N

MICROCHIP

MPLAB® Assembler,
Linker and Utilities
for PIC32 MCUs
User’s Guide

88888888

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 =

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Hampshire, Linear Active Thermistor, MXDEYV,
MXLAB, SEEVAL, SmartSensor and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,
PICKit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,
Powerlnfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Total Endurance, TSHARC, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEeLOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51833A-page ii

© 2009 Microchip Technology Inc.

MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER’S GUIDE
Table of Contents
=] = T = PSS 1
32-Bit Language Tools and MPLAB IDEccooiiiiiiii e e e 7
Part 1 — MPLAB Assembler for PIC32 MCUs
Chapter 1. Assembler Overview
00 1 o [8ox 1T o I PP RRP PP PRPRRR 17
1.2 Assembler and Other Development TOOIScccovvviiiiiiiiiiniiiciice e 17
1.3 FALUIE SBL ...ttt e e aene e 18
I T 01U 17 @ 01 o 10 L 1= RSP 19
Chapter 2. MPLAB IDE Projects for PIC32 Assembly Code
P2 R [10 Yo [8 Tox 1o o O UP PP 25
2.2 PrOJECE OVEIVIEW .uvuuiiieieeiieeeiiiii e e e e e e e e e et e s e e e e s e e e ettt e s e e e e e e eeeaatannaneaaaeaeeeens 25
2.3 Creating @ PrOJECTuuviiiiiieiiieieieeee ettt ettt ettt e e e e e e e e e e e e e aaaaaaes 26
2.4 Adding a Source File to YOUr Projectccooiieeiviiiiiiiiii e e e eeeans 29
2.5 BUIlAING YOUI PIOJECL ...ovviiiiieiiieeieeeeee ettt ettt aa e e 30
2.6 Debugging YouUr ProjJECEcuvuuiiiiii i eeee e 31
Chapter 3. Assembler Command Line Interface
0 A [o1 e To [0 T 1o o OO PPUPR PSP 33
3.2 Assembler Interface SYNtaxccoooviiiiiiiii e 33
3.3 Compilation-Driver Interface SYNTaXuuvevivvviimimiieieiirereieereerreeererreeeeen. 34
3.4 Options that Modify the Listing OUtpUtcoovviiiiiii e, 35
3.5 Options that Control Informational QUIPULcuvviiiiiiiiiiiieiieiiiereee e, 46
3.6 Options that Control Output File Creationcccccoveviiiiiiiiiiiiiini e, 47
3.7 Assembler Symbol-Definition and Search-Path Optionsccccccvveveeeennen. 48
3.8 Compilation-Driver and Preprocessor OptioNSccccovvveeeiveeiiiiiiiiineeeeeeeeeinnns 48
Chapter 4. Assembler Syntax
I [a1 o To [0 T i o o OO PUPT PR 51
N 0] (T g g T | I o (=T 0] oo =YY= o U 51
4.3 S0Urce Code FOMMAL ...ttt 52
A4 CONSLANTS .eiititiii et e ettt e e e e e ettt ettt e e e e e e e e eeabbb e e e e e aaeeeanneanans 57
A5 SUMIMAIY ..ottt ettt e et e e e et e e et et s e e et e et e et s e e ee b neeaeebnaaeeeetaaaeaeees 59
Chapter 5. Assembler Expression Syntax and Operation
L 700 14 (0T [T 4o o PP 61
5.2 EXPIESSIONS ..uuvvivviiiuersiersiesteresssstesssaesesessseseesereeraeeeeeteeertrtaerttreteertertterrareeaeee 61
LT O] o 1= =1 o] £ SP 62

© 2009 Microchip Technology Inc. DS51833A-page iii

32-Bit Assembler, Linker and Utilities User’s Guide

Chapter 6. Assembler Symbols

G [10 Yo [Tox 1 o o PP RTPR R TPPPPPRPRN 65
6.2 What are SYMDOIScoooi i e 65
6.3 LoCal SYMDOIS ..o ———— 65
6.4 Giving SYmbols Other ValUESccoooeeiiiiiiiiiii i 66
6.5 The Special DOT Symbol ..., 66
Chapter 7. Assembler Directives
485 T 1 o To [T (o) o U 67
7.2 Directives that Define SECHONScoooiiiiiiiiiiieee e 68
7.3 Directives that Initialize CONStaNtSooooviiiiiiiiiiii s 71
7.4 Directives that Declare Symbolscccooo 74
7.5 Directives that Define SYymbolS ... 75
7.6 Directives that Modify Section AlIgnMeNtcccoeeiviiiiiiiiiicees 76
7.7 Directives that Format the Output LiStiNgccccooovviiiiiiiiiiiie e, 78
7.8 Directives that Control Conditional Assemblycc, 79
7.9 Directives for Substitution/EXPansionccccoovveiriiriiiiiiiiin e 80
7.10 Directives that Include Other Filescccuuvieiieiiiiiiiie e 83
7.11 Directives that Control Diagnostic OUIPULccooviiiiiiiiiiie e, 84
7.12 Directives for Debug Informationoooeei i 85
7.13 Directives that Control Code Generationooooeeeieeeiceieiiieceeiees 87

Part 2 — MPLAB Object Linker for PIC32 MCUs

Chapter 8. Linker Overview

Chapter 10. Linker Scripts

S 700 1 (0T [Tt 1o o IR 91
8.2 Linker and Other Development TOOISccoovviieiiiiiiiiieeeeee 91
.3 FRATUINE SOL ... et e a e eaeae 92
8.4 INPUL/OULPUL FIIES .. e e 92
Chapter 9. Linker Command-Line Interface
LS 0 I i To [o o) o R 99
9.2 Linker Interface SYNIaXccooeeiiiiiii i 99
9.3 Compilation-Driver Linker Interface Syntaxcccccevvviiiiiiiinieeeeecievinnn. 100
9.4 Options that Control Output File Creationcooeeei e iee e 101
9.5 Options that Control Run-time Initializationccccciiiiiii i, 106
9.6 Options that Control Multilib Library Selectioncccoooiiiiiiiiiiiiciiccs 106
9.7 Options that Control Informational QULPULccoovviiiiiiiiii e, 107
9.8 Options that Modify the Link Map Outputcoooeeiiiiiiiiii s 110
L0 0 11 o 13 oo 111
10.2 Overview oOf LiNKer SCHPLSccooieiiiii e 111
10.3 Command Line INformationccccooiiiiiiiiiiiiieeeeeeeeeeeeeeeees 111
10.4 Default LINKEr SCPL ... enneennees 111
10.5 Adding a Custom Linker Script to an MPLAB IDE Projectcccceee. 113
10.6 Linker Script Command LanQUAagJEccccceeuruuurummriurirnninrneinnnannnnnnnnnnnnn. 114

DS51833A-page iv

© 2009 Microchip Technology Inc.

Table of Contents

Chapter 11. Linker Processing

10.7 Expressions in LiNKer SCHPLS ..oovveiiieiiiieeeee e, 127
11,2 INrOdUCTION oovviieiccecceceee e 133
11.2 Overview of LINKEr ProCeSSINGccoevviiiiiiiii e 133
11.3 Linker AllOCationcccoviiiiiiiii e, 135
11.4 Global and Weak SYmbOIScccooiiiiiiiiiiiie e 136
11.5 Stack AlIOCAtIONccovvvieiiiiiiiee e 136
G o T=T= T oI Y [0 T= 1 o] o 137
11.7 Interrupt Vector Tables ..o, 137

Part 3 — Binary Utilities for PIC32 MCUs

Chapter 12. MPLAB Object Archiver/Librarian for PIC32 MCUs

D2 I [11 o To 18 e 1 o o PR 141
12.2 Arichiver/Libraian and Other Development Toolsccccceeeiieeen, 142
L12.3 FRALUINE SEI ...t e e e e e e 142
12.4 INPUY/OULPUL FIIES ..ttt 142
L2.5 SYMEAX teuiiiii ettt e e ettt e e e e e ee e e e e 143
12.6 OPLIONS .eiiiiiiiiiee et e e e e e e e e e e e 143
D2 S T ol]] £ R 145
Chapter 13. Other PIC32 MCU Binary Utilities
RS 700 R o £ To [F o1 1o o PP EOPPP T PUTPPPPPR 147
13.2 pic32-bin2hex ULIILY ..o, 147
13.3pic32-nmULIlILY oo, 149
13.4 pic32-objdump ULIILY ..o, 151
135 pic32-ranlib ULIlity ..o, 153
13.6 pic32-size ULIlItY . 154
13.7 pic32-strings ULty ..o, 155
13.8 pic32-strip ULIILY oo, 156

Part 4 — Appendices

Appendix A.

Appendix B.

Appendix C.

Frequently Asked Questions

AL INErOUCTION . e 161
A.2 List of Frequently Asked Questions (FAQ)cooooeeeiiiiiiiiiiiees 161
Assembler Errors/Warnings/Messages

B.1 INtrOAUCTION ooeiiiiiiiiee e 167
B.2 FAtal EITOIS ..oeiiiiiiiiiiiiiiieee ettt et e e e 167
0 TN 1 0] £ 168
B.4A WAININGS ..ooeiiiiiiiiieeee e 175
B.5 MESSAQES ..euuiiiiiii it e 178
Linker Errors/Warnings

(O30 R 101 {0 o [F o3 1o] o PP UP PRSPPI 179
(O = = I 1 1 {0 (=TSR 179
Ol (o] = TP PURPPPPPPPPIN 180

© 2009 Microchip Technology Inc. DS51833A-page v

32-Bit Assembler, Linker and Utilities User’s Guide

O TV = U 1 o Vo 182
Appendix D. Useful Tables
[20 [0 oo [V Tex 1 o] o [N PPSPPRR 185
D.2 ASCIlI Character SELoouuiiiieii et 185
D.3 Hexadecimal to Decimal CONVEISIONooevviiiiieiiieeieeeeeeiiieee e eeeeeaians 186
Appendix E. GNU Free Documentation License
E.LPreamble ... 187
E.2 Applicability and DefinitioNsccccciiiiuuiiiiiiiiiiiiiiiiiieieeeeveee e 187
E.3 Verbatim COPYING ooovuiiiiii et e e e e e e e e e e e e e e anra s 189
E.4 Copying In QUANTILYcooiiiiiieiiies e 189
E.5 MOGIfICALIONS ..eeiieiiieeeee e et e e 190
E.6 Combining DOCUMENLSccoioeiiiii e 191
E.7 Collections 0f DOCUMENTSiiiiiiiieieieee et eeeeens 191
E.8 Aggregation with Independent WOrksccccoooiiiiniiriiiiieiiiiiininininininnnn, 192
E.QO TranSIationoouuiiiiiiiii et e 192
0O I =T 1111 0 F= Lo o IO PPUPPPR 192
E.11 Future Revisions Of thiS LICENSEccovvuiiiiiiie e 192
(€10 1S 1 SRS PPPPPRR 193
[Yo 1= SRR 213
Worldwide Sales and SEIVICEcoiiiiiiiiiii ettt e e e e aaens 222
DS51833A-page Vi © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using 32-bit
language tools. Items discussed include:

* Document Layout

» Conventions Used in this Guide

« Recommended Reading

e The Microchip Web Site

» Development Systems Customer Change Notification Service

¢ Customer Support

© 2009 Microchip Technology Inc. DS51833A-page 1

32-Bit Assembler, Linker and Utilities User’s Guide

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 32-bit
applications. The document layout is as follows:

“32-Bit Language Tools and MPLAB IDE” —an overview of using the 32-bit language
tools with MPLAB IDE.

Part 1 — “MPLAB Assembler for PIC32 MCUs”

e Chapter 1. “Assembler Overview” — gives an overview of assembler operation.

* Chapter 2. “MPLAB IDE Projects for PIC32 Assembly Code” — provides an
overview of using the PIC32 language tools with MPLAB IDE in a project.

* Chapter 3. “Assembler Command Line Interface” — details command line
options for the assembler.

e Chapter 4. “Assembler Syntax” — describes syntax used with the assembiler.

* Chapter 5. “Assembler Expression Syntax and Operation” — provides guide-
lines for using complex expressions in assembler source files.

e Chapter 6. “Assembler Symbols” — describes what symbols are and how to use
them.

e Chapter 7. “Assembler Directives” — details the available assembler directives.
Part 2 — “MPLAB Object Linker for PIC32 MCUs"

* Chapter 8. “Linker Overview” — gives an overview of linker operation.

e Chapter 9. “Linker Command-Line Interface” — details command line options
for the linker.

e Chapter 10. “Linker Scripts” — describes how to generate and use linker scripts
to control linker operation.

* Chapter 11. “Linker Processing” — discusses how the linker builds an applica-
tion from input files.

Part 3 — “Binary Utilities for PIC32 MCUs”

e Chapter 12. “MPLAB Object Archiver/Librarian for PIC32 MCUs" — details
command line options for the archiver/librarian.

e Chapter 13. “Other PIC32 MCU Binary Utilities” — details the other utilities and
their operation. Utilities include: pic32-bin2hex (binary-to-hexadecimal conver-
sion), pic32-nm (listing symbols in an object file), pic32-objdump (displaying infor-
mation about object files), pic32-ranlib (creating an archive index), pic32-size (),
pic32-strings (printing character sequences), and pic32-strip (discarding all sym-
bols from an object file).

Part 4 — “Appendices”

* Appendix A. “Frequently Asked Questions” - lists frequenty asked questions
about 32-bit language tool operation.

« Appendix B. “Assembler Errors/Warnings/Messages” — contains a descriptive
list of the errors, warnings and messages generated by the 32-bit assembler.

« Appendix C. “Linker Errors/Warnings” — contains a descriptive list of the errors
and warnings generated by the 32-bit linker.

» Appendix D. “Useful Tables” — lists some useful tables: the ASCII character set
and hexadecimal to decimal conversion.

« Appendix E. “GNU Free Documentation License” — details the license
requirements for using the GNU language tools.

DS51833A-page 2

© 2009 Microchip Technology Inc.

Preface

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...is the only compiler...

dialog

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

Atab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START
Filenames autoexec.bat
File paths c:\mcc18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants OxFF, 'A’
Italic Courier A variable argument file.o, where file can be

any valid filename

Square brackets []

Optional arguments

mpasmwin [options]
file [options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses...

Replaces repeated text

var name [,
var name...]

Represents code supplied by
user

void main (void)
{
}

© 2009 Microchip Technology Inc.

DS51833A-page 3

32-Bit Assembler, Linker and Utilities User’s Guide

RECOMMENDED READING

This documentation describes how to use 32-bit language tools. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

MPLAB® C Compiler for PIC32 MCUs User’s Guide (DS51686)
A guide to using the 32-bit C compiler. The 32-bit linker is used with this tool.
32-Bit Language Tools Libraries (DS51685)

A descriptive listing of libraries available for Microchip 32-bit devices. This includes
standard (including math) libraries and compiler built-in functions. 32-bit peripheral
libraries are described in HTML files provided with each peripheral library type.

