
AN1367
Porting the Helix MP3 Decoder onto Microchip’s

PIC32MX 32-bit MCUs
INTRODUCTION
The MPEG-1, MPEG-2, and MPEG-2.5 Layer 3 (MP3)
audio encoding format is a popular audio format for con-
sumer audio storage and digital audio players. Features
such as multiple bit rates, variable bit rates and choice of
audio sampling rates make this algorithm an attractive
choice for a wide variety of multimedia applications.

This application note describes the procedure to port
the open source Helix MP3 decoder algorithm onto
Microchip’s PIC32MX 32-bit microcontrollers (MCUs).
The source code provided with this document demon-
strates a MP3 player application using the Helix MP3
decoder. The MP3 player application uses Microchip’s
USB stack to read MP3 files from a USB flash drive,
which is referred to as a thumb drive in this document,
and the Microchip graphics stack to implement a
Graphical User Interface (GUI) with touch screen
support.

Application developers may need to add proprietary code
to open source code to meet the target application require-
ments. When statically compiled with the open source
code, this proprietary code may be subject to the open
source End User License Agreement. In many cases, this
may not be acceptable to application owners. Therefore,
this application note describes a Run-Time Library Load-
ing (RTLL) technique that enables the preservation of the
application’s intellectual property.

This application note is organized in the following
order:

1. Description of the Helix MP3 decoder library.
2. RTLL technique used in the demo application.
3. Description of the demo application code.
4. Steps required to compile and run the demo

application.

ABOUT THE HELIX MP3 DECODER
The Helix MP3 decoder is available as both floating
point and fixed point implementations. The fixed point
implementation is considered for porting the algorithm
onto the PIC32MX microcontroller. The algorithm runs
on any 32-bit fixed point processor and is coded
entirely in the C language with options to replace
certain code sections with optimized assembly
instructions.

The Helix MP3 decoder provides Layer 3 support for
MPEG-1, MPEG-2, and MPEG-2.5. It supports variable
bit rates, constant bit rates, and stereo and mono audio
formats. For details on implementation and features,
visit the Helix MP3 decoder web site at:
https://datatype.helixcommunity.org/Mp3dec.

The Helix MP3 decoder source code is open source
and is governed by the license described in files that
accompany the source code. It should be noted that
even though the Helix MP3 decoder is free to use and
is open source, the MP3 algorithm itself is not free and
has royalties associated with it. These royalties must
be paid in order to use the algorithm. For more details,
visit www.mp3licensing.com.

Porting the Helix MP3 Decoder onto the
PIC32MX Microcontroller
To port the Helix MP3 decoder to the PIC32MX
platform, the decoder source code must be
downloaded from the Helix MP3 decoder web site.
Follow the instructions on the Web page to download
the source code. Alternatively, the Helix MP3 decoder
source code available with this application note can
also be used. The source code available with this
document is already modified to allow the Helix MP3
decoder to work on PIC32MX devices. For the latest
source code, visit the Helix MP3 decoder web site at:
https://datatype.helixcommunity.org/Mp3dec.

Each folder in the downloaded source code contains
three license files: RPSL.txt, RCSL.txt and
LICENSE.txt. Users are encouraged to read these
license files and are requested to ensure compliance.

Author: Sunil Fernandes
Microchip Technology Inc.
© 2010 Microchip Technology Inc. DS01367A-page 1

https://datatype.helixcommunity.org/Mp3dec
http://www.mp3licensing.com/
https://datatype.helixcommunity.org/Mp3dec

AN1367

The Helix MP3 decoder source code (as downloaded
from the Helix MP3 decoder web site) is located in the
fixpt folder. The following steps need to be
performed to port the decoder source code to the
PIC32MX device.

1. Open the assembly.h file in the
\fixpt\real folder.

2. Go to the FASTABS function define for the MIPS
platform (line 337 of this file). This function is a
MIPS assembly implementation of an absolute
function.

3. Comment out the function body and replace this
section with the C implementation (see
Example 1), and save these changes.

4. Open the mp3dec.c file located in the fixpt
folder and comment out line 47 (see
Example 2). The PIC32MX port of the Helix MP3
decoder does not require this feature.

These steps apply to Version 1.8 of assembly.h file
and Version 1.6 of the mp3dec.c file.

These are the changes that need to be made to the
source code downloaded from the Helix MP3 decoder
web site. The Helix MP3 decoder source code included
with this document already contains these
modifications.

