog appears. At this point the station is setup and ready to
begin programming USB2223 devices.

USB2223 Software Release Notes

Page - 61 -
i [T o =090
W war e m
O | g |
L LT P = T |
I U i posmniony

Provided theiini file contains the correct path to the key filesonthe [T LG

[P e]
Thaml grarEwire. S [T EEE e 1]
e I i =
.,--.-l-.-.-.-.-.-l simr i
i
B e L LR T Y
EILTS
Rt | il Pl = = K5 -
T 1
 rap— e | g |
L L ST Tl L - sl |
| e e Pt

[s Fis Do & DT
e [=] vwmlaE moeTR e - [
[P Ty T N e rrea—
[T - gy
Bmini [T R Fradar

sl b et el s DT P B OOEE T 2 o [TR

c. R ——

B T P el o L | et - i
o] T T e, L
e | e | e] | [

[¥k Lasis i

Pk VP w7

Lam Fom [y T T e el B | Le0ix Lird 01

e — [1o ¢ weam [
r=— W i s Bs ;:-.i '""-.'_ I

o R i @ L] T Luis it L]
[v e S0V AT | LT
[[T # . I
= [y LU R [T o Y
i o L i [l i 1Y

lmm
CITT IR L LT B 1

i T

Using the PLDU to Update Device Descriptors (Cont.)

To program the first device, the operator smply presses the

USB2223 Software Release Notes

Page - 62 -

“Update Device” button. Once the Update Device button is IS Fie Do £
pressed, the application saves all of the datain the editable oo [t =] VR TR | e —_— o
fields (the fields with a white background) including the serial Lrpag 0 WREH et B Lempaget B sedure i
number, to the EEPROM.DAT file. After that, all of the 256 1 b v i
bytes of data contained in the EEPROM.DAT fileis T | T
programmed into the device. The operation takes about 12 e ot P —-
seconds to complete. Provided the programming was 00w et R s
successful, the EEPROM Update Dialog displays a green box e M Bt D
with ablack checkmark and reports success. At this point the R L0 Gk
user simply detaches the device and reattaches the next device biiee B [5 eket u[E i o~ i
to be programmed. The PLDU automatically updates the by i o M i patis. [
EEPROM.DAT file to the next unique serial number. e B S :.I: 2
g T by M Vil DR ml
s oF s || [e S
o [Fis | et [pw B Tgemm (] .
4. Onceal devices have been programmed, the user selects the “Exit” [—
button to return to the main dialog.
ey |y | wiwr |

B e L LR T Y

+ o LR

USB2223 Software Release Notes
Page - 63 -

Using the Production Line Test Utility (PLTU)

Purpose: The PLTU application is used to test the basic functionality of USB2223 devicesin a production line environment
using Windows 2000 (SP3) only. The application creates a subdirectory on the mediafor each LUN, copiesa ‘Test File' to the
subdirectory, deletes the 'Test File, and then deletes the subdirectory.

Features:
1. Capable of testing 5 devices with 4 LUNs each simultaneoudly.
2. After testing, the application cleans up the registry entries involving the OEM's VID, PID, Inquiry MFG and Product
strings.
3. Graphical and Text status display of test results.
4. GUI editor to edit and create ini files.

Creating the PLTU ini File

Before using the PLTU you must create or edit an ini file. A sampleini fileis shipped with the PLTU application which can be
modified for your setup. The ini file should contain the following lines:

OEMVID =VID
Thisisthe original equipment manufacturer’s VID (Vendor ID) of the device whose descriptor has already been updated.
The‘VID’ is specified as afour digit hexadecimal number.

OEMPID =PID
Thisisthe original equipment manufacturer’s PID (Product I1D) of the device whose descriptor has already been updated.
The‘PID’ is specified as afour digit hexadecimal number.

INQUIRY_MFG = Inquiry MFG String
Thisisthe string returned by the device as part of the Vendor information in the Inquiry data. This can be of maximum 8
characters.

INQUIRY_PRODUCT = Inquiry Product String
Thisis part of the string returned by the device Product information Inquiry data. This can be of maximum 5 characters.

TEST_FILE = path to Test file
Specifies the full path to the file that isto be used during file copy tests.

DEV1 LUNO = Drive Letter
DEV1 LUN1 = Drive Letter
DEV1 LUN2 = Drive Letter
DEV1 LUN3=Drive Letter

DEV2 LUNO = Drive Letter
DEV2 _LUN1 = Drive Letter
DEV2_LUN2 = Drive Letter
DEV2_LUN3 = Drive Letter

DEV3 _LUNO = Drive Letter
DEV3 LUN1 = Drive Letter
DEV3 LUN2 = Drive Letter
DEV3 LUN3 = Drive Letter

DEV4 LUNO = Drive Letter
DEV4 LUN1 = Drive Letter
DEV4 LUNZ2 = Drive Letter
DEV4 LUN3 = Drive Letter

Creating the PLTU ini File (Cont.)

DEV5_LUNO = Drive Letter
DEV5_LUNL1 = Drive Letter
DEV5_LUN2 = Drive Letter
DEV5_LUNS3 = Drive Letter

USB2223 Software Release Notes
Page - 64 -

These lines specify the Drives that are associated with the multiple LUNSs of the respective devices to be tested. If the
‘Drive Letter’ is not specified for a particular LUN, then it means that the corresponding LUN of that device isNOT to be
tested. If the ‘Drive Letter’ isnot specified for all LUNsfor a particular device, then it means that the entire deviceis

either NOT present or NOT to be tested.

A Sample PLTU ini File

OEMVID =0424
OEMPID =223A
INQUIRY_MFG =SMSC
INQUIRY_PRODUCT = 2223

DEV1_LUNO=F
DEV1 LUN1=G
DEV1 LUN2=H
DEV1 LUN3 =1

DEV2 LUNO=J
DEV2 LUN1=K
DEV2_LUN2=L
DEV2_LUN3=M

DEV3_LUNO=N
DEV3 LUN1=0
DEV3 LUN2=P
DEV3 LUN3=0Q

DEV4 LUNO=R
DEV4 LUN1=S
DEV4 LUN2=T
DEV4_LUN3=U

DEV5 LUNO=
DEVS5 LUN1=
DEV5 LUN2=
DEV5 LUN3=

TEST_FILE =C\TEST\IMEG.R01

NOTE:

There can be spaces before and after the '=' sign, but the total number of characters for an entire line (including

spaces) should be less than 255.