Device-Specific Documentation

The Microchip web site contains many documents that describe 32-bit device functions
and features. Among these are:

« Individual and family data sheets

« Family reference manuals

« Programmer’s reference manuals

DS51833A-page 4

© 2009 Microchip Technology Inc.

Preface

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

« General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail natification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

e Compilers — The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

« Emulators — The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE™, MPLAB ICE 2000 and MPLAB ICE 4000
in-circuit emulators

« In-Circuit Debuggers — The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 and 3 in-circuit debuggers and PICkit™ 2 and 3
debug express.

« MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus and PICkit 1, 2 and 3 development programmers.

© 2009 Microchip Technology Inc. DS51833A-page 5

http://www.microchip.com
http://www.microchip.com

32-Bit Assembler, Linker and Utilities User’s Guide

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DS51833A-page 6 © 2009 Microchip Technology Inc.

http://support.microchip.com

MPLAB® ASSEMBLER,
LINKER AND UTILITIES EOR
MICROCHIP PIC32 MCUs USER’S GUIDE

32-Bit Language Tools and MPLAB IDE

INTRODUCTION

The MPLAB Assembler for PIC32 MCUs (formerly MPLAB ASM32), the MPLAB Object
Linker for PIC32 MCUs (formerly MPLAB LINK32) and 32-bit utilities, including the
MPLAB Archiver/Librarian for PIC32 MCUs (formerly MPLAB LIB32) may be used
together under MPLAB IDE to provide GUI development of application code for the
PIC32MX MCU family of devices. The operation of these language tools with MPLAB
IDE is discussed here.

Additionally, MPLAB C Compiler for PIC32 MCUs (formerly MPLAB C32) is available
for free as a lite or standard evalution version with MPLAB IDE, or for purchase as a
standard version.

Topics covered in this chapter:

* MPLAB IDE and Tools Installation
* MPLAB IDE Setup

* MPLAB IDE Projects

* Project Setup

 Project Example

MPLAB IDE AND TOOLS INSTALLATION

In order to use the 32-bit language tools with MPLAB IDE, you must first install MPLAB
IDE. The latest versions of this software are available at our web site
(http://www.microchip.com) or from any sales office (back cover). When you install
MPLAB IDE, you will be installing the 32-bit compiler (standard evaluation version),
assembler, object linker and supporting utilities as well.

The language tools will be installed, by default, in the directory:

e C:\Program Files\Microchip\MPLAB C32 Suitel\bin
The executables for each tool will be in this directory:

* Compiler - pic32-gcc.exe

e Assembler - pic32-as.exe

e Object Linker - pic32-1d.exe

» Archiver/Librarian - pic32-ar.exe

e Other Utilities - pic32-utility.exe

All include (header) files are in the directory:

e C:\Program Files\Microchip\MPLAB C32 Suitel\pic32mx\include
For more on these files, see the assembler documentation.

All device linker script files are in the directory:

e C:\Program Files\Microchip\MPLAB C32 Suite)\
pic32mx\1lib\ldscripts

For more on these files, see the object linker documentation.
Code examples are also included in the directory:
e C:\Program Files\Microchip\MPLAB C32 Suitel\examples

© 2009 Microchip Technology Inc. DS51833A-page 7

32-Bit Assembler, Linker and Utilities User’s Guide

MPLAB IDE SETUP

Once MPLAB IDE is installed on your PC, check the settings below to ensure that the
language tools are properly recognized under MPLAB IDE.

1. Fromthe MPLAB IDE menu bar, select Project>Set L anguage Tool Locations to
open a dialog to set/check language tool executable location.

FIGURE 1: SET LANGUAGE TOOL LOCATIONS

-~

Set Language Tool Locations

Fegiztered Tools

Microchip 4530 Toolzuite |
Microchip C17 Toolzuite
Microchip C18 Toolzuite
Microchip C30 Toolsuite
Microchip MPASK Toolzuite
Microchip PIC32 C-Compiler Toolzuite
[=)- Executables
MPLAE ASkM32 Aszembler [picdz2-as exe)
MPLAE C32 C Compiler [pic32-goo.exe)
MPLAE LIB32 Object Librarianarchiver [pica2-arexe)
MPLAE LIMK 32 Object Linker [pic32-Id. exe) [|f

T

Location

(o] (o

2. Inthe dialog, under “Registered Tools”, select “Microchip PIC32 C Compiler Tool-
suite”. Click the “+” to expand.

3. Select “Executables”. Click the “+" to expand.
4. Select “MPLAB C32 Compiler (pic32-gcc.exe)”. Under “Location”, a path to

the executable file should be displayed. If no path is displayed, enter one or
browse to the location of this file. The default location is listed in
Section “MPLAB IDE and Tools Installation”.

5. Select “MPLAB ASM32 Assembler (pic32-as.exe)”. Under “Location”, a path

to the executable file should be displayed. If no path is displayed, enter one or
browse to the location of this file. The default location is listed in
Section “MPLAB IDE and Tools Installation”.

6. Select “MPLAB LINK30 Object Linker (pic32-1d.exe)”. Under “Location”, a
path to the executable file should be displayed. If no path is displayed, enter one
or browse to the location of this file. The default location is listed in
Section “MPLAB IDE and Tools Installation”.

7. Select “LIB30 Archiver (pic32-ar.exe)”. Under “Location”, a path to the exe-
cutable file should be displayed. If no path is displayed, enter one or browse to
the location of this file. The default location is listed in Section “MPLAB IDE
and Tools Installation”.

8. Click OK.

DS51833A-page 8

© 2009 Microchip Technology Inc.

32-Bit Language Tools and MPLAB IDE

MPLAB IDE PROJECTS

A project in MPLAB IDE is a group of files needed to build an application, along with
their associations to various build tools. Below is a generic MPLAB IDE project.

FIGURE 2: PROJECT RELATIONSHIPS

MPLAB® IDE Project

Ll |

I |
ource Files
| CS Fil |
I (*.c) I
| x |
Assembly Source .
| Files (* . 5) C Compiler I
I v I
| I
ource Files (*.s
I S Files (* . s) I
I x I
| Assembler |
| |
| v |
. . . Object Files
| Archiver (Librarian) (*.0) |
I 7 I
| Object File Libraries Link P Linker Script |
I (*.a) I Inker <€ (*.ld) I
| |

,.
I

- mm Em EE EE EE EE EE EE R EE e EE EE Em Em Em Em Em Em Em E=m mm ol

[MPLAB® IDE J
Executable File Debug Tool
(*.exe)
Command Line
Simulator

In this MPLAB IDE project, C source files are shown as input to the C compiler (MPLAB
C Compiler for PIC32 MCUs.) The compiler will generate source files for input into the
assembler. For more information on the compiler, see the compiler documentation
listed in Recommended Reading.

Assembly source files are shown as input to the C preprocessor. The resulting source
files are input to the assembler. The assembler will generate object files for input into
the linker or archiver. For more information on the assembler, see the MPLAB
Assembler for PIC32 MCUs documentation.

Obiject files can be archived into a library using the archiver/librarian. For more
information on the archiver, see the MPLAB Archiver/Librarian for PIC32 MCUs
documentation.

The object files and any library files, as well as a linker script file (generic linker scripts
are added automatically), are used to generate the project output files via the linker.
The main output file generated by the linker is the executable file, used by the simulator
and debug tools. For more information on linker script files and using the object linker,
see the MPLAB Obiject Linker for PIC32 MCUs documentation.

For more on projects and related workspaces, see MPLAB IDE documentation.

© 2009 Microchip Technology Inc. DS51833A-page 9

32-Bit Assembler, Linker and Utilities User’s Guide

PROJECT SETUP

To set up an MPLAB IDE project for the first time, it is advisable to use the built-in
Project Wizard (Project>Project Wizard.) In this wizard, you will be able to select a
language toolsuite that uses the 32-bit assembler (e.g., the Microchip PIC32 C
Compiler Toolsuite). For more on the wizard, and MPLAB IDE projects, see MPLAB
IDE documentation.

Once you have a project set up, you may then set up properties of the tools in MPLAB
IDE.

1. From the MPLAB IDE menu bar, select Project>Build Options>Project to open a
dialog to set/check project build options.
2. Click on the tool tab to modify tool settings.
- Build Options Dialog, MPLAB PIC32 Assembler Tab
- Build Options Dialog, MPLAB PIC32 C Compiler Tab
- Build Options Dialog, MPLAB PIC32 Linker Tab
- Build Options Dialog, PIC32 Suite Tab

Build Options Dialog, MPLAB PIC32 Assembler Tab

A subset of command-line options may be specified in MPLAB IDE in the Build Options
dialog, MPLAB PIC32 Assembler tab. Select a category, and then set up assembler
options. For additional options, see MPLAB Assembler for PIC32 MCUs
documentation.

General Category

Generate Command Line

Generate debugging Create an ELF file with information to allow debugging of code in

information MPLAB IDE. Equivalent to -g option.

Keep local symbols Keep local symbols, i.e., labels beginning with . L (uppercase
only). Equivalent to - -keep-locals (-L) option.

Exclude floating point Do not include floating point information when assembling.

library

Macro Definitions Add or remove macro definitions.

Restore Defaults Restore tab default settings.

Use Alternate Settings

Text Box Enter options in a command-line (non-GUI) format.

Diagnostics Category

Generate Command Line

Diagnostics level Select to display all warnings; suppress the display of all warnings;
or display only fatal warnings. These will be shown in the Output
window.

Listing Options If “Enable Listing” is checked, you may select different listing

options. Equivalent to -a [suboption] [=file] options.
- Include source code (-ah)

- Expand macros (-am)

- Include false conditionals (-ac)

- Omit forms processing (-an)

- Include assembly (-al)

- List symbols (-as)

- Omit debugging directives (-ad)

- Section information (-ai)

Restore Defaults Restore tab default settings.

Use Alternate Settings

Text Box Enter options in a command-line (non-GUI) format.

DS51833A-page 10

© 2009 Microchip Technology Inc.

32-Bit Language Tools and MPLAB IDE

Build Options Dialog, MPLAB PIC32 C Compiler Tab

Although the MPLAB C Compiler for PIC32 MCUs comes with MPLAB IDE, it is only
the demo version. The full version must be purchased. See the Microchip web site
(www.microchip.com) for details.

A subset of command-line options may be specified in MPLAB IDE in the Build Options
dialog, MPLAB PIC32 C Compiler tab. Select a category, and then set up compiler
options. For additional options, see the “MPLAB C Compiler for PIC32 MCUs User’s
Guide” (DS51686), also available on the Microchip web site.

General Category

Generate Command Line

Generate debugging
information

Create an ELF file with information to allow debugging of code in
MPLAB IDE. Equivalent to -g option.

Isolate each function in a
section

Place data in its own sec-
tion

Use indirect calls

Generate 16-bit code

Exclude floating point
library

Do not include floating point information when compiling.

Macro Definitions

Add or remove macro definitions.

Restore Defaults

Restore tab default settings.

Use Alternate Settings

Text Box

Enter options in a command-line (non-GUI) format.

Optimization Category

Generate Command Line

Optimization Level

Click in a circle on the chart to select an optimization level. Equiva-
lent to -0 option.

Specific Optimizations

Choose specific optimizations.
- Unroll loops (-funroll-loops)
- Omit Frame Pointer W14 (- fomit-frame-pointer)

Pre-Optimization Instruc-
tion Scheduling

Choose from default, disabled or enabled. Equivalent to
-fschedule-insns option.

Post-Optimization
Instruction Scheduling

Choose from default, disabled or enabled. Equivalent to
-fschedule-insns2 option.

Restore Defaults

Restore tab default settings.

Use Alternate Settings

Text Box

Enter options in a command-line (non-GUI) format.

© 2009 Microchip Technology Inc.

DS51833A-page 11

http://www.microchip.com

32-Bit Assembler, Linker and Utilities User’s Guide

Errors and Warnings Category

Generate Command Line

Make warnings into
errors

Select to halt compilation based on warnings as well as errors.
Equivalent to -Werroxr option.

Additional warnings

Enable all warnings. Equivalent to -wall option.

Support all ANSI-stan-
dard programs

Support all (and only) ASCI C programs. Equivalent to -ansi
option.

Strict ANSI warnings

Issue all warnings demanded by strict ANSI C. Equivalent to
-pedantic option.

Restore Defaults

Restore tab default settings.

Use Alternate Settings

Text Box |

Enter options in a command-line (non-GUI) format.

Build Options Dialog,

MPLAB PIC32 Linker Tab

A subset of command-line options may be specified in MPLAB IDE in the Build Options
dialog, MPLAB PIC32 Linker tab. Select a category, and then set up linker options. For
additional options, see MPLAB Obiject Linker for PIC32 MCUs documentation.

General Category

Generate Command Line

Heap Size

Specify the size of the heap in bytes. Same as:
--defsym=_min heap size=size option.

Min Stack Size

Specify the minimum size of the stack in bytes. Same as:
--defsym=_min stack size=size option.

Allow overlapped sec-
tions

Do not check section addresses for overlaps. Same as
--no-check-sections option.

Remove unused sections

Symbol Definitions

Add or remove symbol definitions.

Restore Defaults

Restore tab default settings.

Use Alternate Settings

Text Box

Enter options in a command-line (non-GUI) format.

Diagnostics Category

Generate Command Line

Generate map file

Create a map file. Same as -Map file option.

Generate cross-refer-
ence file

Create a cross-reference table. Same as - -cref option.

Warn on section realign-
ment

Warn if start of section changes due to alignment. Same as
--warn-section-align option.

Trace Symbols

Add or remove trace symbols.

Restore Defaults

Restore tab default settings.

Use Alternate Settings

Text Box

Enter options in a command-line (non-GUI) format.

DS51833A-page 12

© 2009 Microchip Technology Inc.

32-Bit Language Tools and MPLAB IDE

Symbols and Output Category

Generate Command Line

Symbols Specify symbol information in the output.

- Keep all

- Strip debugging info (- -strip-debug (-S))
- Strip all symbol info (--strip-all (-s))
Output Filename Root | Enter a root directory for saving output files.

Restore Defaults Restore tab default settings.
Use Alternate Settings
Text Box Enter options in a command-line (non-GUI) format.

Library Selection Category

Generate Command Line

Optimization Level of Click in a circle on the chart to select an optimization level. Equiva-
Standard Libraries lent to -0 option.
To see optimization for the following conditions, check the check-
box:

- Exclude standard libraries
- Generate 16-bit code
- Exclude floating point library

Use Alternate Settings

Text Box | Enter options in a command-line (non-GUI) format.