EXAMPLE 1:

EXAMPLE 2:

static __inline int FASTABS(int x)
{
// int t=0; /* Really is not necessary to initialize only to avoid warning. */
//
// __asm__ volatile (
// "sra %0, %1, 31 \n\t"
// "xor %1, %1, %0 \n\t"
// "sub %0, %1, %0 \n\t"
// : "=&r" (t)
// : "r" (x)
//);
//
// return t;

/* Commented out the above code as it causes problems while decoding some files */
/* on MIPS M4K core. */

 return((x > 0) ? x : -(x));
}

#include "string.h" /* for memmove, memcpy (can replace with different */
/* implementations if desired) */

#include "mp3common.h" /* includes mp3dec.h (public API) and internal, */
/* platform-independent API */

//#include "hxthreadyield.h"
DS01367A-page 2 © 2010 Microchip Technology Inc.

AN1367

To build a project containing the Helix source code files,
include all .c source code files located in the fixpt
and fixpt\real folders. It is optional for the user to
include all of the header files in the project. Figure 1
shown the file listing for the MPLAB IDE Project
Explorer window.

FIGURE 1: PROJECT EXPLORER
WINDOW

The path to the fixpt\pub and fixpt\real folders
needs to be specified and should be relative to the
location of the project file. Click Project>Build
Options>Project. From the Directories tab, select
Include Search Path, and specify the path of the folder
relative to the MPLAB project location; otherwise, the
absolute path can also be specified. For example, if the
project and fixpt folders are located in the same
folder, the selected options would look similar to
Figure 2.

FIGURE 2: SPECIFYING INCLUDE FILE
SEARCH PATH

When compiling, the MIPS symbol needs to be defined.
This builds the Helix MP3 decoder source code for the
PIC32MX platform. Click Project>Build Options>Proj-
ect. From the MPLAB PIC32 C Compiler tab, add the
MIPS macro to the build process, as shown in Figure 3.

FIGURE 3: ADDING MIPS
PRE-PROCESSOR MACRO
TO BUILD OPTIONS
© 2010 Microchip Technology Inc. DS01367A-page 3

AN1367

The decoder requires heap memory for its operation.
The heap memory size required for the decoder without
input and output buffers is 28 Kbytes, which must be
specified at compile time. Click Project>Build
Options>Project, and select the MPLAB PIC32 Linker
tab. Specify the heap size as shown in Figure 4.

FIGURE 4: SPECIFYING THE HEAP
MEMORY SIZE

The Helix MP3 decoder source code should be
compiled with the optimization level set at O3. Click
Project>Build Options>Project, and select the MPLAB
PIC32 C Compiler tab. In the Categories field, select
Optimization from the drop-down list. Set the
optimization level to O3, as shown in Figure 5.

The Helix MP3 decoder source code is now ready for
use with a PIC32MX application.

FIGURE 5: SETTING THE COMPILER
OPTIMIZATION LEVEL

Helix MP3 Decoder Application Program
Interface (API)
The Helix MP3 decoder API provides functions to:

• Initialize the decoder
• Close the decoder
• Detect frame synchronization
• Get frame information such as bit rate and

sampling frequency
• Decode MP3 frames

The first step when using the Helix MP3 decoder is to
include the required header files in all the source files
to invoke the decoder API. The files to be included are
coder.h and mp3dec.h (see Example 3).

EXAMPLE 3:

Note: The demo application uses the RTLL
technique and invokes the Helix MP3
decoder API indirectly via the system
loader interface. Therefore, the MEB USB
Thumb Drive MP3 C32 Demo.mcp
source code does not feature direct
instances of the Helix MP3 decoder API.

// The following files must be
// included in the source code to
// invoke the Helix MP3 decoder API

#include "coder.h"
#include "mp3dec.h"
DS01367A-page 4 © 2010 Microchip Technology Inc.

AN1367

The Helix MP3 decoder is fully re-entrant, which means
that the decoder state is encapsulated completely
within a data structure. The MP3InitDecoder()
function allocates the memory for this data structure,
initializes it, and then returns a pointer to the initialized
data structure. This function uses the dynamic memory
allocation and requires the heap to be allocated. If the
function returns a value of zero, the allocation was not
successful (see Example 4).

If the application wants to close the decoder, memory
allocated to the decoder can be deallocated using the
MP3FreeDecoder() function (see Example 5). This
function clears the memory consumed by the decoder.

MP3 files typically have additional information stored
within them through ID3 tags. These tags contain
information about the song, artist, album, genre, etc.