USB2223 Software Release Notes

Page - 65 -
Setting Up the PLTU Application
1. First attach a USB2223 device to the host. To start the PLTU application, I L
simply double click “TestDevice.exe” executable. The application will bt [T d+mnon
prompt you to select the location of theini file when it isfirst started. el
esss [N Cow]
T ey]| Gt |
I O i o
: ‘e : e e e e T o 11
2. Provided theini file contains the correct path to the =
key files on the local machine, the main program iy — S 4
dialog opens. The station is now ready to begin PRBNSPR | U - st ntbor s o enind
testing devices. At this point you should attach the Yoot i [ERTECT TR TR
devices to be tested and ensure that they have good fermm
media with sufficient free space to hold the file i | [EaEE]
being used for testing. [
i towr P
I A BN
£l
Using the PLTU to Test Multiple Devices
1. Onceall of the devices have been attached, the user _
i « " ; [rbaten e e B T D e] S e T 1
simply presses the “Start Test” button to begin
testing devices in accordance with the contents of b = — . 3
theini file being used. After the testing has PO ST bkt [5 e i - ekl
completed, the user receives a graphical it 1o [ETTETTTVER PR bt
representation of the test resultsin the form of a L. "
green box with a black checkmark to indicate S e oA i
“PASS’, or ared box with ablack “X” to indicate e b P
“FAIL". -y
[C=m] [mg oo
1] | e O —
fan1 e o

Once the test has completed, the user should remove all of the tested devices and then attach the next set of devicesto
be tested. Once all of the devices are attached and enumerated (as indicated by the presence of drive iconsin Windows
Explorer), the user repeats step 1 to test the next set of devices.

USB2223 Software Release Notes

Known | ssues with the USB2223 Production Line Utilities

Issue:

Workaround:

Status:

The PLDU and PLTU applications are designed to be used
with Windows 2000 (SP3) host systems using the Microsoft
mass storage class driver. While the applications may work
with other operating systems, only Windows 2000 (SP3) is
supported.

N/A

N/A

Some EHCI host controller drivers such as Orange Micro's do
not work properly with the DFU driver swapping performed
by the PLDU and PLTU applications.

We highly recommend that you use the Microsoft supplied
EHCI drivers for the test systems running the PLDU and
PLTU applications.

N/A

The PLTU does not distinguish between general device write
failures and media specific write failures. This meansthat the
test will fail if no media present in the drive, mediaisfull,
mediais unformatted, mediais corrupt, mediaiswrite
protected, etc.. Under such circumstances, the test results do
not reflect the status of the device, but rather the failure of the
media. Hence, it is recommended that the test is performed
again on the device with known good media.

Only use known good mediato perform the PLTU testing.

N/A

Due to caching by the OS, the 10 transfer may not be fully
completed before the test results are displayed by the
application. It is recommended that the user wait for 5 to 10
seconds before disconnecting the devices.

Wait 5-10 seconds after completion of the PLTU tests before
removing the devices from the host.

N/A

In the main dialog window of the PLDU application, when
the "Update Descriptor” or "Update Firmware" is clicked, the
application swaps the Mass storage class driver with the DFU
driver before opening the corresponding dialog box. This
requires that the device be connected before the user can click
on these buttons. If no device is connected, the driver swap
and consequently the update operation will fail.

Make sure that there is a device connected BEFORE
attempting to perform either a Descriptor or Firmware Update.

N/A

In the PLDU application, When the user exits either from the
"EEPROM Update Dialog" or the "Firmware Update Dialog",
the application tries to restore the Mass storage class driver
before exiting the dialog. This requires that the device be
connected while the application exits these dialog boxes. If
the device is removed before the application exits, the
application will prompt for the user to reconnect the device.

Make sure the device is connected to the host before exiting
the EEPROM or Firmware Update dialog screens. A device
must be connected while the DFU driver swap takes place for
the operation to complete successfully.

N/A

USB2223 Software Release Notes
Page - 67 -

Using the QuickTest Production Line Read/Write Test Utility

The QuickTest utility is astreamlined version of the full Production Line Test Utility discussed previously. QuickTest can test
amaximum of (4) USB2223 devices at atime, with a maximum of 4 LUNs each. The testing procedure is very simple
involving these only 4 steps:

Writes to media on each LUN starting from LBA 1024
Reads from media on each LUN starting from LBA 1024
Compares the data read against the data written to the media
Updates the status for each LUN in the application

AowbdhPE

Thetesting is performed on all the LUNs of the device serially. However, tests on multiple devices are performed
simultaneously using multiple threads. The QuickTest utility requires the presence of the SMSC password filter driver to send
BULK-ONLY commands, totally by-passing the native file system. On windows 2000 systems, Service Pack 3 should be
installed.

L. Gk Tewl Production Lise Uity (using Blter driver] - |\ Bigd USHY] |
Ire Film T
DEK WD D |I]-i2-l Iy MF i |5u5r Ira Fils |
[arsghOAT met WIS BITCZIAPLT LR wick T st ind
DEM FID- O |2:"'.'-l-5. Incpiny Bead 2R L:ad::'dd-:::_'-:-::l.;; ’ e

s [awiceg |-I P LU |i

Fead /wiits Teal Si n kB [256

LosdnFk | Esnfi |

Tk [rmsic

St Test |
Ewl |

Limitations of the QuickTest Utility:

1. Doesnot distinguish between general device write failures and media specific write failures. This means that the test
will fail if no mediais present in the drive, the mediais full, unformatted, corrupt, write protected, etc.. Under such
circumstances, the test results do not reflect the status of the device. Hence, it is recommended that the test is
performed again on the device with known good media.

2. Thetimetaken to complete the tests depend on the following:

* Test size- Thiscan be from 64KB to 5000KB. The bigger the size, the more time it will take to complete the
tests.