Build Options Dialog, PIC32 Suite Tab

Select a category, and then set up output options.
General All Options

Generate Command Line

Target Type Build normal target (invoke PIC32 linker)

The files in the project will be built for normal output using the
PIC32 linker (hex file, etc.)

To set linker options, see Build Options Dialog, MPLAB PIC32
Linker Tab.

Don't link startup code

To exclude the addition of start-up code in the build, check this
checkbox.

Build library target (invoke PIC32 archiver)

The files in the project will be built into a library using the PIC32
librarian (archive file.)

For a library build, a generic device-family library may be built by
checking “Build generic library”.

For more on libraries, see PIC32 archiver/librarian documenta-
tion.

© 2009 Microchip Technology Inc. DS51833A-page 13

32-Bit Assembler, Linker and Utilities User’s Guide

PROJECT EXAMPLE

Chapter 2. “MPLAB IDE Projects for PIC32 Assembly Code” covers the basics of
MPLAB IDE projects setup and use for the assembler. For more detailed information
on projects, see MPLAB IDE documentation.

DS51833A-page 14 © 2009 Microchip Technology Inc.

\ MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR

MICROCHIP PIC32 MCUs USER’S GUIDE

Part 1 - MPLAB Assembler for PIC32 MCUs

Chapter 1. ASSembDIer OVEIVIEWcccooiiiiiieeieeiieie e e e e e e e e e e ee e 17
Chapter 2. MPLAB IDE Projects for PIC32 Assembly Code.......ccccoeevvviiiiiiiiiiininnnnns 25
Chapter 3. Assembler Command Line Interfacecccceevviiivieiiicciiiiiee e 33
Chapter 4. ASSembBIer SYNTaX.....cooiiii i e e e e e e e 51
Chapter 5. Assembler Expression Syntax and Operation........ccccc.vvvvveiiiiiinieeeeeeeeenn. 61
Chapter 6. Assembler SYMDOIS ... 65
Chapter 7. ASsembIler DIr€CHIVESccocce i e e e e 67

© 2009 Microchip Technology Inc. DS51833A-page 15

32-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS51833A-page 16 © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Chapter 1. Assembler Overview

1.1 INTRODUCTION

MPLAB Assembler for PIC32 MCUs (pic32-as) produces relocatable machine code
from symbolic assembly language for the PIC32 MCU family of devices. The assembler
is a Windows console application that provides a platform for developing assembly
language code. The assembler is a port of the GNU assembler from the Free Software
Foundation.

Topics covered in this chapter are:
« Assembler and Other Development Tools

* Feature Set
* Input/Output Files

1.2 ASSEMBLER AND OTHER DEVELOPMENT TOOLS

MPLAB Assembler for PIC32 MCUs translates user assembly source files. In addition,
the MPLAB C Compiler for PIC32 MCUs uses the assembler to produce its object file.

After the C preprocessor processes the assembly source file (* . S), the assembler
generates a relocatable object file that can then be put into an archive or linked with
other relocatable object files and archives to create an executable file. See Figure 1-1
for an overview of the tools process flow.

FIGURE 1-1: TOOLS PROCESS FLOW

C Source Files

(*.<)
T

v Compiler
Driver
Program

Assembly Source
Files (* .)

C Compiler

v

Source Files (*. s)

:

Assembler

v

Object Files
[Archiver (Librarian) [«) (*. OI)

_/

! i

Object File Libraries _| . Linker Script
(* . a) rl Linker < (* . ld)

A

~

(" MPLAB®IDE
Debug Tool

\ 4

Executable File N

(*.elf)
Command Line
Simulator

© 2009 Microchip Technology Inc. DS51833A-page 17

32-Bit Assembler, Linker and Utilities User’s Guide

1.3 FEATURE SET

Notable features of the assembler include:

« Support for the MIPS32 and MIPS16e instruction sets
 Support for ELF object format

« Available for Windows OS

* Rich Directive Set

 Flexible Macro Language

e Command-Line Interface

* Integrated component of MPLAB® IDE

DS51833A-page 18

© 2009 Microchip Technology Inc.

Assembler Overview

1.4 INPUT/OUTPUT FILES

Standard assembler input and output files are listed below.

Extension Description
Input
.S Preprocessed Source File
.S Source File
Output
.0 Object File
.1st Listing File

Unlike the MPASM™ assembler (for use with 8-bit PIC® MCUs), MPLAB Assembler for
PIC32 MCUs does not generate error files, hex files, or symbol and debug files. The
assembler is capable of creating a listing file and a relocatable object file (that may or
may not contain debugging information). MPLAB Linker for PIC32 MCUs is used with
the assembler to produce the final object files, map files and final executable file for
debugging with MPLAB IDE (see Figure 1-1).

141 Source Files

The assembler accepts, as input, a source file that consists of PIC32 instructions,
assembler directives and comments. A sample source file is shown in Example 1-1.

Note: Microchip Technology strongly suggests a . S extension for assembly
source files. This will enable you to easily use the C compiler driver without
having to specify the option to tell the driver that the file should be treated
as an assembly file. The capitalized S also indicates that the source file
should be preprocessed by the C preprocessor before being passed to the
assembler. See the “MPLAB® C Compiler for PIC32 MCUs User’s Guide”
(DS51686) for more details on the C compiler driver.

EXAMPLE 1-1: SAMPLE ASSEMBLER CODE

#include <p32xxxx.h>
#define IOPORT BIT 7 (1 << 7)

.global main /* define all global symbols here */

.text
/* define which section (for example "text")

* does this portion of code resides in. Typically,
* all your code will reside in .text section as

* shown below.

*/

.set noreorder
/* This is important for an assembly programmer. This
* directive tells the assembler not to optimize
* the order of the instructions as well as not to insert
* 'nop' instructions after jumps and branches.
*/
/***
* main ()
* This is where the PIC32 start-up code will jump to after initial
* set-up.
**/

© 2009 Microchip Technology Inc. DS51833A-page 19

32-Bit Assembler, Linker and Utilities User’s Guide

.ent main /* directive that marks symbol 'main' as function in the ELF
* output

*/
main:
/* Call function to clear bit relevant to pin 7 of port A.

* The 'jal' instruction places the return address in the $ra
* register.

*/
ori $a0, S$zero, IOPORT BIT 7
jal mPORTAClearBits
nop

/* endless loop */
endless:

j endless

nop

.end main /* directive that marks end of 'main' function and its
* gize in the ELF output
*/

/***

* mPORTAClearBits (int bits)
This function clears the specified bits of IOPORT A.

*
*
* pre-condition: $ra contains return address
* Input: Bit mask in $a0
* Output: none

* Side effect: clears bits in IOPORT A
**/

.ent mPORTAClearBits

mPORTAClearBits:

/* function prologue - save registers used in this function
* on stack and adjust stack-pointer
*/

addiu $sp, $sp, -4

sw $s0, 0($sp)

la $s0, LATACLR

sw $a0, 0($s0) /* clear specified bits */

/* function epilogue - restore registers used in this function
* from stack and adjust stack-pointer
*/

1w $s0, 0(S$sp)

addiu Ssp, $sp, 4

/* return to caller */
jr Sra

nop

.end mPORTAClearBits

For more information, see also Chapter 4. “Assembler Syntax” and Chapter
7. “Assembler Directives”.

DS51833A-page 20 © 2009 Microchip Technology Inc.

Assembler Overview

1.4.2 Object File

The assembler creates a relocatable ELF object file. The object files do not yet have
addresses resolved and must be linked before they can be used for an executable.

By default, the name of the object file created is a . out. Specify the -o option (See
Chapter 3. “Assembler Command Line Interface”) on the command line to override
the default name.

1.4.3 Listing File

The assembler has the capability to produce a listing file. The listing file is not an abso-
lute listing file, and the addresses that appear in the listing are relative to the start of its
section.

By default, the listing file is displayed on standard output. Specify the -a=<file>
option (See Chapter 3. “Assembler Command Line Interface”) on the command line
to send the listing file to a specified file.

A listing file produced by the assembler is composed of the elements listed below.
Example 1-2 shows a sample listing file.

143.1 HEADER

The header contains the name of the assembler, the name of the file being assembled,
and a page number. This is not shown if the -an option is specified.

1.43.2 TITLE

The title line contains the title specified by the . tit1le directive. This is not shown if
the -an option is specified.

1.4.3.3 SUBTITLE

The subtitle line contains the subtitle specified by the . sbtt1 directive. This is not
shown if the -an option is specified.

1434 HIGH-LEVEL SOURCE

High-level source will be present if the -ah option is given to the assembler. The format
for high-level source is:

<line #>:<filename> ****x cgource>
For example:
l:hello.c **%x%x ffinclude <stdio.h>

1435 ASSEMBLER SOURCE

Assembler source will be present if the -al option is given to the assembler. The
format for assembler source is:

<line #> <addr> <encoded bytes> <sourcex>
For example:

35 0000 80000434 ori $a0, $zero, IOPORT BIT 7

Note 1: Line numbers may be repeated.
2: Addresses are relative to sections in this module and are not absolute.
3: Instructions are encoded in “little endian” order.

© 2009 Microchip Technology Inc. DS51833A-page 21

32-Bit Assembler, Linker and Utilities User’s Guide

1.43.6 SYMBOL TABLE

A symbol table is present if the -as option is given to the assembler. Both, a list of
defined and undefined symbols will be given.
The defined symbols will have the format:

DEFINED SYMBOLS
<filename>:<line #> <sections>:<addr> <symbolx>

For example:
DEFINED SYMBOLS
foo.S:79 .text:00000000 main
foo.S5:107 .text:00000014 mPORTAClearBits

The undefined symbols will have the format:

UNDEFINED SYMBOLS
<symbols>

For example:

UNDEFINED SYMBOLS
WDTCON
WDTCONCLR

EXAMPLE 1-2: SAMPLE ASSEMBLER LISTING FILE

GAS LISTING foo.s page 1

1 # 1 "foo.S"

2 # 1 "<built-in>"

1 .nolist

0

0

3 .list

4

5 #define IOPORT BIT 7 (1 << 7)

6

8 .global baz /* define all global symbols here */
9
10 /* define which section (for example "text")
11 * does this portion of code resides in.
12 * Typically, all of your code will reside in

* the .text section as shown.

14 x/

15 .text

16

17 /* This is important for an assembly programmer.
18 * This directive tells the assembler not to
19 * optimize the order of the instructions
20 * as well as not to insert 'nop' instructions
21 * after jumps and branches.
22 */
23 .set noreorder
24
25 .ent baz /* directive that marks symbol 'baz' as
26 * a function in ELF output
27 */
28
29 baz:

30

31 /* Call function to clear bit relevant to pin
32 * 7 in port A. The 'jal' instruction places

DS51833A-page 22 © 2009 Microchip Technology Inc.

Assembler Overview

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

0000
0004
0008

000c
0010

* the return address in Sra.

*/
80000434 ori $a0, S$zero, IOPORT BIT 7
0500000C jal mPORTAClearBits
00000000 nop

/* endless loop */

endless:
03000008 3 endless
00000000 nop

.end baz /* directive that marks end of 'baz'
* function and registers size in ELF

DEFINED SYMBOLS

* output

*/

ABS:00000000 foo.S

ABS:00000001 __ DEBUG
foo.S:56 .text:00000014 mPORTAClearBits
foo.S:38 .text:0000000c endless

© 2009 Microchip Technology Inc.

DS51833A-page 23

32-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS51833A-page 24 © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Chapter 2. MPLAB IDE Projects for PIC32 Assembly Code

2.1 INTRODUCTION

This section covers the basics of MPLAB IDE projects and configuration options for
testing the examples and applications in this guide with MPLAB SIM simulator. Skip this
chapter if you are already familiar with these MPLAB IDE operations or intend to use
the assembler for a command-line interface.

Note: This is not a step-by-step procedure to create and build a project, but an
overview and a checklist to ensure that MPLAB IDE is set up correctly. The
MPLAB IDE User’s Guide has a tutorial for creating projects.

Topics covered in this chapter are:

* Project Overview

» Creating a Project

« Adding a Source File to Your Project
« Building Your Project

» Debugging Your Project

2.2 PROJECT OVERVIEW

Projects are groups of files associated with language tools, such as MPLAB Assembler
for PIC32 MCUs, in the MPLAB IDE. A project consists of source files, header files,
object files, library files and a linker script. Every project should have one or more
source files. Typically, at least one header file is required to identify the register names
of the target microcontroller. Header files are typically included by source files and are
not explicitly added to the project. A project may either use an implicit default linker
script (included with the language tools) or an explicit application-specific linker script
(created by the developer).

The project’s output files consist of executable code to be loaded into the target micro-
controller as firmware. Debugging files are generated to help MPLAB IDE correlate the
symbols and function names from the source files with the executable code and
memory used for variable storage.

Most examples and applications in this chapter consist of a project with only one source
file and the implicit default linker script.

© 2009 Microchip Technology Inc. DS51833A-page 25

32-Bit Assembler, Linker and Utilities User’s Guide

2.3 CREATING A PROJECT

1. Select Project>Project Wizard to create a new project. When the Welcome
screen displays, click Next to continue.

& MPLAB IDE

File Edit Wiew | Project Debugger Programmer Tools Configure

=

Qpern. ..
Close r
Set Active Project k

Cuickbuild {mo . asm File)

Zlean
Build Configuration r

Click Next to continue.

2. At “Step One: Select a device”, use the pull-down menu to select the device.

Step One:
Select a device

Project Wizard] |

Device:

FILC: F512

PIC32MA320F032H
PIC32MA320F064H
PIC32MA320F128H
PIC32MA320F 1281
PIC32M-340F128H
PIC32M-340F1 281
PIC32M-340F 256H
PIC32MA340F512H

3| KN

PIC32MA360F 2561
PIC3 JE0F512L
PIC32MA420F032H
PIC32M-440F128H

Cancel | Help |

PIC32M-440F1 281
PIC32M-440F 256H
PIC32M-440F512H
PIC32M-460F 2561

PIC22bAE0F 5T 21

DS51833A-page 26

© 2009 Microchip Technology Inc.