An input frame provided to the Helix MP3 decoder
function should not contain this information. The
application must locate the start of actual MP3 data
within the file or input stream. This can be done by
using the MP3FindSyncWord() function. This
function accepts an input buffer (which should be a
portion of bytes read from a MP3 file), locates the
Synchronization Word in the MP3 frame header, and
then returns this location in terms of an offset from the
start of the input buffer. The Synchronization Word
indicates the start of a MP3 frame. If a negative value
is returned, the input buffer does not contain a
Synchronization Word or a start of MP3 frame (see
Example 6).

EXAMPLE 4:

EXAMPLE 5:

// Initialize the Helix MP3 decoder. This will point to the MP3 decoder data
// structure.

HMP3Decoder mp3Decoder;
mp3Decoder = MP3InitDecoder();
if(mp3Decoder == 0)
{
// This means the memory allocation failed. This typically happens if there is not
// enough heap memory. Recompile the code with additional heap memory.

while (1);
}

// Close the decoder.

MP3FreeDecoder(mp3Decoder);

// At this point, memory consumed by the MP3 decoder is released.
© 2010 Microchip Technology Inc. DS01367A-page 5

AN1367

EXAMPLE 6:
// Find a valid MP3 start of frame in the input stream

while(!endOfFile(mp3File))
{

// Read the input file

nRead = fread(mp3File,input,MAX_FRAME_SIZE);
if(nRead == 0)
{

// We have reached end of file and a valid MP3 start of frame was not found.
// Do something.

NotValidMP3File();
break;
}
else
{

offset = MP3FindSyncWord(input,MAX_FRAME_SIZE);
if(offset < 0)
{

// The input buffer does not contain a start of frame. Read another frame.

continue;
}
else
{

// We found a start of frame. offset contains location of the start of frame
 // within input buffer.

foundStartOfFrame = TRUE;
break;
}

}
}

DS01367A-page 6 © 2010 Microchip Technology Inc.

AN1367

The MP3FindSyncWord() function may find the
Synchronization Word, but this may not be the actual
start of a MP3 frame. There may be instances where
some data within an ID3 tag could match a
Synchronization Word. In such cases, if the input is
passed to the MP3 Decoder function, it returns an error.
The application should process this error accordingly.

The MP3 player application, which accompanies this
document, is designed to process the MP3 files that are
stereo encoded and processed at a 44.1 kHz sampling
rate. The Helix MP3 decoder features the
MP3GetNextFrameInfo() function, which returns
the audio attributes of a MP3 frame that is yet to be
processed. The application can use this information as
required. The MP3FindSyncWord() function is used
to locate the Start of Frame (SOF) and thereby indicate
a potential MP3 frame. The
MP3GetNextFrameInfo() function can then be used
to extract the information about the yet to be decoded
MP3 frame. The information is returned in a
MP3FrameInfo type data structure. An error is
returned in case of an invalid MP3 frame (see
Example 7).

The following information is available in the
MP3FrameInfo data structure:

• Bit rate of the processed frame
• Number of audio channels (one for mono, two for

stereo)
• Encoding audio sample rate
• Number of bits per sample
• Size of the decoded audio frame in audio samples

(stereo samples are counted as two audio
samples)

• MPEG layer
• Layer version

The MP3GetLastFrameInfo() function returns the
same information, but for a decoded audio frame.
Example 8 shows the usage of the
MP3GetLastFrameInfo() function.

EXAMPLE 7:

EXAMPLE 8:

// Get information about the next frame to be decoded. This assumes that the
// MP3FindSyncWord()function has been used to locate the start of a MP3 frame.

MP3FrameInfo frameInfo;

if(foundStartOfFrame == TRUE)
{

int error;
error = MP3GetNextFrameInfo(mp3Decoder, &frameInfo, input);
if(error == MP3_INVALID_FRAME_HEADER)
{

// This means that the MP3FindSyncWord function has found the sync word,
// but this was not a start of frame. This may have happened because
// the sync word may have found in an ID3 tag.

GetAnotherFrame();
}

else if(frameInfo.sampRate != 44100)
{

// For this example, we want only data which
// was sampled at 44100 Hz. Ignore this frame.

IgnoreThisFrame();
}

}

// Get information about the last decoded frame. It is assumed that the frame was
// decoded by calling the decode function.