* Number of devices connected- The field "Max Devices' specifies how many devicesto test at once (should
be 1 <= N <= 4). However, it is not necessary that the actual number of devices connected be equal to the
number specified in the "Max Devices' field. For example, the "Max Devices' field can specify 4 but the
actual number of devices connected may be <4 or >4. However, the utility will either test only the actual
number of devices connected or the "Max Devices', whichever is less. Though tests on multiple devices are
performed simultaneously, the time taken for the tests to complete on multiple devices will be alittle more
than that for asingle device.

USB2223 Software Release Notes
Page - 68 -

Using the EPRMUPDT .exe Utility

EPRMUPDT.exeisaDOS based utility used to write and / or read EEPROM datato / from the USB2223 device. This utility is
designed to be used by OEM s in a production line environment with as little human intervention as possible.

EprmUpdt Usage:
EprmUpdt [-h[-u] [-V] [-c] [-w"oFileName"] [-r"iFileName"] [-t"HostController"]

-hjU print help/usage

Vo verbose, optional, default is off

“C e confirm scanned serial number (last 3 digits) before
updating EPPROM

-w"oFileName"........ name of DAT file (with full path) that is to be written
to device EEPROM

-r'iFileName'........ name of formatted text file (with full path) that isto
be created by reading device EEPROM
-I"LogFileName"......log the serial number to the specified log file
-t"HostController"...specifies the host controller type to which the deviceis
attached. This should be "UHCIn", "OHCIn" or "EHCIn",
where 'n' is a number (0 to 9) specifying the host
controller in the enumeration order. Thisis an optional
parameter and if not specified, a default value of "UHCI"
will be used. Similarly 'n"isaso optional and if it is
not specified, a default value of '0' will be used.
S I infinite loop, till user presses 'CTRL C' to quit

1. All options can be specified using both UPPERCASE or |lowercase | etters.

2. The double quotes (") around file names for -w, -r and -I optionsis optional.
If the path names does not contain blank spaces, then the double quotes are
not necessary. If the path names contain blank spaces, then the double quotes
are mandatory.

3. Thefile names for the -w, -r and - options are to be specified with full path
information. If the files are in the current directory, then the path information
is not necessary.

4. The double quotes around the 'HostController' in -t option is optional.

Features:

1. Uses atemplate EEPROM.DAT file, modifying the serial number alone by scanning it
off the keyboard buffer, to update the device EEPROM.

2. Reads the contents of the device EEPROM and generates a formatted text file that
vividly describes all the fields of EEPROM structure.

3. The options for writing and reading EEPROM data can be specified together or alone.

4. Provides an option (-¢) to confirm the scanned serial number (last 3 digits) with
the user before updating the EEPROM data.

5. Provides an option (-v) to turn on or off the additional debug / status comments.
6. Provides an option (-1"LogFileName") to log the serial number to the user specified log file.
7. Allows processing devices one after another in aloop till user wantsto exit (by

pressing 'Ctrl C") by specifying the -i option in the command line. Otherwise, the
utility will exit back to the command prompt after it is done with asingle device.

USB2223 Software Release Notes
Page - 69 -

Using the EPRMUPDT .exe Utility (cont.)

8. Displays the status by showing abig "ERR", "FAIL" or "PASS" along with other

relevent information.

"ERR"

"FAIL"

"PASS"

- Means an error occurred outside of the main process of updating or reading to / from the device.
This can happen if there are any errors while parsing the input arguments, or invalid usage, or
invalid file paths, or any errors while starting the host controller and root hub. The application will
exit with code 2 during such circumstances.

- Means an error occurred during the process of updating or reading to / from the device. This can
happen if no matching devices are found, or verification of last 3 digits of serial number fails, or
error while writing data to device, or error while reading data from device, or verification of read
and write data fails. The actual reason for the failure is given below the "FAIL" status and the
application exits with code 1 during such circumstances. If the -i option is specified, then the
application proceeds to prompt for scanning the serial number again. At this point, it isleft to the
user discretion, whether to connect a new device or proceed with the existing device. For example,
if the failure is dueto last 3 digits serial number mismatch, it could be due to human error rather
than a device error and so the user may want to proceed with the same device again.

- Means no error occurred and the process of updating or reading to / from the device completed
successfully, inclduing all necessary verifications and the application exits with code O. If the -i
option is specified, then the application proceeds to prompt for scanning the serial number again. At
this stage, the user can safely remove the existing device and connect a new device and enter the
serial number again.

9. The utility will return with one of the following exit codes.

0 - Indicates "PASS'
1- Indicates"FAIL"
2 - Indicates "ERR"

10. The utility will work with all types of host controllers (UHCI, OHCI & EHCI) and
the host controller to which the device is connected is specified by the -t option.
The -t option specifies the type of the host controller as well as the number in the
PCI enumeration order of the host controllers. These two together identify an unique
host controller which the application enumerates to detect the test device. Note that
thisis optional and that the default values will be used if it is not specified.

examples:

-t"UHCI" - Test on the 1st UHCI host controller
-t"EHCIO" - Test on the 1st EHCI host controller
-t"OHCI2" - Test on the 3rd OHCI host controller

Limitations of the EPRM UPDT .exe Utility:

1. Supports devices connected only at the root hub level.

2. In order to properly specify the number in the PCI enumeration order of the host controllers the end user hasto
know how many host controllers of the given type are present in the system and also the enumeration order of the host
controller to which the device is attached. If these details are not known, this information can be found by trial and

error methods.

USB2223 Software Release Notes
Page - 70 -

Using the CheckROM .exe Utility
CheckROM .exeisa DOS based utility used to check the NV Store data of USB2223 device against a user specified template

DAT file. This utility also checks the device's firmware version against a specified version number. This utility is designed to
be used by OEMs to streamline their production environment.

CheckROM Usage:
CheckROM [-h|-u] [-v] [-€"DATFileName"] [-f"version"] [-t"HostController"]

-hjU print help/usage

Vo verbose, optional, default is off

-¢'DATFileName"......name of DAT file (with full path) that is to be checked against the device EEPROM
-f'version”.......... version number that isto be checked against the firmware version of the device

-t"HostController"...specifies the host controller type to which the deviceis attached. This should be "UHCIn",
"OHCIn" or "EHCIn", where 'n" is anumber (0 to 9) specifying the host controller in the enumeration order.
Thisisan optional parameter and if not specified, a default value of "UHCI" will be used. Similarly 'n'isalso
optional and if it is not specified, a default value of '0" will be used.