MPLAB IDE Projects for PIC32 Assembly Code

3. At“Step Two: Select a language toolsuite”, choose “Microchip PIC32 C-Compiler
Toolsuite” as the “Active Toolsuite”. Then click on each language tool in the tool-
suite (under “Toolsuite Contents”) and check or set up its associated executable

location.
proecwaard x
Step Two: r‘h
Select a language toolzuite
Active Toolsuite: IMicrochip FIC32 C-Compiler Toolzuite j
i~ Toolsuite Content:
MPLA) armpiler [ic:32-gc:c:.exe] g
MPLAB LIMK32 D_biec:t_Link_er [pic:32_-|d.ex§] LI
i~ Location
IE:\Program FilezMicrochiphtPLAB C32%binpic32-as.exe Browse... |
™ Stare tool locations in project
Help! My Suite |sn' Listed! | ™ Show allinstalled toolsuites

< Back I Mest » I Cancel | Help |

MPLAB ASM32 Assembler should point to the assembler executable,
pic32-as.exe, under “Location”. If it does not, enter or browse to the
executable location, which is by default:

C:\Program Files\Microchip\MPLAB C32\bin\pic32-as.exe or
C:\Program Files\Microchip\MPLAB C32 Suite\bin\pic32-as.exe

MPLAB C32 C Compiler should point to the compiler executable,
pic32-gcc.exe, under “Location”. If it does not, enter or browse to the
executable location, which is by default:

C:\Program Files\Microchip\MPLAB C32\bin\pic32-gcc.exe or

C:\Program Files\Microchip\MPLAB C32 Suite\bin\
pic32-gcc.exe

MPLAB LINK32 Obiject Linker should point to the linker executable,
pic32-1d.exe, under “Location”. If it does not, enter or browse to the
executable location, which is by default:

C:\Program Files\Microchip\MPLAB C32\bin\pic32-1d.exe or
C:\Program Files\Microchip\MPLAB C32 Suite\bin\pic32-1d.exe

MPLAB LIB32 Object Librarian/Archiver should point to the library executable,
pic32-ar.exe, under “Location”. If it does not, enter or browse to the
executable location, which is by default:

C:\Program Files\Microchip\MPLAB C32\bin\pic32-ar.exe or
C:\Program Files\Microchip\MPLAB C32\bin\pic32-ar.exe
Click Next to continue.

© 2009 Microchip Technology Inc. DS51833A-page 27

32-Bit Assembler, Linker and Utilities User’s Guide

4. At*“Step Three: Create a new project, or reconfigure the active project?”, select
to create a new project file and use Browse to select the folder where the project

will be saved. Then click Next to continue.

Project Wizard) 1

Step Three:
Create a new project, of reconfigure the active project?

x|

—{* Create Mew Projsct Fils

C:\My Project\first-project

— Beconfigure Active Projest
€ WMake changes without saving

€ Save changes to existing project file

’7(" Save changes to another, praject file

Browse... |

< Back | Mest » |

Cancel | Help |

5. At “Step Four: Add any existing files to your project”,

you can add any pre-exist-

ing source files to your project. Click ADD>> to add it to the list of files to be used
for this project (on the right). If you do not have any existing source files at this

point, you can add them later.

Project Wizard) 1

Step Four:
Add existing files to pour project

x|

|
-1 My Project
B0

. | of

;I Add > |
J Remove |

KN —

3|

< Back I Mest » I

Cancel | Help |

Because we will be using the default built-in linker script for this example project,
we do not need to add the customized linker script to the project. If we had a
pre-existing customized linker script, we could add it here. Select Next to

continue.

6. Atthe Summary screen, review the “Project Parameters” to verify that the device,
toolsuite, and project file location are correct. If there are errors, use Back to
return to a previous wizard dialog. Otherwise, click Finish to create the new

project and workspace.

DS51833A-page 28

© 2009 Microchip Technology Inc.

MPLAB IDE Projects for PIC32 Assembly Code

7. The Project window should open showing our new project. (If not, select
View>Project) The title bar shows the workspace filename (first-proj-
ect.mcw) and the single project within our workspace (first-project.mcp)
shows as a tree of folders.

_ioix]

= [first-project.mcp
----- (23 Source Files

----- (L Header Files

..... [object Files

----- 3 Library Files

----- [0 Lirker Scripk

----- (23 other Files

[] Files ## Symbols

You can right click on various items in this window to perform many useful proj-
ect-related functions. The right-mouse context menu allows you to add new files,
delete files, and open the project’s build options.

2.4 ADDING A SOURCE FILE TO YOUR PROJECT

Once you have created your project, you can now add a new source file to it.
1. From the project menu, select “Add New File to Project...”.

first-project - MPLAB IDE e
e Edit View | Project Debugger Programmer Tools Configure

J D= | Project Wizard...

Mew, .,

open...

Close

Set Active Project

Guickbuild (na asm File)

Package in .zip

Clean

Locate Headers

Export Makefile

Build Al Chrl+F10
Make F10
Build Configuration

Build Options. ..

Save Project
Save Project As...

Select Language Toolsuite, ..
Set Language Tool Locations. ..

‘Wersion Contral...

© 2009 Microchip Technology Inc. DS51833A-page 29

32-Bit Assembler, Linker and Utilities User’s Guide

2. The project manager will prompt you for a new filename. Use the “Jump To” con-
trol to jump to the Project Directory. Enter a file name such as
first-source-file.S. Be sure to use a capitalized . s file extension. Save
the file.

21
Save_in:l_}My Praject j Q 1 -

\ first-project.mcp
first-project.mow

File name:

Save I
Cancel |

4

Ifirst-source-file.s

Save as type: IAII Filez [*.]

El
Jump to: I Project Directory j

3. Verify that your new file opens in an editor window and the file name appears in
the project window under Source Files.

4. You can now enter your assembly source code into this new file. The example
code below just provides an empty infinite loop to get you started.

#include <p32xxxx.h>

HEHHHH S S
main routine
HEHHHH SRS SRR
.text
.set noreorder
.ent main
main:
Do something here
nop

Infinite loop

b 1b
nop

.end main
.globl main

2.5 BUILDING YOUR PROJECT

Now that you have a project with an assembly source file, you can build the project.
MPLAB IDE’s project manager manages the build steps for you. From the Project
menu, select “Make”.

The “Make” feature determines which source files need to be built and calls the asso-
ciated language tool as necessary. In this case, it calls the assembler once for the sin-
gle source file in our project. It then calls the linker to link in the appropriate libraries as
indicated by the default linker script.

The Build tab of MPLAB IDE’s Output window shows the language-tool commands
executed. It also shows the output from the language tools. Any build errors or warn-
ings will appear in this window. “BUILD SUCCEEDED” appears in this window when
the ELF object file was successfully generated and loaded into MPLAB IDE.

DS51833A-page 30

© 2009 Microchip Technology Inc.

MPLAB IDE Projects for PIC32 Assembly Code

2.6 DEBUGGING YOUR PROJECT

Now that you have a successful build, select a debug tool to use in debugging your proj-
ect. In this case, we will choose the MPLAB SIM software simulator. MPLAB SIM sim-
ulates the PIC32 MCU core and a number of on-chip peripherals without requiring
hardware.

To enable the simulator, select tool MPLAB SIM from the Debugger menu. MPLAB IDE
loads the simulator component, which populates the Debugger menu with a number of
new menu items specific to the simulator.

Note: Some debug tools, such as the MPLAB REAL ICE in-circuit emulator or
MPLAB ICD 3, require the project to be built with specific options. Rebuild-
ing your project after enabling the debug tool is the best way to ensure that
the project was correctly built for the debug tool. Use “Build All” under the
Project menu.

At this point, we are ready to begin debugging. Set a breakpoint on an assembly
instruction in the source code, such as nop or b, by double clicking the corresponding
line in the editor’s left-side gutter. A red breakpoint icon appears in the gutter as shown

below.

W C:' My Project’first-source-file.5 . i | Ellll
1 #include =p32uxxx.h= —
2 o
] B
4 # main routine
=] B
S Ltext
7 .zet noreorder
= .ent main
izl main:

1 # Do something here

11 nop -
12

13 # Infinite loop

14 it

15 B b 1b

15 nop

17

12 .end main

18 .globl main

20 =
<11 _'l_I

Now select “Run” under the Debugger menu to begin the simulation. You should
momentarily see a progress bar in the bottom status bar of the MPLAB IDE window.
This progress bar indicates that the simulator target is running.

Once the simulation reaches the breakpoint, a green arrow appears in the gutter on top
of the breakpoint icon. This green arrow indicates that the target device’s program
counter halted at the address associated with that line of your source code.

You have now successfully built a new PIC32 assembly-code project in MPLAB IDE
and run it in MPLAB SIM. You're ready to begin your application development by
adding your own code.

See the online help under MPLAB IDE’s Help menu for more information on MPLAB
SIM or other debug tools.

© 2009 Microchip Technology Inc. DS51833A-page 31

32-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS51833A-page 32 © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Chapter 3. Assembler Command Line Interface

3.1 INTRODUCTION

MPLAB Assembler for PIC32 MCUs (pic32-as) may be used on the host PC’s
command-line interface (e.g., cmd . exe) as well as with MPLAB IDE’s project manager.

MPLAB IDE’s project manager will automatically call the assembler (via the
pic32-gcc compilation driver) when building a project. Many of the commonly used
options listed here are available as checkboxes on the IDE’s project build-options
dialog. However, for a more advanced option, you may have to specify the option in the
“Alternate Settings” field of the dialog. After you build a project in MPLAB IDE, the
Output window shows the options passed to the assembler.

Topics covered in this chapter are:

« Assembler Interface Syntax

e Compilation-Driver Interface Syntax

» Options that Modify the Listing Output

» Options that Control Informational Output

« Options that Control Output File Creation

« Assembler Symbol-Definition and Search-Path Options
« Compilation-Driver and Preprocessor Options

3.2 ASSEMBLER INTERFACE SYNTAX

The assembler command line may contain options and file names. Options may appear
in any order and may be before, after or between file names. The order of file names
determines the order of assembly.

pic32-as [options|sourcefiles]...

‘- -’ (two hyphens) by itself names the standard input file explicitly, as one of the files
for the assembler to translate. Except for ‘- -’, any command line argument that begins
with a hyphen (‘-’) is an option. Each option changes the behavior of the assembler,
but no option changes the way another option works.

Some options require exactly one file name to follow them. The file name may either
immediately follow the option’s letter or it may be the next command line argument. For
example, to specify an output file named test . o, either of the following options would
be acceptable:

®* -0 test.o

® -otest.o

Note: Command line options are case sensitive. I

© 2009 Microchip Technology Inc. DS51833A-page 33

32-Bit Assembler, Linker and Utilities User’s Guide

3.3 COMPILATION-DRIVER INTERFACE SYNTAX

The compilation-driver program (pic32-gcc) preprocesses, compiles, assembles,
and links C and assembly-language modules and library archives. This driver orches-
trates the build process so that you often don’t need to know which individual programs
preprocess, compile, assemble, and link. The driver calls the appropriate individual
tools to complete the requested build process.

In practice, the assembler is usually invoked via pic32-gcc, which determines that it
should assemble an input file by its * . S or * . s filename extension. The compilation
driver sends a file with a * . S (uppercase) extension through the CPP-style preproces-
sor before it passes the file to the assembler while the driver sends a file with a * . s
(lowercase) extension directly to the assembler.

The basic form of the compilation-driver command line is:

pic32-gcc [options] files

Note: Command-line options and filename extensions are case sensitive.

To pass an assembler option from the compilation driver to the assembler, use the
-Wa,option option. The option argument should not contain white space.

EXAMPLE 3-1: EXAMPLE COMPILATION-DRIVER COMMAND LINE

pic32-gcc -mprocessor=32MX360F512L -I"./include" ASMfile.S
-o"ASMfile.o" -DMYMACRO=1 -Wa,-ah="ASMfile.lst"

For additional information on the compilation driver, see the “MPLAB® C Compiler for
PIC32 MCUs User’s Guide” (DS51686).

Note: To use the pic32-gcc compilation driver from MPLAB IDE, be sure to
select the Microchip PIC32 C Compiler Toolsuite for your project.

DS51833A-page 34

© 2009 Microchip Technology Inc.

Assembler Command Line Interface

3.4 OPTIONS THAT MODIFY THE LISTING OUTPUT

The following options are used to control the listing output. A listing file is helpful for
debugging and general analysis of code operation. Use the following options to
construct a listing file with information that you find useful.

e -a[suboption] [=file]

e --listing-lhs-width num

e --listing-lhs-width2 num

e --listing-rhs-width num

e --listing-cont-lines num

34.1 -al[suboption] [=file]

The -a option enables listing output. The -a option supports the following sub-options
to further control what is included in the assembly listing:

-ac Omit false conditionals

-ad Omit debugging directives

-ah Include high-level source

-al Include assembly

-am Include macro expansions

-an Omit forms processing

-as Include symbols

-a=file Output listing to specified file (must be in current directory).

If no sub-options are specified, the default sub-options used are hls; the -a option by
itself requests high-level, assembly, and symbolic listing. You can use other letters to
select specific options for the listing output.

The letters after the -a may be combined into one option. So, for example, instead of
specifying -al -an onthe command line, you could specify -aln.

© 2009 Microchip Technology Inc. DS51833A-page 35

32-Bit Assembler, Linker and Utilities User’s Guide

34.1.1 -ac

-ac omits false conditionals from a listing. Any lines that are not assembled because
ofafalse .if or .ifdef (orthe .else ofatrue .if or . ifdef) will be omitted from
the listing. Example 3-2 shows a listing where the -ac option was not used.

Example 3-3 shows a listing for the same source where the -ac option was used.

EXAMPLE 3-2: LISTING FILE GENERATED WITH -al COMMAND LINE

OPTION
GAS LISTING asm.s page 1

1 # 1 "asm.S"

2 # 1 "<built-in>"
1 .data

0

2 .if o

3 Jif 1

4 .endif

5 .long 0

6 .if 0

7 .long 0
8 .endif

9 .else

10 Jif 1

11 .endif

12 0000 02000000 .long 2
13 .if o

14 .long 3
15 .else

16 0004 04000000 .long 4
17 .endif

18 .endif

19 .if o
20 .long 5
21 .elseif 1
22 .if 0
23 .long 6
24 .elseif 1
25 0008 07000000 .long 7
26 .endif
27 .elseif 1
28 .long 8
29 .else

30 .long 9
31 .endif

DS51833A-page 36 © 2009 Microchip Technology Inc.

Assembler Command Line Interface

EXAMPLE 3-3: LISTING FILE GENERATED WITH -alec COMMAND LINE
OPTION

GAS LISTING asm.s page 1

1 # 1 "asm.S"

2 # 1 "<built-in>"

1 .data

0

0

2 Lif o

9 .else

10 Jif 1

11 .endif

12 0000 02000000 .long 2
13 Lif o

15 .else

16 0004 04000000 .long 4
17 .endif

18 .endif

19 Lif o
21 .elseif 1
22 Lif o
24 .elseif 1
25 0008 07000000 .long 7
26 .endif
27 .elseif 1
29 .else

31 .endif

Note: Some lines omitted due to -ac option. I

© 2009 Microchip Technology Inc. DS51833A-page 37

32-Bit Assembler, Linker and Utilities User’s Guide

3412 -ad

-ad omits debugging directives from the listing. This option is useful when processing
compiler-generated assembly code containing debugging information. The compiler-
generated debugging directives will not clutter the listing. Example 3-4 shows a listing
using both the d and h sub-options. Compared to using the h sub-option alone (see
next section), the listing is much cleaner.