MP3FrameInfo mp3frameInfo;
int nOutputSamples;

MP3GetLastFrameInfo(mp3Decoder, &mp3FrameInfo);

// Get the size of the output raw audio frame.

nOutputSamples = mp3FrameInfo.outputSamps;
© 2010 Microchip Technology Inc. DS01367A-page 7

AN1367

The MP3Decode() function is used to decode the
encoded MP3 frame. This function invokes the core
MP3 decoding algorithm. The entire input encoded
frame may not be consumed in one decode operation.
In such a case, the input pointer is advanced to point to
the start of unconsumed bytes. The decoder function
also returns the total unconsumed bytes. The MP3
application can use this to prime the input buffer. For
correct operation, the new data should be appended to
the end of the unconsumed bytes.

The input frame can be formatted as a standard MPEG
stream for self-contained MP3 frames. The standard
MPEG stream option has been used in the MP3 player
example. The format of the decoded raw data depends
on the number of audio channels. In the case of mono
audio data, each output audio sample is unique. In the
case of stereo audio data, the output audio samples
are organized as interleaved left channel and right
channel (LRLRLR…) audio samples. The decode
function returns an error value indicating the result of
the decode process. The MP3 application can take the
appropriate action based on the type of error (see
Example 9).

EXAMPLE 9:
// Decode a MP3 frame. It is assumed that the MP3FindSyncWord() function was used
// to find a start of frame.

short output[MAX_NCHAN * 1152];
int err;
int bytesLeft

bytesLeft = INPUT_BUF_SIZE;
err = MP3Decode(mp3Decoder, &input, &bytesLeft, output, 0);

// bytesLeft will have number of bytes left in the input buffer. Input buffer will
// point to the first unconsumed byte.

// This code example shows how the errors can be handled.
// This may differ between applications.

switch(err)
{

case ERR_MP3_INDATA_UNDERFLOW:
CloseMP3File();
break;

case ERR_MP3_MAINDATA_UNDERFLOW:
ReadMoreMp3Data();
break;

case ERR_MP3_FREE_BITRATE_SYNC:
CloseMP3File();
break;

default:
CloseMP3File();
break;

}

// The MP3GetLastFrameInfo() function can be used to obtain information about the
// frame. The following shows an example.

MP3GetLastFrameInfo(mp3Decoder, &mp3FrameInfo);
if(mp3FrameInfo.outputSamps != 0)
{

// Write data to output DAC

WriteDataToDAC(output, mp3FrameInfo.,outputSamps);
}

DS01367A-page 8 © 2010 Microchip Technology Inc.

AN1367

Table 1 lists the Helix MP3 decoder memory
requirements when running on a PIC32MX
microcontroller. Table 2 lists the computational
requirement.

RUNTIME LIBRARY LOADING
Application developers may consider use of open
source code components for their application. The
open source code license in such an instance may
require proprietary application code to be covered by
the terms and conditions of the open source code
license. This requirement may not be convenient to an
application developer or owner. For such cases, the
MP3 application example accompanying this source
code utilizes a technique where:

• Open source code is not linked to the main
application source code. They are compiled
separately and are not linked with each other.

• Open source code library is loaded at run time
through a loader utility as a set of function
pointers

This technique is termed as Run-Time Library Loading
(RTLL). The MP3 player application uses the RTLL
technique to load the Helix MP3 decoder at run-time.
Figure 6 shows the conceptual block diagram of the
RTLL operation.

The RTLL technique uses a system loader to load the
Helix MP3 decoder. The loading process involves ini-
tialization of RAM, copying of tables from program
memory to RAM (if required), and obtaining a set of
pointers to the functions exported by the decoder. The
MP3 player application exports its functions through
the system loader and these functions can be called by
the Helix MP3 decoder. Similarly, code is added to the
Helix MP3 decoder module to expose a set of functions
through the system loader, which can be called by the
main application.

The MP3 player application consists of two projects
that create two distinct hex files (program images). One
file for the main application (also containing the USB
and graphics stacks) and the other for the Helix MP3
decoder. These two program images are programmed
at separate locations in device program memory. The
MP3 application thus accesses the Helix MP3 decoder
using the RTLL technique. This technique requires
modification to the default linker script used by the C32
linker. The start of the program Flash and data RAM
sections needs to be adjusted for implementing the
RTLL technique. For the Helix MP3 decoder, these
sections are adjusted to be placed towards the end of
the respective memory areas. The program memory
area is set to start at 72 Kbytes from end of program
memory, and data RAM is set to start at 256 bytes from
the end of KSEG1 RAM (adequate stack memory for
Helix). Similarly, the linker script used when creating
the MP3 player program image adjusts the size to
accommodate for the Helix MP3 decoder. The program
memory is reduced by 72 Kbytes and KSEG1 RAM by
256 bytes.