S IR infinite loop, till user presses'CTRL C' to quit

Note:

1. All options can be specified using both UPPERCASE or lowercase |etters.

2. Thedouble quotes ("") around file name for -e option is optional. If the path names does not contain blank spaces,
then the double quotes are not necessary. If the path names contain blank spaces, then the double quotes are
mandatory.

3. Thefile namefor the -e option is to be specified with full path information. If the files are in the current directory,
then the path information is not necessary.

4. The double quotes around the 'version' in -f option is optional.

5. Thevalue of 'version' is specified as a max 4-digit decimal integer number.

6. The double quotes around the 'HostController' in -t option is optional.
Features:

1. Reads the contents of the device EEPROM and checks the entire contents (excluding
serial number) against the specified template DAT file.

2. Reads the firmware version of the device and checks that against the specified
version number.

3. The options for checking EEPROM data or firmware version number can be specified
together or alone.

4. Provides an option (-v) to turn on or off the additional debug / status comments.

5. Allows checking devices one after another in aloop till user wantsto exit (by
pressing 'Ctrl C") by specifying the -i option in the command line. Otherwise, the
utility will exit back to the command prompt after it is done with asingle device.

6. Displays the status by showing abig "ERR", "FAIL" or "PASS" along with other
relevent information.

"ERR" - Meansan error occurred outside of the main process of checking the
EEPROM or firmware version of the device. This can happen if there
are any errors while parsing the input arguments, or invalid usage,
or invalid file paths, or any errors while starting the host controller
and root hub. The application will exit with code 2 during such
circumstances.

USB2223 Software Release Notes
Page- 71 -

Using the CheckRom.exe Utility (cont.)

"FAIL" - Meansan error occurred during the process of checking the EEPROM or firmware version of the
device. This can happen if no matching devices are found, or error while reading EEPROM data
from device, or the EEPROM check or firmware version check fails. The actual reason for the
failureis given below the "FAIL" status and the application exits with code 1 during such
circumstances. If the -i option is specified, then the exit code isignored and the
application proceeds to prompt for checking the next device.

"PASS" - Means no error occurred and the process of checking EEPROM and / or firmware version of the
device completed successfully and the application exits with areturn code of 0. If the -i option is
specified, then the application proceeds to prompt for checking the next device. At this stage, the
user can safely remove the existing device and connect a new device for checking.

7. The utility will return with one of the following exit codes.
0 - Indicates "PASS"
1- Indicates"FAIL"
2 - Indicates "ERR"

8. The utility will work with all types of host controllers (UHCI, OHCI & EHCI) and
the host controller to which the device is connected is specified by the -t option.
The -t option specifies the type of the host controller as well as the number in the
PCI enumeration order of the host controllers. These two together identify an unique
host controller which the application enumerates to detect the test device. Note that
thisis optional and that the default values will be used if it is not specified.

examples:

-t"UHCI" - Test on the 1st UHCI host controller
-t"EHCIO" - Test on the 1st EHCI host controller
-t"OHCI2" - Test on the 3rd OHCI host controller

Limitations:
1. Supports devices connected only at the root hub level.

2. In order to properly specify the number in the PCI enumeration order of the host controllers the end user has to know how
many host controllers of the given type are present in the system and al so the enumeration order of the host controller to which
the device is attached. If these details are not known, thisinformation can be found by trial and error methods.

Using the Windows XP Special Memory Stick Format Registry Key

Windows XP has the capability to apply a Sony factory format on Memory Stick cards by adding a special key to the registry:

[HKEY_LOCAL_MACHINE\SOFTWAREWMicrosoft\Windows NT\CurrentV ersion\PerHwl dStorage\
USBSTOR#DiskSMSC 2223 U HSMS | "DeviceGroup"="MemoryStick"

This key hasto be customized to match the inquiry data returned from the device. The inquiry datais made up of the first 8
characters of the Manufacturer String, followed by the first 5 characters on the Product String. In the example registry key
above, the strings are:

Manufacturer String = “SMSC” (Note that SMSC is followed by four spaces denoted by underscores to make up the 8
characters.)
Product String = “2223 USB2223" (Note that only the first 5 characters, including the space, are used.)

Thisregistry key works for Windows XP only. It will not work for Windows 2000 or any other operating system. Once the
registry key has been added, when a user formats aMemory Stick card from using Windows, the Sony factory FAT format will
be applied, including the creation of the “MEMSTICK.IND” hidden file.

USB2223 Software Release Notes
Page- 72 -

Using the KillReg Utility

KillReg isa DOS bhased application to stop adevice and clean itsrelated registry entries during an automated uninstallation
process. KillReg is designed to be called from a Windows Installer script. It is used during installation and uninstallation of
USB97C210/2223 devices under al Windows operating systems to remove the device entries from the registry. This allows the
SMSC Win2K or Windows native driver to be loaded if the device has previoudy been installed without a driver, or with an
incorrect driver. KillReg is also used during the uninstallation process to completely remove the registry entries for a particular
device.

Requirements:
KillReg requires an ini file to be present in the Windows directory. The name of thisini file should be passed as command line
argument to the application from the installer script.

INI File Requirements:
1. Theini file should be in the Windows directory.
2. Theini file should contain the following lines;

VID =VID
PID = PID1[,PID2,PID3,...,PID30]

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sampleini File:

VID =0424

; The following line shows how
; to specify multiple PIDs

PID = 20FC, 223A, 211A, 242A

; Thefollowing line is used by SwapDrvr.exe
; only and NOT by KillReg.exe

INFFILE = smscpswd.inf

4

NOTE:

1. Theini fileis also used by the application " SwapDrvr.exe", which will expect the line specifying the INFFILE. KillReg
ignoresthisline.

2. Multiple PIDs separated by a comma can be specified to uninstall all the PIDs associated with asingle VID.

USB2223 Software Release Notes
Page- 73 -

Using the Swapdrvr Utility

Swapdrvr isa DOS based application used by a Windows installer to load the password filter driver in Windows XP.
Unfortunately, SwapDrvr does not work with Windows 98 and Me. The only USB2223 application that requires the password
filter driver be loaded when running XP is the QuickTest production line test utility. If you are not using that utility or do not
want to include it in your installer, you can skip this section.