EXAMPLE 3-4: LISTING FILE GENERATED WITH -alhd COMMAND LINE
OPTION

GAS LISTING test.s page 1

1 .section .mdebug.abi32
2 .previous

10 .LtextO0:

11 .align2

12 .globlmain

13 .LFBO:

14 .file 1 "src\\test.c"
l:src/test.c *x%x #include <p32xxxx.h>
2:src/test.c **x% yolatile unsigned int testval;
3:src/test.c *k ok k
4:src/test.c ***% int
5:src/test.c **** main (void)
6:src/test.c *rkx

15 .loc 1 6 0

16 .setnomipslé6

17 .entmain

18 main:

19 .frames$fp, 8,$31# vars= 0, regs= 1/0, args= 0, gp= O

20 .mask0x40000000, -8

21 .fmask0x00000000,0

22 .setnoreorder

23 .setnomacro

24

25 0000 F8FFBD27 addiu$sp, $sp, -8

26 .LCFIO:

27 0004 000OBEAF swsfp, 0 (Ssp)

28 .LCFI1:

29 0008 21F0A003 moveSfp, $Ssp

30 .LCFI2:
7:src/test.c * kK ok testval += 1;

31 .loc 1 70

32 000c 0000828F 1lw$2,%gp rel (testval) ($28)
33 0010 01004224 addiu$2,%2,1
34 0014 000082AF sw$2,%gp_rel (testval) ($28)

8:src/test.c * kK ok return 0;
35 .loc 1 80
36 0018 21100000 moves$2,s0
9:src/test.c *xkk]
37 .loc1 90

38 001lc 21E8C003 moveSsp, Sfp

39 0020 OO0OOBES8F 1lwsSfp, 0($Ssp)
40 0024 0800BD27 addiu$sp, $sp, 8
41 0028 0800E003 j$31

42 002c 00000000 nop

DS51833A-page 38 © 2009 Microchip Technology Inc.

Assembler Command Line Interface

43

44 .setmacro

45 .setreorder

46 .endmain

47 .LFEO:

49

50 .commtestval, 4,4
88 .LetextO:

© 2009 Microchip Technology Inc. DS51833A-page 39

32-Bit Assembler, Linker and Utilities User’s Guide

3413 -ah

-ah requests a high-level language listing. High-level listings require that the assembly
source code was generated by a compiler, a debugging option like -g was given to the
compiler, and that assembly listings (-al) also be requested. -al requests an output
program assembly listing. Example 3-5 shows a listing that was generated using the
-alh command line option.

EXAMPLE 3-5: LISTING FILE GENERATED WITH -alh COMMAND LINE
OPTION

GAS LISTING tempfile.s page 1

1 .section .mdebug.abi32

2 .previous

3 .section.debug abbrev,"",@progbits
4 .Ldebug abbrevo0:

5 .section.debug info,"",@progbits

6 .Ldebug infoo0:

7 .section.debug line,"",@progbits

8 .Ldebug line0:

9 0000 34000000 .text

11 .align2

12 .globlmain

13 .LFBO:

14 .file 1 "src/test.c"
l:src/test.c *x%x #include <p32xxxx.h>
2:src/test.c **x% yolatile unsigned int testval;
3:src/test.c * ok kk
4:src/test.c **k*% int
5:src/test.c **x** main (void)
6:src/test.c *rkx

15 .loc 1 60

16 .setnomipslé6

17 .entmain

18 main:

19 .frame$sp,0,$31 # vars= 0, regs= 0/0, args= 0, gp= 0

20 .mask0x00000000,0

21 . fmask0x00000000,0

22 .setnoreorder

23 .setnomacro

24
7:src/test.c * kK ok testval += 1;

25 .loc 1 70

26 0000 0000848F 1lws4,%gp_rel (testval) ($28)
8:src/test.c Kk kK return 0;
9:src/test.c *oxxk)

27 .loc'1 90

28 0004 21100000 moves$2,S$0

29 .loc1 70

30 0008 01008324 addius3,$4,1

31 000c O00OO083AF sw$3,%gp _rel (testval) ($28)
32 .loc'1 90

33 0010 0800E003 js$31

34 0014 00000000 nop

DS51833A-page 40 © 2009 Microchip Technology Inc.

Assembler Command Line Interface

35

36 .setmacro

37 .setreorder

38 .endmain

39 .LFEO:

40 .sizemain, .-main

41

42 .commtestval, 4,4
3414 -al

-al requests an assembly listing. This sub-option may be used with other sub-options.
See the other examples in this section.

3.4.15 -am

-am expands macros in a listing. Example 3-6 shows a listing where the -am option
was not used. Example 3-7 shows a listing for the same source where the -am option
was used.

EXAMPLE 3-6: LISTING FILE GENERATED WITH -al COMMAND LINE

OPTION
GAS LISTING foo.s page 1

1 # 1 "foo.S"

2 # 1 "<built-in>"

1 .macro sum from=0, to=5
0

0

2 .long \from

3 Lif \to-\from

4 sum "(\from+1) ", \to
5 .endif

6 .endm

7

8 .data

9 0000 00000000 .long 0
10 0004 OA000000 sum 10, 14
10 0B00000O
10 0C000000
10 0D000000
10 0OE000000
11 0018 00000000 .long 0

© 2009 Microchip Technology Inc. DS51833A-page 41

32-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 3-7:

GAS LISTING foo.s

W JO0 Uk WNOOKFENBK

\\¢]

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

11 0018 00000000

0000

0004

0008

000c

0010

0014

OPTION

"foo.S"
"<built-in>"
.macro

#1
#1

.long \from

Lif \to \from
sum (\from+1)
.endif

.endm

.data
.long 0
sum 10, 14
0A000000 > .long 10
> .1f 14-10
> sum " (10+1)",14
0B000000 >> .long (10+1)
>> .if 14-(10+1)
>> sum " ((10+1)+1)",14
0C000000 >>> .long ((10+1)+1)
>>> .1f 14-((10+1)+1)
>>> sum " (((10+41)+1)+
0D000000 >>>> .long (((10+1)+
>>>> . 1f 14-(((10+1)+
>>>> sum " (((

((

(10+1)+1)
0E000000 >>>>> .long ((

((

((

00000000

n

1)
)+)
1)+1)
+1) +
((10+41)+1) +
>>>>> .if 14 ((10+1)+l)
>>>>> sum " ((10+1) +1) +
.endif

.endif

>>> .endif

>> .endif

> .endif

(
>>>>>

>>>>

.long 0

sum from=0,

1)
1)
1)
+

LISTING FILE GENERATED WITH -alm COMMAND LINE

page 1

to=5

", \to

n

+1)
+1)
1)+1)",14

Note:

> signifies expanded macro instructions.

DS51833A-page 42

© 2009 Microchip Technology Inc.

Assembler Command Line Interface

3.4.1.6 -an

-an turns off all forms processing that would be performed by the listing directives
.psize, .eject, .title and .sbttl. Example 3-8 shows a listing where the -an
option was not used. Example 3-9 shows a listing for the same source where the -an
option was used.

EXAMPLE 3-8: LISTING FILE GENERATED WITH -al COMMAND LINE
OPTION

GAS LISTING foo.s page 1
User's Guide Example
Listing Options

1 # 1 "foo.S"

2 # 1 "<built-in>"

1 .text

0

0

2 .title "User's Guide Example"
3 .sbttl "Listing Options"

GAS LISTING foo.s page 2
User's Guide Example
Listing Options

4 .psize 10
5
6 0000 01001A3C lui s$ko0, 1
7 0004 02001A3C lui sko0, 2
8 0008 03001A3C lui s$ko0, 3
9 .eject
GAS LISTING foo.s page 3

User's Guide Example

Listing Options
10 000c 04001A3C lui sko0, 4
11 0010 05001A3C lui $kO0, 5

EXAMPLE 3-9: LISTING FILE GENERATED WITH -aln COMMAND LINE

OPTION

1 # 1 "foo.S"

2 # 1 "<built-in>"

1 .text

0

0

2 .title "User's Guide Example"
3 .sbttl "Listing Options"
4 .psize 10

5

6 0000 01001A3C lui s$ko0, 1

7 0004 02001A3C lui sko0, 2

8 0008 03001A3C lui s$k0, 3

9 .eject
10 000c 04001A3C lui s$ko0, 4
11 0010 05001A3C lui $kO0, 5

© 2009 Microchip Technology Inc. DS51833A-page 43

32-Bit Assembler, Linker and Utilities User’s Guide

3.4.1.7 -as

-as requests a symbol table listing. Example 3-10 shows a listing that was generated
using the -as command line option. Note that both defined and undefined symbols are
listed.

EXAMPLE 3-10: LISTING FILE GENERATED WITH -as COMMAND LINE
OPTION

GAS LISTING example.s page 1

DEFINED SYMBOLS
ABS:00000000 src\example.c
example.s:18 .text:00000000 main
COM:00000004 testval

UNDEFINED SYMBOLS
bar

3418 -a=rfile

=file defines the name of the output file. This file must be in the current directory.

DS51833A-page 44

© 2009 Microchip Technology Inc.

Assembler Command Line Interface

3.4.2 --listing-lhs-width num

The --1isting-1hs-width optionis used to set the width of the output data column
of the listing file. By default, this is set to 1 word. The following line is extracted from a
listing. The output data column is in bold text.

2 0000 54686973 .ascii "This is an example"

2 20697320
2 616E2065
2 78616D70
2 6C650000

If the option --1isting-lhs-width 2 is used, then the same line will appear as
follows in the listing:

2 0000 54686973 20697320 .ascii "This is an example"

2 616E2065 78616D70
2 6C650000
3.4.3 --listing-lhs-width2 num

The --1listing-lhs-width?2 option is used to set the width of the continuation lines
of the output data column of the listing file. By default, this is set to 1. If the specified
width is smaller than the first line, this option is ignored. The following lines are
extracted from a listing. The output data column is in bold.

2 0000 54686973 .ascii "This is an example"

2 20697320
2 616E2065
2 78616D70
2 6C650000

If the option --1isting-1hs-width2 3 is used, then the same line will appear as
follows in the listing:

2 0000 54686973 .ascii "This is an example"

2 20697320 616E2065 78616D70
2 6C650000
344 --listing-rhs-width num

The --listing-rhs-width option is used to set the maximum width in characters
of the lines from the source file. By default, this is set to 100. The following lines are
extracted from a listing that was created without using the --1isting-rhs-width
option. The text in bold are the lines from the source file.

2 0000 54686973 .ascii "This line is long"

2 206C696E
2 65206973
2 206C6F6E
2 67000000

If the option --1isting-rhs-width 22 is used, then the same line will appear as
follows in the listing:

2 0000 54686973 .ascii "This line is

2 206C696E
2 65206973
2 206C6F6E
2 67000000

The line is truncated (not wrapped) in the listing, but the data is still there.

© 2009 Microchip Technology Inc. DS51833A-page 45

32-Bit Assembler, Linker and Utilities User’s Guide

3.4.5 --listing-cont-lines num

The --1isting-cont-1ines option is used to set the maximum number of continu-
ation lines used for the output data column of the listing. By default, this is 8. The fol-
lowing lines are extracted from a listing that was created without using the
--listing-cont-1lines option. The textin bold shows the continuation lines used
for the output data column of the listing.

2 0000 54686973 .ascii "This is a long character

sequence"
2 20697320
2 61206C6F
2 6E672063
2 68617261

Notice that the number of bytes displayed matches the number of bytes in the ASCII
string; however, if the option --1isting-cont-1lines 2 is used, then the output
data will be truncated after 2 continuation lines as shown below.

2 0000 54686973 .ascii "This is a long character
sequence"

2 20697320

2 61206C6F

3.5 OPTIONS THAT CONTROL INFORMATIONAL OUTPUT

The options in this section control how information is output. Errors, warnings and
messages concerning code translation and execution are controlled through several of
the options in this section.

Any item in parenthesis shows the short method of specifying the option (e.g.,
--no-warn also may be specified as -W).

351 --fatal-warnings

Warnings are treated as if they were errors.

3.5.2 --no-warn (-W)

Warnings are suppressed. If you use this option, nho warnings are issued. This option
only affects the warning messages. It does not change how your file is assembled.
Errors are still reported.

353 --warn

Warnings are issued, if appropriate. This is the default behavior.
3.54 -J

No warnings are issued about signed overflow.

355 --help

The assembler will show a message regarding the command line usage and options.
The assembler then exits.

3.5.6 --target-help

The assembler will show a message regarding the PIC32 target specific command-line
options. The assembler then exits.

3.5.7 --version

The assembler version number is displayed. The assembler then exits.

DS51833A-page 46

© 2009 Microchip Technology Inc.

Assembler Command Line Interface

3.5.8 --verbose (-v)

The assembler version number is displayed. The assembler does not exit. If this is the
only command line option used, then the assembler will print out the version and wait
for entry of the assembly source through standard input. Use <CTRL>-D to send an
EOF character to end assembly.

3.6 OPTIONS THAT CONTROL OUTPUT FILE CREATION

The options in this section control how the output file is created. For example, to
change the name of the output object file, use -o.

Any item in parenthesis shows the short method of specifying the option (e.g.,
--keep-locals may be specified as -L also).

3.6.1 -g

Generate symbolic debugging information.

3.6.2 --keep-locals (-L)

Keep local symbols (i.e., labels beginning with . L (uppercase only)). Normally you do
not see such labels when debugging, because they are intended for the use of
programs (like compilers) that compose assembler programs. Normally both the
assembler and linker discard such symbols. This option tells the assembler to retain
those symbols in the object files.

3.6.3 -o objfile

Name the object file output objfile. In the absence of errors, there is always one
object file output when you run the assembler. By default, it has the name a . out. Use
this option (which takes exactly one filename) to give the object file a different name.
Whatever the object file is called, the assembler overwrites any existing file with the
same name.

3.6.4 -Z

Generate object file even after errors. After an error message, the assembler normally
produces no output. If for some reason, you are interested in object file output even
after the assembler gives an error message, use the -z option. If there are any errors,
the assembler continues anyway, and writes an object file after a final warning
message of the form “n errors, m warnings, generating bad object file”.

3.6.5 -MD file

Write dependency information to £i1e. The assembler can generate a dependency file.
This file consists of a single rule suitable for describing the dependencies of the main
source file. The rule is written to the file named in its argument. This feature can be
used in the automatic updating of makefiles.

© 2009 Microchip Technology Inc. DS51833A-page 47

32-Bit Assembler, Linker and Utilities User’s Guide

3.7 ASSEMBLER SYMBOL-DEFINITION AND SEARCH-PATH OPTIONS

The options in this section perform functions not defined in previous sections.