Throughout the remainder of this discussion, the term
“main application” refers to the MP3 player application,
and the term “library” refers to the Helix MP3 decoder.
The two are collectively referred to as modules. The
RTLL technique uses the dynamic module header data
structure, module_dyn_hdr, to hold information about
a module. The main application, system loader and
library have their own dynamic module headers.
Example 10 shows the definition of module_dyn_hdr.

TABLE 1: HELIX MP3 DECODER
MEMORY REQUIREMENTS

Memory
Type

Size
(in bytes) Remarks

Program
Memory

53000 —

Data
Memory

28000 Required by the decoder
only.

Input Buffer 1940 Maximum MP3 frame size.
Output
Buffer

2304 Maximum size required by
the output buffer for stereo
audio data.

TABLE 2: HELIX MP3 DECODER
COMPUTATIONAL
REQUIREMENT

Function MIPS Remarks

MP3Decode() 26 Calculated with code com-
piled with O3 optimization
and processor clock at
80 MHz.
© 2010 Microchip Technology Inc. DS01367A-page 9

AN1367

FIGURE 6: RTLL FRAMEWORK

EXAMPLE 10:

The dynamic header data structure for each module
includes the information about the imported and
exported functions. The imported functions are
contained in the module import table
(module_import_tbl). The exported functions are
contained in the module export table
(module_export_tbl). Example 11 shows how the
module dynamic header is initialized for the main
application module.

EXAMPLE 11:

MP3 Player Application System Loader Helix MP3 Decoder
Loader Calls Loader Calls

Application Calls

Library Calls

typedef struct
{

// module signature
const char module_sign[_MCHP_DYN_HDR_SIGNATURE_SIZE_];

// name of the module
const char module_name[_MCHP_MODULE_NAME_SIZE_];

// pointer to module init
const module_init_dcpt* module_init;

// pointer to the export descriptor
const export_dcpt* module_export_tbl;

// pointer to the import descriptor
const import_dcpt* module_import_tbl;

// pointer to module data
module_data_dcpt* module_data;

// module info
const module_info_dcpt module_info;

}module_dyn_hdr;

const module_dyn_hdr __attribute__((__section__(".Module_Header_Section"))) _ModuleLoadHdr =
{

_MCHP_DYN_HDR_SIGNATURE_, // signature
MAIN_SERVICES_LIB, // lib_name
0, // module init
&SystemExports, // exports
&_DefaultModuleImports, // imports
&module_data, // private data
_DefaultModuleInfo(0x0100), // module info

};
DS01367A-page 10 © 2010 Microchip Technology Inc.

AN1367

The main module exports the malloc() and free()
functions required by the Helix MP3 library. The main
application module does not import any other module
functions and the _DefaultModuleImports table is
empty. The RTLL technique allows the system loader to
be loaded as a module. However, this is not performed
in this particular example and the system loader is
statically linked to the main application module. This
selection is enforced by specifying the
LOADER_STATIC_LINK option while compiling the
main application module.

The main application calls the dlopen() function (in
AudioUSBInit() function in AudioUSBTasks.c
file) to initialize the RTLL system (see Example 12).

The dlopen() function loads all of the modules
specified in the p_modules[] array. Loading invokes
the start-up code (if any) associated with each module.
The Helix MP3 Library module uses modified C run-
time start-up code to initialize its memory. The
dlopen() function then returns a pointer to the
module dynamic header for the Helix MP3 library.

The main application then uses the dlsym() function
to obtain a handle to the Helix MP3 library module entry
point (see Example 13).

This returns a pointer to the HelixLibEntry()
function defined in the helix_lib.c file. This function
invokes the Helix MP3 decoder API based on specified
arguments. Example 14 shows a portion of the
HelixLibEntry() function implementation.

The fCode argument to the HelixLibEntry()
function determines the Helix library function to be
invoked. For example, if fCode is ‘0’, the
MP3InitDecoder() function is invoked. It should be
noted that the main application module obtains a
handle (MP3DecoderFunctions) to the
HelixLibEntry() function via the system loader
dlsym() call.

The main application module now uses the
MP3DecoderFunctions handle to invoke the Helix
MP3 decoder API functions. Example 15 shows the
main application module invoking the MP3Decode()
function through the MP3DecoderFunctions handle.