Requirements:

1. The device should be connected while this application isinvoked from a Windows installer. The application will prompt the
user to connect the device during run time.

2. Swapdrvr needs an ini file to be present in the Windows directory. The name of thisini file should be passed as command
line argument to the application from the installer script.

3. Theinstaller application should have already placed the required INF and SY Sfilesin their correct locations.

INI File Requirements:
1. Theini file should be in the Windows directory.
2. Theini file should contain the following lines;

VID =VID
PID =PID
INFFILE = Inf file name

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sampleini File:

VID =0424
PID =223A
INFFILE = smscpswd.inf

USB2223 Software Release Notes
Page - 74 -

Using the Dos Production Line Utility (DosPL TU)

DosPLTU isaDOS based utility intended to be used by OEMs to streamline their production testing, requiring as little human
intervention as possible. This utility supports checking the device firmware version, checking and / or updating the
device EEPROM with atemplate DAT file, and performing R/W tests on all the logical units (LUNS) supported by the device.

DosPLTU Usage:
DosPLTU [-h|-u] [-V] [-f"version”] [-t -n"loopcount” -S'testsize"]
[-€"'DATFileName" | -w"DATFileName" | -x"DATFileName"]
[-I"LogFileName"] [-c"HostController"]

-hfFU e print help/usage

Vo verbose, optional, default is off

-f'version”.......... version number that isto be checked against the firmware version of the device
S (TR perform R/W tests

-n"loopcount”........ specifies the number of timesthe R/W tests are to be

performed. Thisis optional and a default value of 10
will be used if thisis not specified
-S'testsize"......... specifies the test transfer sizein KB for the R/W tests.
Thisisoptional and a default value of 64KB will be used
if thisis not specified
-d"CfgFileName"......name of the configuration file (with full path) that
specifies the media types for each supported LUN. Thisis
optional and if not specified, then testing would be done
on al LUNsfor one mediatype, with out prompting the
user to insert other types of media
-€'DATFileName"......name of DAT file (with full path) that is to be checked
against the device EEPROM. This option cannot be specified
with -w or -x options
-w"DATFileName"......name of DAT file (with full path) that isto be written
to device EEPROM This option cannot be specified with -e
or -x options
-X"DATFileName"......name of DAT file (with full path) that is to be checked
against the device EEPROM and if necessary that isto be
written to the device EEPROM. This option cannot be
specified with the -e or -w options
-I"LogFileName"......name of the log file (with full path) to which the test
status messages are logged
-c"HostController"...specifies the host controller to which the device is
attached. This should be "UHCIn", "OHCIn" or "EHCIn",
where 'n' is a number (0 to 9) specifying the host
controller in the enumeration order. Thisis an optional
parameter and if not specified, a default value of "UHCI"
will be used. Similarly 'n"isaso optional and if it is
not specified, a default value of '0" will be used.
S I infinite loop, till user wantsto quit

1. All options can be specified using both UPPERCASE or lowercase |etters.

2. Thedouble quotes ("") around file namesis optional. If the path names does not contain blank spaces, then
the double quotes are not necessary. If the path names contain blank spaces, then the double quotes are
mandatory.

3. Thefile names are to be specified with full path information. If the files are in the current directory, then the

path information is not necessary.

The double quotes around the 'version' in -f option is optional.

The value of 'version' is specified as a max 4-digit decimal integer number.

The double quotes around the 'HostController' in -t option is optional.

The double quotes for -n and -s options are optional .

No gk

USB2223 Software Release Notes
Page- 75 -

Option Groupsand Priority Levels:

1.

The options are classified into 5 groups as described below.

a Usage -"-h" or "-u"

b. Firmware check -

¢. EEPROM check / update -"-g","-w" and "-Xx"

d. R/W tests -t M-, -8t and "-d"]
e. Miscellaneous =yt et -t and -

The utility has a proirity level for each group of options. The priority level
and processing details are described below.

a. Usage group - Has the highest priority (level 0). If thisis specified, then
the utility would just display the program usage and exit. All other options
areignored and are not processed.

b. Firmware check group - Has the next highest priority (level 1). The utility
processes this option before EEPROM check and R/W test options. If the device
firmware does not match the version specified with this option, then the
utility would display an error message and exit without processing any other
option.

c. EEPROM check / update group - Has a priority level of 2. If "-f" optioniis
specified, the utility would process this option after successfully checking
the device firmware version. Otherwise, this would be processed first. It is
important to note that this group has 3 options ("-€", "-w" and "-x") which
are mutually exclusive. That is, only one of the 3 options can be specified.

If any error occurs while processing this group, the utility ignores the
R/W test option and exits after displaying the corresponding error message.

d. R/W test group - This has the lowest priority (level 3) and is processed
last after successfully processing other specified options. This group has
three additional options ("-n", "-s" and "-d") that may or may not be specified.
Refer to the usage for more details about these options.

e. Miscellaneous group - Has no priority level at all. The options under this group
are very general and only help the user to control how the tests are done and how
the results are displayed. These options, by themselves, do not affect the types
of tests or their order in any way.

DosPLTU Features.

=

Checks the firmware version of the device.

Checks the device EEPROM against atemplate DAT file and returns an error if any mismatch isfound. Thisis
achieved by using the "-€" option and is useful in testing devices whose EEPROM has already been updated.
Updates the device EEPROM always with atemplate DAT file with out checking for any mismatch. After every
update, the serial number is automatically incremented and the DAT fileis updated. Thisis achieved by using the "-
w" option and is useful in updating the device EEPROM for the first time.

Checks the device EEPROM against atemplate DAT file and updates the device EEPROM if any mismatch is found.
If the EEPROM is updated, the serial number is automatically incremented and the DAT fileisupdated. Thisis
achieved by using the "-x" option and is useful in testing devices whose EEPROM may or may not have been already
updated.

Performs R/W tests on all LUNSs supported by the device. The tests are performed using the loop count and test size
values specified with "-n" and "-s" options. The R/W test option also takes in an optional -d option that specifies the
device configuration. When this option is specified, the tests are performed on each LUN prompting the user to insert
the supported media types for the LUN. This option is useful in cases, where LUN sharing is done in devices by
having a combo socket and it is necessary to test al the media types supported by the socket. For a sample device
configuration file, please ook in to "Device.cfg" file.