3.7.1 --defsym sym=value

Define symbol sym to given value.

3.7.2 -I dir

Use this option to add dir to the list of directories that the assembler searches for files
specified in . include directives. You may use -I as many times as necessary to
include a variety of paths. The current working directory is always searched first; after
that, the assembler searches any - I directories in the same order as they were
specified (left to right) on the command line.

When passed directly to the assembiler, this option affects the search path used by the
assembler’s . include directive. To affect the search path used by the C preprocessor
for a #include directive, pass the corresponding option to the pic32-gcc compila-
tion driver.

3.8 COMPILATION-DRIVER AND PREPROCESSOR OPTIONS

The compilation-driver (pic32-gcc) and C preprocessor options in this section may
be useful for assembly-code projects. The compilation driver will pass the options to the
preprocessor as required. See the “MPLAB® C Compiler for PIC32 MCUs User’s
Guide” (DS51686) for more information on the compilation driver and for a more
comprehensive list of driver options.

3.8.1 -mprocessor=device

Selects the device for which to compile (e.g., -mprocessor=32MX360F512L).

3.8.2 -Wa, option

Pass option as an option to the assembiler. If opt ion contains commas, it is split into
multiple assembler options at the commas. The option argument must not contain
white space.

3.8.3 -Dmacro=defn

Define macro macro as defn. All instances of -D on the command line are processed
before any -U options.

3.84 -Dmacro

Define macro macro as 1. All instances of -D on the command line are processed
before any -U options.

3.85 -Umacro

Undefine macro macro. -U options are evaluated after all -D options, but before any
-include and -imacros options.

3.8.6 -I dir

Add the directory dir to the head of the list of directories to be searched for #include
preprocessor header files. This can be used to override a system header file, substitut-
ing your own version, since these directories are searched before the system header
file directories. If you use more than one -I option, the directories are scanned in
left-to-right order. The standard system directories come after.

DS51833A-page 48

© 2009 Microchip Technology Inc.

Assembler Command Line Interface

When passed to the compilation driver, this option affects the search path used by the
preprocessor’s #include directive. To affect the search path used by the assembler’s
.include directive, pass the corresponding option to the assembler using the -Wa
option.

3.8.7 -save-temps

Don'’t delete intermediate files. Place them in the current directory and name them
based on the source file. Thus, compiling foo. ¢ with -¢ -save-temps would
produce the following files:

e foo.i (preprocessed file)
* foo.s (assembly language file)
* foo.o (object file)

3.8.8 -v
Print the commands executed during each stage of compilation.

3.8.9 --help

Print a description of the command line options.

© 2009 Microchip Technology Inc. DS51833A-page 49

32-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS51833A-page 50 © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Chapter 4. Assembler Syntax

4.1 INTRODUCTION

Syntax for MPLAB Assembler for PIC32 MCUs (pic32-as) source code is defined
here.

Topics covered in this chapter are:

« Internal Preprocessor
« Source Code Format
¢ Constants
e Summary

4.2 INTERNAL PREPROCESSOR

The assembler has an internal preprocessor. The internal processor:

1. Adjusts and removes extra white space. It leaves one space or tab before the
keywords on a line, and turns any other white space on the line into a single
space.

2. Removes all comments, replacing them with a single space, or an appropriate
number of new lines.

3. Converts character constants into the appropriate numeric value.
If you have a single character (e.qg., ‘b’) in your source code, this will be changed
to the appropriate numeric value. If you have a syntax error that occurs at the sin-
gle character, the assembler will not display ‘b’, but instead display the first digit
of the decimal equivalent.

For example, if you had .global mybuf, ‘b’ in your source code, the error
message would say “Error: Rest of line ignored. First ignored character is ‘9’.”
Notice the error message says ‘9'. This is because the ‘b’ was converted to its
decimal equivalent 98. The assembler is actually parsing .global mybuf, 98.

The internal processor does not do:

1. macro preprocessing

2. include file handling

3. anything else you may get from your C compiler’s preprocessor

You can do include file preprocessing with the . include directive (See Chapter

7. “Assembler Directives”.) You can use the C compiler driver to get other C
preprocessing style preprocessing by giving the input file a . s (uppercase) suffix (See
the “MPLAB® C Compiler for PIC32 MCUs User’s Guide” (DS51686) for more
information.)

© 2009 Microchip Technology Inc. DS51833A-page 51

32-Bit Assembler, Linker and Utilities User’s Guide

If the first line of an input file is #NO_APP or if you use the - £ option, white space and
comments are not removed from the input file. Within an input file, you can ask for white
space and comment removal in certain portions by putting a line that says #APP before
the text that may contain white space or comments, and putting a line that says
#NO_APP after this text. This feature is mainly intended to support assembly
statements in compilers whose output is otherwise free of comments and white space.

Note: Excess white space, comments and character constants cannot be used
in the portions of the input text that are not preprocessed.

4.3 SOURCE CODE FORMAT

Assembly source code consists of statements and white spaces.

White space is one or more spaces or tabs. White space is used to separate pieces of
a source line. White space should be used to make your code easier for people to read.
Unless within character constants, any white space means the same as exactly one
space.

Each statement has the following general format and is followed by a new line.

[label:] [mnemonic [operands]] [; comment]
OR

[label:] [directive [arguments]] [; comment]
* Label

* Instruction Mnemonic

e Operands

« Directive Arguments
« Comments

43.1 Label

A label is one or more characters chosen from the set of all letters, digits and the two
characters underline (_) and period (.). Labels may not begin with a decimal digit,
except for the special case of a local symbol. (See Section 6.3 “Local Symbols” for
more information.) Case is significant. There is no length limit; all characters are
significant.

Label definitions must be immediately followed by a colon. A space, tab, end of line or
an assembler mnemonic or directive may follow the colon.

Label definitions may appear on a line by themselves and will reference the next
address.

The value of a label after linking is the absolute address of a location in memory.

4.3.2 Instruction Mnemonic

Mnemonics tell the assembler what machine instructions to assemble. For example,
addition (ADD), jumps (J), or loads (LUI). Unlike labels that you create yourself, mne-
monics are provided by the PIC32 MCU assembly language. Mnemonics are not case
sensitive.

See the data sheet for your target PIC32 MCU for more details on the CPU instruc-
tion-set mnemonics available for the device.

The assembler also supports a number of synthesized/macro instructions intended to
make writing assembly code easier. The LI (load immediate) instruction is an example
of a synthetic macro instruction. The assembler generates two machine instructions to
load a 32-bit constant value into a register from this single synthetic instruction.

DS51833A-page 52

© 2009 Microchip Technology Inc.

Assembler Syntax

The assembler synthesizes instructions for

* A 32-bit Load Immediate

* Aload from a memory location

» An extended branch conditional

» A two-operand form of some three-operand instructions
« An unaligned load/store instruction

Assembly directives, such as .set noat, .set nomacro, and .set noreorder,
disable these normally helpful features for cases where you require full control over the
generated code. See Section 7.13 “Directives that Control Code Generation”.

4.3.3 Operands

Each machine instruction takes from O up to 4 operands. (See the appropriate data
sheet for your target PIC32 MCU for a full list of machine instructions.) These operands
give information to the instruction on the data that should be used and the storage loca-
tion for the instruction. Operands must be separated from mnemonics by one or more
spaces or tabs.

Separate multiple operands with commas. If commas do not separate your operands,
the assembler displays a warning and takes its best guess on the separation of the
operands. For most PIC32 MCU instructions, an operand consists of a core general
purpose register, label, literal, or basereg+offset.

4.3.3.1 GENERAL PURPOSE REGISTER OPERANDS

The PIC32 MCU core contains thirty-two 32-bit general purpose registers used for
integer operations and address calculation. Most of the PIC32 MCU instructions
require one or more GPR operands, either for the source, the destination, or both.

Register operands are distinguished with a preceding dollar sign (‘$’). The register
number immediately follows the dollar sign. Example 4-1 shows assembly source code
using register number operands.

However, if you use the compilation driver (pic32-gcc) to preprocess the source code
with the CPP-style preprocessor before assembling, you can take advantage of macros
provided in the p32xxxx . h header file provided with the C compiler. These macros
map conventional register names to the corresponding register number. Example 4-2
shows assembly source code using conventional register names for operands. See the
“MPLAB® C Compiler for PIC32 MCUs User’s Guide” (DS51686) for additional infor-
mation on PIC32 MCU register conventions and the compiler’s runtime environment.

EXAMPLE 4-1: ASSEMBLY SOURCE CODE WITH REGISTER NUMBER
OPERANDS

.text

Add Word

1i $2, 123

1i $3, 456
add $4, $2, $3

© 2009 Microchip Technology Inc. DS51833A-page 53

32-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 4-2: ASSEMBLY SOURCE CODE WITH CONVENTIONAL
REGISTER NAMES

#include <p32xxxx.h>

.text

/* Add Word */

1i v0, 123 /* v0 is a return-value register */
1i vl, 456 /* vl is a return-value register */
add a0, vO0, vl /* a0 is an argument register */

4.3.3.2 LITERAL-VALUE OPERANDS

Literal values can be hexadecimal, octal, binary, or decimal format. Hexadecimal num-
bers are distinguished by a leading 0x. Octal numbers are distinguished by a leading
0. Binary numbers are distinguished by a leading OB or Ob. Decimal numbers require
no special leading or trailing character.

Examples:

Oxe, 016, 0b1110 and 14 all represents the literal value 14.
-5 represents the literal value -5.

symbol represents the value of symbol.

4.3.3.3 BASEREG+OFFSET OPERANDS

Load and store operations select the memory location using a BaseReg+Offset oper-
and. For an operand of this type, the effective address is formed by adding the 16-bit
signed offset to the contents of a base register. A PIC32 MCU data sheet shows this
type of operand as Mem [R+offset].

EXAMPLE 4-3: USING ASSEMBLY SOURCE CODE WITH
BASEREG+OFFSET OPERANDS

#include <p32xxxx.h>
.data
.align 4
MY WORD DATA:
.word 0x10203040, 0x8090a0bo0
.text
.global example
/* Store Word */

example:
la v0, MY WORD DATA
lui vl,0x1111
ori vl,vl,0x4432
lui a0, 0x5555
ori a0,a0,0x1123
sw vl, 0(v0) /* Mem[GPR[v0]+0] <- GPR[v1l] */
sw a0, 4(vo0) /* Mem[GPR[v0]+4] <- GPR[a0] */
lw al, 0(v0) /* GPR[al] <- Mem[GPR[v0]+0] */
b .

The C compiler supports global-pointer relative (gp-rel) addressing. Loads and stores
to data lying within 32 KB of either side of the address stored in the gp register (64 KB
total) can be performed in a single instruction using the gp register as the base register.

DS51833A-page 54 © 2009 Microchip Technology Inc.

Assembler Syntax

The C compiler’s -Gnum option controls the maximum size of global and static data
items that can be addressed in one instruction instead of two. The compiler’s default
gnum value is 8 bytes, which is large enough to hold all simple scalar variables.

Note: To utilize gp-relative addressing, the compiler and assembler must group all
of the “small” variables and constants into one of the “small” sections: See
section 5.7.2 of the “MPLAB® C Compiler for PIC32 MCUs User’s Guide”
(DS51686) for more information on the global pointer and the -G option.

EXAMPLE 4-4: ASSEMBLY SOURCE CODE WITH GP-RELATIVE
ADDRESSING

.align 2

.globl foo

.set nomipslé6
.ent foo

foo:
.set noreorder
.set nomacro
1w $3,%gp_rel (testval) ($28)
addiu $2,s$3,1
sSw $2,%gp _rel (testval) ($28)
J $31
nop

.set macro
.set reorder
.end foo

There are a few potential pitfalls to using gp-relative addressing:

* You must take special care when writing assembler code to declare global (i.e.,
public or external) data items correctly:

- Writable, initialized data of gnum bytes or less must be put explicitly into the
.sdata section, e.g.:
.sdata
small: .word 0x12345678
- Global common data must be declared with the correct size, e.g:
.comm small, 4
.comm big, 100
- Small external variables must also be declared correctly, e.g:
.extern smallext, 4
« If your program has a very large number of small data items or constants, the C
compiler’s -G8 option may still try to push more than 64 KB of data into the “small”
region; the symptom will be obscure relocation errors (“relocation truncated”)
when linking. Fix it by disabling gp-relative addressing with the compiler’s -Go
option and/or reducing the space reserved in the small data sections (i.e., . sbss
and .sdata) in your assembly code.

4.3.4 Directive Arguments

Each directive takes from 0 up to 3 arguments. These arguments give additional
information to the directive on how it should carry out the command. Arguments must
be separated from directives by one or more spaces or tabs. Commas must separate
multiple arguments. More details are provided in Chapter 7. “Assembler Directives”
on the available directives.

© 2009 Microchip Technology Inc. DS51833A-page 55

32-Bit Assembler, Linker and Utilities User’s Guide

4.3.5 Comments
Comments can be represented in the assembler in one of two ways described below.

4.35.1 SINGLE LINE COMMENT

This type of comment extends from the comment character to the end of the line. For
a single line comment, use a number/hash sign (#).

Note: This comment character differs from the character recognized by the
MPASM assembler and the MPLAB Assembler for PIC24 MCUs and
dsPIC® DSCs.

4352 MULTILINE COMMENT

This type of comment can span multiple lines. For a multi-line comment, use
* ... *|. These comments cannot be nested.
Example:

/* All

of these
lines

are
comments */

DS51833A-page 56

© 2009 Microchip Technology Inc.

Assembler Syntax

4.4 CONSTANTS

A constant is a value written so that its value is known by inspection, without knowing
any context. Examples are:

.byte 74, 0112, 0b01001010, O0x4A, Ox4a, 'J’, '\J'#All the same value
.ascii "Ring the bell\7" #A string constant
.float 0£-31415926535897932384626433832795028841971.693993751E-40

44.1 Numeric Constants

The assembler distinguishes two kinds of numbers according to how they are stored in
the machine. Integers are numbers that would fit into a 1ong in the C language. Float-
ing point numbers are IEEE 754 floating point numbers.

4411 INTEGERS

A binary integer is ‘Ob’ or ‘OB’ followed by zero or more of the binary digits ‘01"
An octal integer is ‘0’ followed by zero or more of the octal digits ‘01234567'.

A decimal integer starts with a non-zero digit followed by zero or more decimal digits
‘0123456789'.

A hexadecimal integer is ‘Ox’ or ‘OX’ followed by one or more hexadecimal digits
‘0123456789abcdefABCDEF'.

To denote a negative integer, use the prefix operator *-'.

4412 FLOATING POINT NUMBERS

A floating point number is represented in IEEE 754 format. A floating point number is
written by writing (in order):

« An optional prefix, which consists of the digit ‘0’, followed by the letter ‘e’, ‘f’ or ‘d’
in upper or lowercase. Because floating point constants are used only with
.float and .double directives, the precision of the binary representation is
independent of the prefix.