EXAMPLE 12:

EXAMPLE 13:

EXAMPLE 14:

EXAMPLE 15:

/* Get a handle to the MP3 decoder and obtain an entry point to the decoder
 * Library functions. */

hMP3DecoderLibrary = dlopen("Helix Library", 0)

MP3DecoderFunctions = (void* (*)(int, int, ...))dlsym(
hMP3DecoderLibrary, "HelixLibEntry");

void* HelixLibEntry(int fCode, int nparams, va_list args)
{

void* res = (void*)-1;

// Library entry point
switch(fCode)
{

case 0:
if(nparams == 0)
{

res = MP3InitDecoder();
}
break;

case 1:
if(nparams == 1)
{

MP3FreeDecoder(va_arg(args, HMP3Decoder));
res= 0;

}
break;

// MP3_DECODE_FUNCTION is fCode value for MP3Decode() function.
// The second argument indicates the total number of arguments that follow.

err = (int)(*MP3DecoderFunctions)(MP3_DECODE_FUNCTION,5,hMP3Decoder, &readPtr, &bytesLeft,
outBuf, 0);
© 2010 Microchip Technology Inc. DS01367A-page 11

AN1367
THE MP3 PLAYER APPLICATION
The MP3 player application uses the Helix MP3
decoder (via RTLL), Microchip’s USB stack and
graphics stack to implement a MP3 player. The
application uses the Mass Storage Device (MSD) host
component of the USB stack to read a USB thumb
drive. The graphics stack provides the touch screen
and user interface functions.

The USB and graphics stack operations are
documented well and will not be discussed in this
application note. The core logic of the MP3 player is
implemented as a state machine in the
AudioUSBTasks() function in the
AudioUSBTasks.c file. Figure 7 shows a pictorial
representation of this state machine.

When in the Idle state, the state machine waits for a
USB thumb drive to be attached. When the device is
attached, the code attempts to initialize the thumb drive

file system. The application searches the thumb drive
for the MP3 files. If files are found, the file names are
stored in fileNames[] array. A maximum of
MAX_FILES filenames can be stored. The file list box
on the display is updated with the file names. The first
file is opened, and the code searches for the first
instance of start of frame. If a start of frame is found, the
remainder of the frame is read from the file, and the
frame is passed to the decode function. The decoded
audio frame is sent for playback to the WM8731 Audio
DAC device. The file read and decode operations con-
tinue until an end of file is encountered; the file is then
closed and the next file is opened.

The currentPlaybackFileIndex variable tracks
the current file being processed as an index into the
fileNames[] array. The application changes this
variable and jumps to the Open MP3 File state in
response to an activity on the Next or Previous
buttons.

FIGURE 7: AUDIO USB TASKS STATE MACHINE

Idle
No device

Device
Attached

System
Halt

Device attached

Search
MP3 Files

Open
MP3 FileMP3 File Found

Could not open file. Try next file

File Open

File Opened

Find
Frame
Sync

End of file
Close file

File Read

Fr
am

e
Sy

nc
 F

ou
nd

MP3
Decode

Playback

Get another MP3 Frame

File Close

No MP3 Files Found

Fi
le

 S
ys

te
m

 In
itia

liz
at

io
n

fa
ile

d

De
vic

e
At

ta
ch

ed

File System Initialized

Device
Detach

C
lo

se
 F

ile
 d

ue
 to

 e
rr

or
 o

r e
nd

 o
f f

ile

Could not find in
current frame. Try
another frame

Ope
n n

ex
t fi

le

attached
DS01367A-page 12 © 2010 Microchip Technology Inc.

AN1367
RUNNING THE DEMO APPLICATION
This application note is accompanied by MP3 player
demo application source code. The MP3 player
application decodes stereo MP3 files, which were
encoded at a 44.1 kHz sampling rate. MP3 files
encoded at other sample rates or mono-encoded are
ignored. This is purely an application design choice and
not a limitation of the Helix MP3 decoder. The decoder
supports the entire range of bit rates and sampling
frequencies as specified by the MP3 format.

The MP3 player application is designed to run on the
Multimedia Expansion Board (MEB) (Part Number:
DM320005) along with a PIC32MX USB Starter Kit II
(Part Number: DM320003-2) or PIC32 Ethernet Starter
Kit (Part Number: DM320004). The MEB features a 24-
bit audio ADC/DAC, touch screen display and supports
the PIC32MX device via a starter kit connector. For
more details, visit the web page dedicated to the
Multimedia Expansion Board at www.microchip.com/
MEB.

The PIC32MX USB Starter Kit II and PIC32 Ethernet
Starter Kit use the PIC32MX795F512L device. This
device features 512 Kbytes of program Flash memory
and 128 Kbytes of data RAM. The device also features
a USB module. The starter kit includes the USB host
and device connectors.

A pair of headphones and a USB thumb drive
containing MP3 files are required for testing the demo
source code. MP3 files must be placed in the root
directory of the thumb drive.