Provides an option (-v) to turn on or off the additional debug / status comments.

USB2223 Software Release Notes
Page - 76 -

7. Providesan option (-I"LogFileName") to log all messages to the user specified log file.

8. Allows processing devices one after another in aloop till user wantsto exit by specifying the "-i" option in the
command line. Otherwise, the utility will exit after it is done with a single device.

9. Digplaysthe status by showing abig "ERR", "FAIL" or "PASS' along with other relevent information.

"ERR" - Meansan error occurred outside of the test process. This can happen if there are any errors while
parsing the input arguments, or invalid usage, or invalid file paths, or any errors while starting the
host controller and root hub.

The application will exit with error code 1 during such circumstances.

"FAIL" - Meansan error occurred during the process of testing. This can happen if no matching devices are
found or any of the test fails. The actual reason for the failure is given below the "FAIL" status.

The application will exit with error code > 1 during such circumstances.
"PASS" - Means no error occurred and the process of testing completed successfully.
The application will exit with error code 0 during such circumstances.
10. The utility will work with all types of host controllers (UHCI, OHCI & EHCI) and the host controller to which the
deviceis connected is specified by the -c option. The -c option specifies the type of the host controller as well asthe
number in the PCI enumeration order of the host controllers. These two together identify an unique

host controller which the application enumerates to detect the test device. Note that thisis optional and that the default
values will be used if it is not specified.

examples:

-c"UHCI" - Test on the 1st UHCI host controller
-c"EHCIO" - Test on the 1st EHCI host controller
-c"OHCI2" - Test on the 3rd OHCI host controller

Note: In order to properly specify the number in the PCI enumeration order of the host controllers the end user has to
know how many host controllers of the given type are present in the system and also the enumeration order of the host
controller to which the device is attached. If these details are not known, this information can be found by trial and
error methods.

11. The utility will return with one of the following exit codes.

0 - Indicates "PASS"

1 - Indicates"ERR"

2 - Indicates "FAIL" (Device not found error)

3 - Indicates "FAIL" (Firmware mismatch error)

4 - Indicates"FAIL" (Error while reading device EEPROM)

5- Indicates "FAIL" (Device EEPROM and template DAT file mismatch error)

6 - Indicates "FAIL" (Error while writing to the device EEPROM)

7 - Indicates "FAIL" (Error verifying updated EEPROM data)

8 - Indicates "FAIL" (Error while initializing disk(s) for R/W tests)

9 - Indicates "FAIL" (Error while writing to disk)

10 - Indicates "FAIL" (Error while reading from disk)

11 - Indicates "FAIL" (Error verifying read and write data)

12 - Indicates "FAIL" (Error creating the log fil€)
NOTE:
As mentioned above, when the device EEPROM is updated, the DAT file is updated with the serial number incremented by
one. During such cases, there is a chance for the serial number to overflow from "FFFFFFFFFFFF" to "000000000000". When
this overflow occurs, there will be awarning displayed to indicate the overflow. However, the testing on the current device
continues normally as the overflow will matter only with the next device that isto be tested. Even if the tests on the current
device pass successfully, the return value will be "ERR" to indicate the serial number overflow error.

USB2223 Software Release Notes
Page- 77 -

Limitations of the DosPL TU.exe Utility:

oA

Supports devices connected only at the root hub level.

In order to properly specify the number in the PCI enumeration order of the host controllers the end user has to know
how many host controllers of the given type are present in the system and also the enumeration order of the host
controller to which the device is attached. If these details are not known, this information can be found by trial and
error methods.

The utility does not distinguish between actual device failures and media specific failures during R/W tests. Hence, it
is recommended that the R/W tests are done on devices with known good media.

It is recommended that no other USB devices are connected to the system, specially when the system is booting.

It is recommended that the utility is used on systems having Pentium 11 or |11 processors (400 - 800 MHz processor
speed). The utility seemsto fail more as the processor speed increases. On systems having Pentium4 processors with
speed as high as 1.4 to 2.4 GHz, the utility works reliably around 80% of the times and varies with different system
configurations.

Device Configuration File Structure;

The device configuration file is used with the "-d" option for performing R/W tests

on all supported mediatypes of each LUN of the device. The utility prompts the user

to insert different media, one by one, in order to perform the tests. For this, the

utility needs to know the device configuration, ie. how many LUNS the device supports
and the different media types supported by each LUN. These are specified in the device
configuration file.

The number of LUNSs supported by the device isindicated by the following line;

MAX_LUNS=n
where 'n'isanumber (> 0 and <= 4) that specifies the number of LUNS

The media types supported by each LUN are indicated as shown below;

Lx=t1,t2,...t6
where 'x' isa zero based LUN number, that should be < 'n' specified above
and 't1','t2',...,'t6" are media types that should be one of the valid media types.

The valid media types that are defined, for now (more could be added |ater), are
given below;

1=CF

2=MS

3=SM

4=XD

5=SD

6=MMC

1. There should be no spaces before and after the equals ('=") sign
2. Number of LUNSs specified is 1 based, ie. if the device supports 4 LUNS, specify

MAX_LUNS=4

3. The LUN index ('x") is 0 based, ie. 1st LUN isindexex as LO.
4. Multiple mediatypes are separated by commas (',") without any spaces in between
as shown below

LO=1
L1=2
L2=34
L3=5,6

The utility parses thisfile to understand the device configuration. From the example

file shown above, the utility understands that the device supports 4 LUNs and the 1st

LUN supports only CF media, the 2nd LUN supports only MS media, the 3rd LUN supports
SM and XD media and the 4th LUN supports SD and MM C media.