« An optional sign: either ‘+" or *-".
< An optional integer part: zero or more decimal digits.
« An optional fractional part: ‘.’ followed by zero or more decimal digits.
« An optional exponent, consisting of:
- An‘E’or ‘e’.
- Optional sign: either ‘+" or *-'.
- One or more decimal digits.

At least one of the integer part or fractional part must be present. The floating point
number has the usual base-10 value.

Floating point numbers are computed independently of any floating point hardware in
the computer running the assembiler.

© 2009 Microchip Technology Inc. DS51833A-page 57

32-Bit Assembler, Linker and Utilities User’s Guide

442 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. A string can contain potentially
many bytes and their values may not be used in arithmetic expressions.

4421 CHARACTERS

A single character may be written as a single quote immediately followed by that
character, or as a single quote immediately followed by that character and another
single quote. The assembler accepts the following escape characters to represent
special control characters:

TABLE 4-1: ESCAPE CHARACTERS

A Hex
Escape Character Description Value

\a Bell (alert) character 07
\b Backspace character 08
\f Form-feed character oC
\n New-line character 0A
\r Carriage return character oD
\t Horizontal tab character 09
\v Vertical tab character 0B
\\ Backslash 5C
\? Question mark character 3F
\" Double quote character 22
\digit digit digit |Octal character code. The numeric code is 3 octal digits.

\x hex-digits Hex character code. All trailing hex digits are combined.

Either upper or lowercase x works.

The value of a character constant in a numeric expression is the machine’s byte-wide
code for that character. The assembler assumes your character code is ASCII.

4422 STRINGS

A string is written between double quotes. It may contain double quotes or null
characters. The way to get special characters into a string is to escape the characters,
preceding them with a backslash ‘\' character. The same escape sequences that apply
to strings also apply to characters.

DS51833A-page 58

© 2009 Microchip Technology Inc.

Assembler Syntax

45 SUMMARY

Table 4-2 summarizes the general syntax rules that apply to the assembiler:

TABLE 4-2: SYNTAX RULES
Character Character Description Syntax Usage
. period begins a directive
number/hash begin single-line comment
/* slash, asterisk begin multiple-line comment
*/ asterisk, slash end multiple-line comment
colon end a label definition
none required begin a literal value
re’ character in single quotes specifies single character value
"string" character string in double quotes | specifies a character string

© 2009 Microchip Technology Inc.

DS51833A-page 59

32-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS51833A-page 60 © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Chapter 5. Assembler Expression Syntax and Operation

5.1 INTRODUCTION

Expression syntax and operation for MPLAB Assembler for PIC32 MCUs is discussed
here.

Topics covered in this chapter are:

« Expressions
¢ Operators

5.2 EXPRESSIONS

An expression specifies an address or numeric value. White space may precede and/or
follow an expression. The result of an expression must be an absolute number, or else
an offset into a particular section. If an expression is not absolute, and there is not
enough information when the assembler sees the expression to know its section, the
assembler terminates with an error message in this situation.

5.2.1 Empty Expressions

An empty expression has no value: it is just white space or null. Wherever an absolute
expression is required, you may omit the expression, and the assembler assumes a
value of (absolute) 0.

5.2.2 Integer Expressions

An integer expression is one or more arguments delimited by operators. Arguments are
symbols, numbers or sub expressions. Sub expressions are a left parenthesis ‘(’
followed by an integer expression, followed by a right parenthesis *)’; or a prefix
operator followed by an argument.

Integer expressions involving symbols in program memory are evaluated in Program
Counter (PC) units. In MIPS32 mode, the Program Counter increments by 4 for each
instruction word. For example, to branch to the next instruction after label L, specify L+4
as the destination.

Example:
b L+4

© 2009 Microchip Technology Inc. DS51833A-page 61

32-Bit Assembler, Linker and Utilities User’s Guide

5.3 OPERATORS

Operators are arithmetic functions, like + or %. Prefix operators are followed by an
argument. Infix operators appear between their arguments. Operators may be
preceded and/or followed by white space.

Prefix operators have higher precedence than infix operators. Infix operators have an
order of precedence dependent on their type.

5.3.1 Prefix Operators

The assembler has the following prefix operators. Each takes one argument, which
must be absolute.

TABLE 5-1: PREFIX OPERATORS

Operator Description Example
- Negation. Two’s complement negation. -1
~ Bit-wise not. One’s complement. ~flags

5.3.2 Infix Operators

Infix operators take two arguments, one on either side. Operators have a precedence,
by type, as shown in the table below, but operations with equal precedence are per-
formed left to right. Apart from + or —, both operators must be absolute, and the result
is absolute.

TABLE 5-2: INFIX OPERATORS

Operator Description Example
Arithmetic
* Multiplication 5 % 4 (=20)
/ Division. Truncation is the same as the C operator ‘/'. 23 / 4 (=5)
% Remainder 30 % 4 (=2)
<< Shift Left. Same as the C operator ‘<<’ 2 << 1 (=4)
>> Shift Right. Same as the C operator ‘>>’ 2 >> 1 (=1)
Bit-Wise
& Bit-wise And 4 & 6 (=4)
» Bit-wise Exclusive Or 4 %6 (=2)
! Bit-wise Or Not 0x1010 ! 0x5050
(=0xBFBF)
| Bit-wise Inclusive Or 2 | 4 (=6)
Simple Arithmetic
+ Addition. If either argument is absolute, the result hasthe |4 + 10 (=14)
section of the other argument. You may not add together
arguments from different sections.
- Subtraction. If the right argument is absolute, theresult |14 - 4 (=10)
has the section of the left argument. If both arguments
are in the same section, the result is absolute. You may
not subtract arguments from different sections.

DS51833A-page 62 © 2009 Microchip Technology Inc.

Assembler Expression Syntax and Operation

TABLE 5-2: INFIX OPERATORS (CONTINUED)

Operator | Description | Example

Relational

== Equal to JAf (% == y)

1= Not equal to (also <>) A (x 1= y)

< Less than .if (x < 5)

<= Less than or equal to Lif (y <= 0)

> Greater than LAf (x> a)

>= Greater than or equal to Lif (% >= D)

Logical

&& Logical AND Af ((x > 1)
&& (x < 10))

| Logical OR Lif ((y = x)
[| (y < 100))

© 2009 Microchip Technology Inc. DS51833A-page 63

32-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS51833A-page 64 © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Chapter 6. Assembler Symbols

6.1 INTRODUCTION

Symbols are defined and their use with MPLAB Assembler for PIC32 MCUs is
discussed.

Topics covered in this chapter are:

« What are Symbols

* Local Symbols

» Giving Symbols Other Values
e The Special DOT Symbol

6.2 WHAT ARE SYMBOLS

A symbol is one or more characters chosen from the set of all letters, digits and the two
characters underline (_) and period (.). Symbols may not begin with a digit. Case is
significant (e.g., £oo is a different symbol than Foo). There is no length limit and all
characters are significant.

Each symbol has exactly one name. Each name in an assembly language program
refers to exactly one symbol. You may use that symbol name any number of times in a
program.

6.3 LOCAL SYMBOLS

Local symbols are used when temporary scope for a label is needed. There are ten
local symbol names, which can be reused throughout the program. They may be
referred to using the names ‘0, ‘1, ..., ‘9. To define a local symbol, write a label of the
form ‘N, ‘N’, ..., ‘N’ (where N represents any digit 0-9). To refer to the most recent pre-
vious definition of that symbol, write ‘Nb’, using the same digit as when you defined the
label. To refer to the next definition of a local label, write ‘Nf'. The ‘b’ stands for “back-
wards” and the ‘f’ stands for “forwards”.

There is no restriction on how you can use these labels, and you can reuse them too.
You can repeatedly define the same local label (using the same number ‘N’), although
you can refer to only the most recently defined local label of that number (for a back-
wards reference) or the next definition of a specific local label for a forward reference.

Also note that the first 10 local labels (‘0:’. . . '9:") are implemented in a slightly more
efficient manner than the others.

Here is an example:

EXAMPLE 6-1: SYMBOL USAGE

1: b 1f
2: b 1b
1: b 2f
2: b 1b

Which is the equivalent of:
label 1: b label 3

© 2009 Microchip Technology Inc. DS51833A-page 65

32-Bit Assembler, Linker and Utilities User’s Guide

label 2: b label 1
label 3: b label 4
label 4: b label 3

Local symbol names are only a notational device. They are immediately transformed
into more conventional symbol names before the assembler uses them. These conven-
tional symbol names are stored in the symbol table and appear in error messages and
optionally emitted to the object file.

6.4 GIVING SYMBOLS OTHER VALUES

A symbol can be given an arbitrary value by writing a symbol, followed by an equals
sign ‘=’, followed by an expression.

Example:
VAR = 4

6.5 THE SPECIAL DOT SYMBOL

The special symbol ‘.’ refers to the current address being processed by the assembler.
Thus, the expression ‘melvin: .long .’ defines melvin to contain its own address.
Assigning a value to . is treated the same as a . org directive. Thus, the expression
‘.=.+4’is the same as saying ‘. space 4’.

When used in an executable section, ‘.’ refers to a Program Counter address. On a
PIC32 MCU, the Program Counter increments by 4 for each 32-bit instruction word.

User code should take care to properly align instructions after modifying the dot
symbol.

DS51833A-page 66

© 2009 Microchip Technology Inc.

MICROCHIP

MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR

PIC32 MCUs USER’S GUIDE

Chapter 7. Assembler Directives

7.1 INTRODUCTION

Directives are assembler commands that appear in the source code but are not usually
translated directly into opcodes. They are used to control the assembler: its input,
output, and data allocation.

Note: Assembler directives are not target instructions (ADD, XOR, JAL, etc). For
instruction set information, consult your target-device data sheet.

While there are many significant similarities with directives supported by the 16-bit
MPLAB Assembler for PIC24 MCUs and dsPIC® DSCs (pic30-as), there are many
differences in the directive set supported by the 32-bit MPLAB Assembler for PIC32
MCUs (pic32-as).

Topics covered in this chapter are:

Directives that Define Sections
Directives that Initialize Constants
Directives that Declare Symbols
Directives that Define Symbols
Directives that Modify Section Alignment
Directives that Format the Output Listing
Directives that Control Conditional Assembly
Directives for Substitution/Expansion
Directives that Include Other Files
Directives that Control Diagnostic Output
Directives for Debug Information
Directives that Control Code Generation

© 2009 Microchip Technology Inc.

DS51833A-page 67

32-Bit Assembler, Linker and Utilities User’s Guide

7.2 DIRECTIVES THAT DEFINE SECTIONS

Sections are locatable blocks of code or data that will occupy contiguous locations in
the 32-bit device memory. Three sections are pre-defined: . text for executable code,
.data for initialized data and .bss for uninitialized data. Other sections may be
defined; the linker defines several that are useful for locating data in specific areas of
32-bit memory.

Section directives are:

* .bss

* .data

* .pushsection name

* .popsection

e .section name [, flags] [, @typel]
e .text

.bss

Definition

Assemble the following statements onto the end of the .bss (uninitialized data)
section.

The bss section is used for local common variable storage. You may allocate address
space in the bss section, but you may not dictate data to load into it before your pro-
gram executes. When your program starts running, all the contents of the bss section
are zeroed bytes.

Use the . bss directive to switch into the bss section and then define symbols as usual.
You may assemble only zero values into the section. Typically, the section will contain
only symbol definitions and . skip directives

Example

The following symbols (Bl and B2) will be placed in
the uninitialized data section.

.bss

Bl: .space 4 # 4 bytes reserved for Bl
B2: .space 1 # 1 byte reserved for B2
.data

Definition

Assemble the following statements onto the end of the . data (initialized data) section.
Example

The following symbols (D1 and D2) will be placed in
the initialized data section.

.data
D1: .long 0x12345678 # 4 bytes
D2: .byte OXFF # 1 byte

.pushsection name

This directive pushes the current section onto the top of the section stack and then
replaces the current section with name. Every . pushsection should have a matching
.popsection.

DS51833A-page 68

© 2009 Microchip Technology Inc.

Assembler Directives

.popsection

Replace the current section description with the top section on the section stack. This
section is popped off the stack.

.section name [, flags] [, @typel

Use the . section directive to assemble the following code into a section named
name. The optional f1ags argument is a quoted string which may contain any
combination of the following characters:

a section is allocatable

w section is writable

x section is executable

The etype argument may be one of:

@progbits Normal section with contents

@nobits Section does not contain data (i.e., section only occupies space)

Reserved Section Names

The following section hames are available for user applications:
TABLE 7-1: RESERVED SECTIONS DETAILS

Default Linker Script

Section Name Generated by Final Location MEMORY Region

.text Compiler- or assembler- Executable code segment kseg0_ program mem
generated instructions

.text.* Functions when compiled with Executable code segment kseg0_ program mem
-ffunction-sectiong are out-
put to uniquely named sections of

this form
.startup C start-up code Executable boot-code segment kseg0_boot_mem
.app_excpt General-Exception handler Executable boot-code segment kseg0_boot_mem
.reset Reset handler Executable boot-code segment kseg0_boot_mem
.bev_excpt BEV-Exception handler Executable boot-code segment kseg0_boot_mem
.vector_n Interrupt Vector n Executable boot-code segment kseg0_boot_mem
.rodata Strings and C data declared Read-only data segment kseg0_program_ mem
const
.rodata.* Constant data when compiled with | Read-only data segment kseg0_ program mem

-fdata-sections are output to
uniquely named sections of this

form
.data Variables >n bytes (compiled -Gn) | Initialized data segment ksegl data mem &
with an initial value. Values copied kseg0_program_mem

from program memory to data
memory at C start-up.

.data.* Large initialized variables com- Initialized data segment ksegl data mem &
piled with -fdata-sections kseg0_program_mem

.ramfunc RAM-functions, copied from pro- | Initialized data segment ksegl data mem &
gram memory to data memory at C kseg0_ program_ mem
start-up

© 2009 Microchip Technology Inc. DS51833A-page 69

32-Bit Assembler, Linker and Utilities User’s Guide

TABLE 7-1:

RESERVED SECTIONS DETAILS (CONTINUED)

Section Name

Generated by

Final Location

Default Linker Script
MEMORY Region

.lit4 / Constants (usually floating point) | Small initialized data segment ksegl data mem &

.lits which the assembler decides to kseg0_program_ mem
store in memory rather than in the
instruction stream. Used for
gp-relative addressing.

.sdata Variables <=n bytes (compiled Small initialized data segment ksegl data mem &
-Gn) with an initial value. Used for kseg0_ program mem
gp-relative addressing.

.sdata.* Small variables compiled with Small initialized data segment ksegl data mem &
-fdata-sections. Used for kseg0_ program mem
gp-relative addressing.