Compiling and Programming the Demo
Application
This section describes the steps required to compile
the MP3 player demo and program the PIC32MX
device. The following steps specify use of the
PIC32MX USB Starter Kit II. When using the PIC32
Ethernet Starter Kit, the MEB ENET USB Thumb
Drive MP3 Demo.mcw MPLAB IDE workspace file
should be used. The instructions for compiling and
running the demo are the same for both boards.
Familiarity with MPLAB® IDE by the user is assumed.

1. Open MPLAB IDE. Click Configure>Settings.
Click the Projects tab and clear “Use
one-to-one project-workspace model”, as
shown in Figure 8. Click OK.

FIGURE 8: MPLAB® IDE SETTINGS

2. Click Configure>Settings. Click the Program
Loading tab. The “Clear program memory upon
loading a program” option should be cleared, as
shown in Figure 9.

FIGURE 9: MPLAB® IDE PROGRAM
LOADING SETTINGS

3. Click File>Open Workspace and open the MEB
USB Thumb Drive MP3 C32 Demo.mcw
MPLAB IDE workspace file. The application
project is loaded in the MPLAB IDE.

4. The Project Explorer window displays two
projects within the workspace. The Helix MP3
Decoder PIC32.mcp project is composed of
the Helix MP3 decoder source code with
modifications made for running the code on
PIC32MX microcontrollers.

5. Right click the Helix MP3 Decoder
PIC32.mcp project, and then select Set Active
from the menu, as shown in Figure 10.
© 2010 Microchip Technology Inc. DS01367A-page 13

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2615&dDocName=en548037
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2615&dDocName=en548037

AN1367

FIGURE 10: MAKING A PROJECT ACTIVE

6. Ensure that no debugger or programmer is
selected. The Debug/Release choice does not
affect the operation and can be ignored.
Compile and build the project using the “Build
All” option.

7. Right click the MEB USB Thumb Drive MP3
C32 Demo.mcp project, and then select Set
Active from the menu.

8. Connect the PIC32 USB Starter Kit II to the
MEB. Use the fastener to ensure that the starter
kit is securely locked into the socket.

9. Connect the starter kit debug USB port to an
available USB port on the PC.

10. In MPLAB IDE, click Debugger>Select
Tool>PIC32 Starter Kit, as shown in Figure 11 to
load the PIC32 Starter Kit.

FIGURE 11: SELECTING THE DEBUGGER

11. Compile and build the project.
12. Program the PIC32MX device. The MPLAB IDE

then programs two hex images onto the device:
• Helix MP3 Decoder PIC32.elf
• MEB USB Thumb Drive MP3 C32
Demo.elf

13. This step is optional. Check the program
memory location at address 0x9D06E000. In
MPLAB IDE, click View>Memory, and then click
Data View in the Memory window. Right click in
the Memory window, select Go To, and then
enter the address as 0x9D06E000. The
resultant Memory window is displayed, as
shown in Figure 12. The string “Helix Library”
indicates that the programming operation is
successful.

The demo application is now ready for use.

FIGURE 12: PROGRAM MEMORY VIEW
DS01367A-page 14 © 2010 Microchip Technology Inc.

AN1367

Running the Demo Application
Insert the headphones into the headphone jack on the
MEB. In MPLAB IDE click Run. Observe the MEB
touch screen. Figure 13 illustrates the MP3 player
demo application GUI.

Insert the USB thumb drive into the USB host
receptacle on the PIC32MX USB Starter Kit II. The
Playlist is populated with MP3 files located in the root
directory of the thumb drive. The application starts to
play the first MP3 file in the Playlist.

The functionality of the touch screen buttons are as
follows:

• The Volume Control slider is used to adjust the
volume.

• The STOP button is used to stop the play of a
MP3 file.

• Pressing the PLAY button while playback is in
progress causes the playback to pause. Pressing
it again resumes the playback.

• The UP and DOWN buttons allow the user to
scroll through the files in the Playlist. Touching a
file in the Playlist causes the file to be selected for
playback.

FIGURE 13: MP3 PLAYER DEMO APPLICATION GUI LAYOUT

PIC32 MP3 Demo

No Device Attached

PLAY STOP |< >|

UP

DOWN

Playlist Volume Control

Previous Track Next Track

Playlist
Scroll Controls
© 2010 Microchip Technology Inc. DS01367A-page 15

AN1367
PROJECT FILES
The source code (see Appendix A: “Source Code”)
accompanying this application note contains demon-
stration source code for the PIC32MX USB Starter Kit
II and PIC32MX Ethernet Starter Kit.