USB2223 Software Release Notes
Page- 78 -

Using the USB2223 with Linux

Versions 2.4.20 and greater of the Linux kernel provide native support for multi-LUN USB mass storage class devices like the
USB2223. Some brands of Linux such as SuSe 8.2 require little or no user setup. Simply plug in your USB2223 device, and
icons will appear, provided there is mediain the card reader dots. Other brands of Linux such as Redhat require the user to
configure the kernel in order to enable multi-L UN support in the mass storage class driver. The procedure for doing that is:

Requirement:
RedHat Linux 9.0 with kernel 2.4.20 or greater

Steps:
Install RedHat Linux 9.0 on the host system
Login to the system as 'root'.
Open aterminal window.
Plug the multi-LUN card reader into the host.
At the shell prompt, type 'cat /proc/scsi/scsi'.
If the screen shows only one LUN, type 'Ismod'.
If 'ush-storage' does not exist, type 'insmod usb-storage'.
If 'usb-storage' exists, type 'cdrecord -scanbus. It will display
scsibusO:
0,0,00) 'SMSC ' '2223 U HS-CF' 'X.XX"' Removable Disk
0,1,01) *
0,2,02) *
0,3,03) *
0,4,04) *
0,5,05) *
0,6,06) *
0,7,07) *
9. Create abatch file with the following calls:
‘echo "set-single-device 0 0 0 0">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 1">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 2">/proc/scsi/scsi
‘echo "set-single-device 0 0 0 3">/proc/scsi/scsi
‘cat /proc/scsi/scsi’
10. After running the batch file, the screen should display:

©ONoTA~AWDNE

Attached devices:
Host: scsiO Channel: 00 ID: 00 LUN: 00

Vendor: SMSC Model: 2223 U HS-CF Rev: X. XX

Type: Direct-Access ANSI SCSI revision: 02
Attached devices:
Host: scsi0 Channel: 00 ID: 00 LUN: 01

Vendor: SMSC Moddl: 2223 U HSMS Rev: X. XX

Type: Direct-Access ANSI SCSl revision: 02
Attached devices:
Host: scsiO Channel: 00 ID: 00 LUN: 02

Vendor: SMSC Moddl: 2223 U HS-SM Rev: X. XX

Type: Direct-Access ANSI SCSI revision: 02
Attached devices:
Host: scsiO Channel: 00 ID: 00 LUN: 03

Vendor: SMSC Moddl: 2223 U HS-SD/MMC Rev: X.XX

Type: Direct-Access ANSI SCSl revision: 02

11. Now multi-LUN support is enabled and you should be able to mount and access all media normally.

USB2223 Software Release Notes
Page - 79 -

Media Tested with the USB2223

The following flash media cards were used during the development and testing of the USB2223. All media listed has been
determined to work properly and be compatible with the USB2223.

Compact Flash Memory Stick Secure Digital Smart Media
CompUSA 16MB Lexar 16MB IO Data 64MB Fuji Film 8MB
CompUSA 48MB Lexar 32MB Buffalo 256MB Kingston 64MB
CompUSA 64MB Lexar 64MB Lexar 16MB I-O Data 8MB
Delkin Devices Pro 640MB |Lexar 128MB Lexar 32MB I-O Data 16MB
Hyperstone 8MB PQI 64MB Memorex 32MB I-O Data 32MB
10 Data 4MB PQI 128MB Panasonic 512MB I-O Data 64MB
IO Data 8MB SanDisk 16MB PNY 128MB I-O Data 128MB
IO Data 32MB SanDisk 64MB PQI 64MB Lexar 16MB
King Max 8MB SanDisk 128MB PQI 128MB Lexar 32MB
King Stone 64MB Sony 8MB PQI 256MB Lexar 64MB
Lexar 32MB Sony 16MB SanDisk 32MB Lexar 128MB
Lexar 48MB Sony 32MB SanDisk 64MB Memorex 32MB
Lexar 64MB Sony 64MB SanDisk 128MB Memorex 64MB
Lexar 128MB Sony 128MB SanDisk Extreme 256MB |Memorex 128MB
Lexar 256MB SimpleTech 128MB Olympus 8MB
Lexar 512MB (24x) High Speed PNY 128MB
Lexar 1GB (4x) Memory Stick Samsung 32MB
Lexar 1GB (24x) Sony 16MB Mini Secure Digital SanDisk 32MB
Lexar 2GB (40x) Sony 32MB Panasonic 32MB SanDisk 64MB
Memorex 32MB Sony 128MB Panasonic 64MB SanDisk 128MB
Memorex 64MB Panasonic 128MB Viking 64MB
Memorex 128MB Memory Stick Pro Toshiba 32MB
PQI 16MB Sony 256MB
PQI 64MB Sony 512MB MMC
Samsung 128MB Sony 1GB Lexar 16MB
SanDisk 1GB SanDisk 256MB Lexar 32MB
SanDisk Extreme 1GB Lexar 64MB
SanDisk Ultra 128MB PQI 32MB
SunDisk 8MB PQI 64MB

IBM MicroDrive SanDisk 8MB

IBM Microdrive 340MB
IBM Microdrive 1GB

SanDisk 16MB
SanDisk 32MB
SanDisk 64MB

USB2223 Software Release Notes
Page - 80 -

USB2223 Performance Benchmarks

The measurements were performed using HDBench v3.30 on a Windows XP (SP1) system with an ICH4 south bridge.
(Pentium 4, 1.8GHz, 512MB DDR). All benchmarks were measured on new (out of the box) media. Please note that the
benchmark performance of flash cards varies widely from manufacturer to manufacturer, and the performance of all
manufacturers’ cards degrade with use. In order to duplicate the results below, you must use brand new media and test on a
similarly configured host.

Full Speed (USB1.1) Reads Writes Media Used for Testing:
Compact Flash 1043 KB/s | 932 KB/s SanDisk Extreme 1GB
Memory Stick | 909 KB/s 550 KB/s Lexar Media 128MB
High Speed Memory Stick = 811 KB/s 652 KB/s Sony MagicGate 128MB
Memory Stick Pro' 1031 KB/s | 902 KB/s Sony 512MB
Smart Media 977 KB/s 537 KB/s Memorex 128MB
Secure Digital 1039 KB/s = 945 KB/s SanDisk Extreme 256MB
Multimedia Card 996 KB/s 374 KB/s Lexar Media 64MB

High Speed (USB2.0) Reads Writes Media Used for Testing:
Compact Flash 9682 KB/s @ 5953 KB/s SanDisk Extreme 1GB

Memory Stick | 1540 KB/s = 833 KB/s Lexar Media 128MB
High Speed Memory Stick | 4031 KB/s | 897 KB/s Sony MagicGate 128MB
Memory Stick Pro 4027 KB/s @ 3157 KB/s Sony 512MB
Smart Media 4762 KB/s | 1746 KB/s Memorex 128MB
Secure Digital 7275 KB/s = 5340 KB/s SanDisk Extreme 256MB
Multimedia Card = 1522 KB/s = 486 KB/s Lexar Media 64MB

USB2223 Software Release Notes
Page - 81 -

GPI O Assignment Table

The following is atable of GPIO assignments for the USB2223. Please note that multi-function GPIO
operations are determined by attribute settings. Please refer to the software release notes for detail on
configuration settings.

Name Description Function
GPIOO Not avaliable due to pin count

GPIO1 Flash Media Activity LED Media Activity LED

GPIO2 EE_CS EE_CS

GPIO3 V_BUS V_BUS

GPI1O4 EE_DIN/EE_DOUT EE_DIN&DOUT

GPIO5 SD Card Detect SD Card Detect

GPIO6 Al16 (external ROM only) /ROMEN ROMEN/A16

GPIO7 EE_CLK/Unconfigured LED EE_CLK/Uncfg LED

GPIO8 MS Power Control MS Power Control

GPIO9 CF Power Control CF Power Control

GPIO10 SM Power Control SM Power Control

GPIO11 SD Power Control SD Power Control

GPIO12 MS Activity MS Activity/Media Activity LED
GPIO13 CF Activity CF Activity

GPIO14 SM Activity SM Activity

GPIO15 SD/MMC Activity SD/MMC Activity

USB2223 Software Release Notes

Page - 82 -

Known Firmware Related | ssues

General:

| ssue: Workaround: Status:

No known issues.

CF Devices:

I ssue: Workaround: Status:

No known issues.

M S Devices:

I ssue: Workaround: Status:

When High Speed Magic Gate Memory Stick mediais None. We believethisisa

formatted with aFAT file system on aMacOS 10.X host, the Magic Gate security

media becomes unreadable on machines with Windows protocol issue. WE will

operating systems, but will continue to work normally with continue to investigate

Macs. and provideafixina
future release of the
uUSB2223 firmware if
possible.

SM Devices:

I ssue: Workaround: Status:

Writesto 2MB Smart Media cards are not supported. None. 2MB Smart Media
cards can be read by the

USB2223, but writes
are not supported.
These cards are
considered obsolete and
there are no plansto
implement support for
them in the future.

SD/M M C Devices:

| ssue: Workaround: Status:

Under certain conditions, the USB2223 device may fail to Attempt to reinsert the card. Currently under
recognize an SD/MMC card inserted while writing to either investigation. May be
CFor MSor SM cards. fixed in afuture release

of the USB2223
firmware.

| ssues Not Related to Firmware
I ssue:

USB2223 Software Release Notes

Workaround:

Page - 83 -

Status:

Due to the write caching functionality of Windows, data
corruption can sometimes occur if the mediaisremoved
improperly.

Before removing any piece of media, you should right click the
driveicon in Windows Explorer and select “Eject” from the
context menu. Thiswill force the operating system to perform a
write of any cached data.

Limitation of the OS.

Reading or writing multiple media types simultaneously will
generally happen at the slowest media rate.

Thisisalimitation of the OS. If writesto aslow media typelike
MS are made while reading from a fast media type like CF or

SM, then the read will slow to approximately the rate of the
write. Thisisbecause the OS must process each command
separately. It is not alimitation of the firmware.

Limitation of the OS.

If the USB2223 evaluation board does not have a properly
programmed serial number, only one drive will appear in
Windows Explorer.

Program a unique serial number into the board using the
“DFUTest” utility.

Surprise removal of the USB cable during awrite to any Reboot the host. This appears to be a bug
mediatype under Windows 98, Me, or MacOS sometimes with the operating systems.
causes the host to become unresponsive. All mass storage class
devices tested have
displayed this behavior.
Occasionally, surprise removal of the USB cable during writes Reboot the host. This appearsto beabugin
to any media type under Windows XP, results in the failure of Windows XP. No mass
the device to re-enumerate after being reattached. storage class USB devices
will enumerate once the host
isinthis state.
Windows 2000 does not immediately report that mediais None. Thisisnormal behavior for

write protected when attempting to perform a full format. The
format will appear to progress to completion, but at the end of
the operation reports that the media is write protected.

Windows 2000. This occurs
for all USB write protectable
devices when attempting to
perform afull format.

16MB MMC media reports an incorrect format capacity when
you attempt to format it in Windows 98 or Me after having
previously formatted a64MB MMC.

Power cycle the board.

This appears to be a bug
with the Windows Operating
system.

Prematurely attempting to access a drive after resuming from
suspend sometimes resultsin adevice 1/0 error in Win2K.
Thisisaknown issue at Microsoft. (Reference Microsoft
Knowledge Base article Q323754)

Obtain and ingtall the updated Usbhub.sys file from the hotfix
that is described in Microsoft Knowledge Base article Q306455.

N/A

Under Mac OS 9.x only one drive will appear on the desktop.
Thisisnormal asthe Mac OS 9.x mass storage class driver
does not support multiple LUN devices.

Use the MacOS 8.6-9.x driver provided by SMSC.

Use the MacOS 8.6-9.x
driver provided by SMSC.

DFU for Mac 10.X does not work when the deviceis
connected to a1.1 USB host controller

Attach device to a 2.0 host controller when using DFU on Mac
0S 10.X

Currently under
investigation. May be fixed
in afuture release

When M SPro mediaisinserted and the device is enumerated
driveiconswon't come up until the mediais ready to be read.
Per M SPro specification larger media could takes 10 seconds
to be ready

None.

Under Windows 2000 SP2 or below, only one drive icon
appears.

Windows 2000 SP2 and below does not provide native support
for multi LUN mass storage class devices like the USB2223. Y ou
can either use the SMSC Windows 2000 driver, or upgrade your
OS to Service Pack 3 or higher. (Thisis afree update).

Use the SMSC Windows
2000 driver, or upgrade to
Windows 2000 SP3 or
higher.