The application in the MEB USB Thumb Drive MP3
Demo folder runs on MEB while using the PIC32MX
USB Starter Kit II. The application in the MEB ENET
USB Thumb Drive MP3 Demo folder runs on MEB
while using the PIC32MX Ethernet Starter Kit.

The folder and file descriptions provided in Table 3
apply to both the application folders. Any differences
are explicitly called out.

CONCLUSION
The Helix MP3 decoder is an open source MP3
decoder and can be ported onto Microchip’s PIC32MX
32-bit microcontrollers. The decoder API has been
described and a MP3 player application is provided
along with this application note to demonstrate the use
of the MP3 decoder. Additionally, the RTLL technique is
described and demonstrated.

TABLE 3: SOURCE CODE FILE AND FOLDER DESCRIPTIONS
Item Name Description

h Folder containing Include files required by the MEB USB
Thumb Drive MP3 C32 Demo project.

lib Folder containing USB and graphics stack archives.
obj Folder to store temporary Board Support Package (BSP)

object files.
src Folder containing source files required by the MEB USB

Thumb Drive MP3 C32 Demo project.
MP3 Decoder Source Code Folder containing the Helix MP3 decoder source code.
procdefs.ld Modified linker script file required by the MEB USB

Thumb Drive MP3 C32 Demo project and the Helix
MP3 Decoder PIC32 MPLAB IDE project.

MEB USB Thumb Drive MP3 C32 Demo.mcp
or
MEB ENET USB Thumb Drive MP3 Demo.mcp

MPLAB IDE project file.

MEB USB Thumb Drive MP3 C32 Demo.mcw
or
MEB ENET USB Thumb Drive MP3 Demo.mcw

MPLAB IDE workspace file.

CleanUp.bat Batch file to clean up temporary files.
MAL BSP Files Archive.bat Batch file to update and build the BSP archive.
MAL GFX Stack Archive.bat Batch file to update and build the graphics stack archive.
MAL USB Stack Archive.bat Batch file to update and build the USB stack archive.
Readme.txt File containing information on running the demo.
Alternative Configurations Folder containing include files required by MEB graphics

display.
DS01367A-page 16 © 2010 Microchip Technology Inc.

AN1367
APPENDIX A: SOURCE CODE
All of the software covered in this application note is
available as a single WinZip archive file. This archive
can be downloaded from the Microchip corporate web
site at:

www.microchip.com
© 2010 Microchip Technology Inc. DS01367A-page 17

http://www.microchip.com

AN1367

NOTES:
DS01367A-page 18 © 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-630-2
DS01367A-page 19

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01367A-page 20 © 2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/04/10

http://support.microchip.com
http://www.microchip.com

	Introduction
	About the Helix MP3 Decoder
	Porting the Helix MP3 Decoder onto the PIC32MX Microcontroller
	EXAMPLE 1:
	EXAMPLE 2:
	FIGURE 1: Project Explorer Window
	FIGURE 2: Specifying Include File Search Path
	FIGURE 3: Adding MIPS Pre-Processor Macro to Build Options
	FIGURE 4: Specifying the Heap Memory Size
	FIGURE 5: Setting the Compiler Optimization Level

	Helix MP3 Decoder Application Program Interface (API)
	EXAMPLE 3:
	EXAMPLE 4:
	EXAMPLE 5:
	EXAMPLE 6:
	EXAMPLE 7:
	EXAMPLE 8:
	EXAMPLE 9:
	TABLE 1: Helix MP3 Decoder Memory Requirements
	TABLE 2: Helix MP3 Decoder Computational Requirement

	RunTime Library Loading
	FIGURE 6: RTLL Framework
	EXAMPLE 10:
	EXAMPLE 11:
	EXAMPLE 12:
	EXAMPLE 13:
	EXAMPLE 14:
	EXAMPLE 15:

	The MP3 Player Application
	FIGURE 7: Audio USB Tasks State Machine

	Running the Demo Application
	Compiling and Programming the Demo Application
	FIGURE 8: MPLAB® IDE Settings
	FIGURE 9: MPLAB® IDE Program Loading Settings
	FIGURE 10: Making a Project Active
	FIGURE 11: Selecting the Debugger
	FIGURE 12: Program Memory View

	Running the Demo Application
	FIGURE 13: MP3 Player Demo Application GUI Layout

	Project Files
	Conclusion
	TABLE 3: Source Code File and Folder Descriptions

	Appendix A: Source Code