.sbss Uninitialized variables <=n bytes | Small zero-filled segment ksegl data_mem
(compiled -Gn). Used for
gp-relative addressing.

.sbss.* Small uninitialized variables com- | Small zero-filled segment ksegl data_mem
piled with -fdata-sections.

Used for gp-relative addressing.

.bss Uninitialized larger variables Zero-filled segment ksegl data_mem

.bss.* Uninitialized variables compiled Zero-filled segment ksegl data_mem
with -fdata-sections.

.heap Heap used for dynamic memory Reserved by linker script ksegl data mem

.stack Minimum space reserved for stack | Reserved by linker script ksegl data mem

.debug* DWARF debug information Not in load image n/a

.line DWAREF debug information Not in load image n/a

.comment #ident/. ident strings Not in load image n/a

.reginfo Information section Not in load image n/a

Section Directive Examples

.section foo, "aw",@progbits

.section fob, "aw",@nobits

.section bar, "ax",@progbits

#foo is initialized

#data memory.

#fob is uninitialized

(but also not zeroed)
#data memory.

#bar is in program memory

DS51833A-page 70

© 2009 Microchip Technology Inc.

Assembler Directives

.text

Definition
Assemble the following statements onto the end of the . text (executable code)
section.

Example

.text

.ent main entry
_main entry:

jal main

nop

jal exit

nop

b 1b

nop
.end main entry

7.3 DIRECTIVES THAT INITIALIZE CONSTANTS

Constant initialization directives are:

* .ascii “string;” [, ..., “string,”]
* .asciz “string;” [, ..., “string,”]
* .byte expr;[, ..., expr,l]

* .double value;[, ..., value,]

* .float value;[, ..., valuej]

e .single value;[, ..., valuep]

* .hword expr;[, ..., expr,]

e .int expr,[, ..., expr,]

* .long expr [, ..., expr,l]

e .short expr;[, ..., expr,]

e .string “str”
* .word expr [, ..., expr,l]

.ascii “string,” [, ..., “string,”]

.ascii expects zero or more string literals separated by commas. It assembles each
string (with no automatic trailing zero byte) into consecutive addresses.

.asciz “string,” [, ..., “string,”]

.ascizisjustlike .ascii, but each string is followed by a zero byte. The “z” in
.asciz stands for “zero”. This directive is a synonym for . string.

.byte expr [, ..., expr,l]

.byte expects zero or more expressions, separated by commas. Each expression is
assembled into the next byte in the current section.

© 2009 Microchip Technology Inc. DS51833A-page 71

32-Bit Assembler, Linker and Utilities User’s Guide

.double value;[, ..., valuej]

Assembles one or more double-precision (64-bit) floating point constants into
consecutive addresses in little-endian format. Floating point numbers are in IEEE
format (see Section 4.4.1.2 “Floating Point Numbers”).

The following statements are equivalent:
.double 12345.67

.double 1.234567e4
.double 1.234567e04
.double 1.234567e+04
.double 1.234567E4
.double 1.234567E04

.double 1.234567E+04

Alternatively, you can specify the hexadecimal encoding of a floating point constant.
The following statements are equivalent and encode the value 12345.67 as a 64-bit
double-precision number:

.double 0e:40C81CD5C28F5C29
.double 0£f:40C81CD5C28F5C29
.double 0d:40C81CD5C28F5C29

.float value;[, ..., value,]

Assembles one or more single-precision (32-bit) floating point constants into
consecutive addresses in little-endian format. It has the same effect as . single.
Floating point numbers are in IEEE format (see Section 4.4.1.2 “Floating Point
Numbers™).

The following statements are equivalent:
.float 12345.67

.float 1.234567e4
.float 1.234567e04
.float 1.234567e+04
.float 1.234567E4
.float 1.234567E04

.float 1.234567E+04

Alternatively, you can specify the hexadecimal encoding of a floating point constant.
The following statements are equivalent and encode the value 12345.67 as a 32-bit
double-precision number:

.float 0Oe:4640E6AE

.float 0f:4640E6AE
.float 0d:4640E6AE

.single value;[, ..., value,]

Assembles one or more single-precision (32-bit) floating point constants into
consecutive addresses in little-endian format. This directive is a synonym for . float.
Floating point numbers are in IEEE format (see Section 4.4.1.2 “Floating Point
Numbers™).

.hword expr, [, expr,]

e o o g

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format. This directive is a synonym for . short.

DS51833A-page 72

© 2009 Microchip Technology Inc.

Assembler Directives

.int expr [, ..., expr,]

Assembles one or more 4-byte numbers into consecutive addresses in little-endian
format. This directive is a synonym for . long.

.long expr [, ..., expr,l]

Assembles one or more 4-byte numbers into consecutive addresses in little-endian
format. This directive is a synonym for . int.

.short expr [, ..., expr,]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format. This directive is a synonym for . hword.

.string “str”

This directive is a synonym for .asciz.

.word expr,[, ..., expr,]

Assembles one or more 4-byte numbers into consecutive addresses in little-endian
format.

© 2009 Microchip Technology Inc. DS51833A-page 73

32-Bit Assembler, Linker and Utilities User’s Guide

7.4 DIRECTIVES THAT DECLARE SYMBOLS

Declare symbol directives are:

e .comm symbol, length [, algnl]
¢ .extern symbol

¢ .global symbol .globl symbol
¢ .lcomm symbol, length

* .weak symbol

.comm symbol, length [, algnl]

. comm declares a common symbol named symbol. When linking, a common symbol
in one object file may be merged with a defined or common symbol of the same name
in another object file. If the linker does not see a definition for the symbol — just one or
more common symbols — then it will allocate 1ength bytes of uninitialized memory.
length must be an absolute expression. If the linker sees multiple common symbols
with the same name, and they do not all have the same size, it will allocate space using
the largest size.

The . comm directive takes an optional third argument. If algn is specified, it is the

desired alignment of the symbol, specified as a byte boundary (for example, an align-
ment of 16 means that the Least Significant 4 bits of the address should be zero). The
alignment must be an absolute expression, and it must be a power of two. If linker allo-
cates uninitialized memory for the common symbol, it will use the alignment when plac-
ing the symbol. If no alignment is specified, the assembler will set the alignment to the
largest power of two less than or equal to the size of the symbol, up to a maximum of 1.

.extern symbol

The .extern directive declares a symbol name that may be used in the current mod-
ule, but it is defined as global in a different module. However, all symbols are extern
by default so this directive is optional.

.global symbol
.globl symbol

The .global directive declares a symbol symbol that is defined in the current module
and is available to other modules. .global makes the symbol visible to the linker. If

you define symbol in your partial program, its value is made available to other partial

programs that are linked with it. Otherwise, symbol takes its attributes from a symbol of
the same name from another file linked into the same program.

Both spellings (.globl and .global) are accepted, for compatibility with other
assemblers.

.lcomm symbol, length

Reserve length bytes for a local common denoted by symbol. The section and value
of symbol are those of the new local common. The addresses are allocated inthe .bss
section, so that at run-time, the bytes start off zeroed. symbo1 is not declared global
so it is normally not visible to the linker.

DS51833A-page 74

© 2009 Microchip Technology Inc.

Assembler Directives

.weak symbol

Marks the symbol named symbol as weak. When a weak-defined symbol is linked with
a normal-defined symbol, the normal-defined symbol is used with no error. When a
weak-defined symbol is linked and the symbol is not defined, the value of the weak
symbol becomes zero with no error.

7.5 DIRECTIVES THAT DEFINE SYMBOLS

Define symbol directives are:

* .equ symbol, expression
* .equiv symbol, expression

.equ symbol, expression

This directive sets the value of symbol to expression. You may set a symbol any
number of times in assembly. If you set a global symbol, the value stored in the object
file is the last value equated to it.

.equiv symbol, expression

Like . equ, except that the assembler will signal an error if symbol is already defined.
Note that a symbol which has been referenced but not actually defined is considered
to be undefined.

Except for the contents of the error message, this directive is roughly equivalent to:

.ifdef SYM
.err

.endif

.equ SYM, VAL

© 2009 Microchip Technology Inc. DS51833A-page 75

32-Bit Assembler, Linker and Utilities User’s Guide

7.6 DIRECTIVES THAT MODIFY SECTION ALIGNMENT

Directives that explicitly modify section alignment are listed below.

Note: User code must take care to properly align an instruction following a direc-
tive that modifies the section alignment or location counter.

e .align [algn[, £ill]]

e .fill repeat[, sizel, valuell
e .org new-1lc[, £ill]

e .skip size[, £ill]

* .space sizel[, £fill]

* .struct expression

.align [algn[, £fill]]

The .align directive pads the location counter (in the current subsection) to a partic-
ular storage boundary. The first expression (which must be absolute) is the alignment
required specified as the number of low-order zero bits the location counter must have
after advancement.

The assembler accepts algn values from O up to 15. A .align O turns off the auto-
matic alignment used by the data creating pseudo-ops. You must make sure that data
is properly aligned. Reinstate auto-alignment with a . align pseudo instruction.

The second expression (also absolute) gives the £111 value to be stored in the pad-
ding bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are
zero by default. You may wish to use OxFF for Flash regions of memory.

.£ill repeatl, sizel, valuell

Reserve repeat copies of size bytes. repeat may be zero or more. size may be zero
or more, but if it is more than 8, then it is deemed to have the value 8. The content of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero.
The lowest order 4 bytes are value rendered in the little-endian byte-order. Each size
bytes in a repetition is taken from the lowest order size bytes of this number.

sizeis optional. If the first comma and following tokens are absent, size is assumed
to be 1.

value is optional. If the second comma and value are absent, value is assumed
zero.

Example:
.text
.£ill 0x3, 1, OxFF
.align 2

mylabel: Db .

.org new-1lc[, £fill]

The .org directive advances the location counter of the current section to new-1c.
new-1cis either an absolute expression or an expression with the same section as the
current subsection. That is, you can’t use . org to cross sections: if new-1c has the
wrong section, the . org directive is ignored. If the section of new-1c is absolute,
pic32-as issues a warning, then pretends the section of new-1c is the same as the
current subsection.

DS51833A-page 76

© 2009 Microchip Technology Inc.

Assembler Directives

.org may only increase the location counter, or leave it unchanged; you cannot use
.org to move the location counter backwards.

Because the assembler tries to assemble programs in one pass, new-1c may not be
undefined.

Beware that the origin is relative to the start of the section, not to the start of the sub-
section.

When the location counter (of the current subsection) is advanced, the intervening
bytes are filled with £111, which should be an absolute expression. If the comma and
£i11 are omitted, £i11 defaults to zero.

.skip sizel, fill]

.space sizel[, fill]

These directives emit size bytes, each of value £i11. Both sizeand £1i11 are abso-
lute expressions. If the comma and £i11 are omitted, £i11 is assumed to be zero.

.struct expression

Switch to the absolute section, and set the section offset to expression, which must
be an absolute expression. You might use this as follows:

.struct 0
fieldl:

.struct fieldl + 4
field2:

.struct field2 + 4
field3:

This would define the symbol £ield1 to have the value 0, the symbol £ield2 to have
the value 4, and the symbol £ie1d3 to have the value 8. Assembly would be leftin the
absolute section, and you would need to use a . section directive of some sort to
change to some other section before further assembly.

© 2009 Microchip Technology Inc. DS51833A-page 77

32-Bit Assembler, Linker and Utilities User’s Guide

7.7 DIRECTIVES THAT FORMAT THE OUTPUT LISTING

Output listing format directives are:

e .eject

e .list

e .nolist

e .psize lines|[, columns]

e .sbttl “subheading”
e .title “heading”

.eject

Force a page break at this point when generating assembly listings.

.list

Controls (in conjunction with .nolist) whether assembly listings are generated. This
directive increments an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.

Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.nolist

Controls (in conjunction with . 11ist) whether assembly listings are generated. This
directive decrements an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.

Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.psize lines[, columns]

Declares the number of lines, and optionally, the number of columns to use for each
page when generating listings.

If you do not use .psize, listings use a default line count of 60. You may omit the
comma and columns specification; the default width is 200 columns.

The assembler generates formfeeds whenever the specified number of lines is
exceeded (or whenever you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly specified with
.eject.

.sbttl “subheading”

Use subheading as a subtitle (third line, immediately after the title line) when generat-
ing assembly listings. This directive affects subsequent pages, as well as the current
page, if it appears within ten lines of the top.

.title “heading”

Use heading as the title (second line, immediately after the source file name and page
number) when generating assembly listings.

DS51833A-page 78

© 2009 Microchip Technology Inc.

Assembler Directives

7.8 DIRECTIVES THAT CONTROL CONDITIONAL ASSEMBLY

Conditional assembly directives are:
e .else

e .elseif expr

e .endif

e .if expr

.else

Used in conjunction with the . if directive to provide an alternative path of assembly
code should the . if evaluate to false.

.elseif expr

Used in conjunction with the . if directive to provide an alternative path of assembly
code should the . if evaluate to false and a second condition exists.

.endif

Marks the end of a block of code that is only assembled conditionally.

.1f expr

Marks the beginning of a section of code that is only considered part of the source
program being assembled if the argument expr is non-zero. The end of the conditional
section of code must be marked by an . endi £; optionally, you may include code for
the alternative condition, flagged by .else.

The assembler also supports the following variants of .1if.
.ifdecl symbol

Assembles the following section of code if the specified symbol has been defined. Note
a symbol which has been referenced but not yet defined is considered to be undefined.

.ife stringl,string2

This directive assembles the following section of code if the two strings are the same.
The strings may be optionally quoted with single quotes. If they are not quoted, the first
string stops at the first comma, and the second string stops at the end of the line.
Strings which contain whitespace should be quoted. The string comparison is case
sensitive.

.ifeq absolute-expression
This directive assembles the following section of code if the argument is zero.
.ifeqs stringl,string2

This directive is another form of . ifc. The strings must be quoted using double
quotes.

.ifge absolute-expression

This directive assembles the following section of code if the argument is greater than
or equal to zero.

© 2009 Microchip Technology Inc. DS51833A-page 79

32-Bit Assembler, Linker and Utilities User’s Guide

.ifgt absolute-expression

This directive assembles the following section of code if the argument is greater than
zero.

.ifle absolute-expression

This directive assembles the following section of code if the argument is less than or
equal to zero.

.iflt absolute-expression
This directive assembles the following section of code if the argument is less than zero.
.ifnec stringl,string2

This directive is like . ifc, but the sense of the test is reversed: this assembles the
following section of code if the two strings are not the same.

.ifndef symbol

This directive assembles the following section of code if the specified symbol has not
been defined. Both spelling variants are equivalent. Note a symbol which has been
referenced but not yet defined is considered to be undefined.

.ifnotdef symbol

This directive is the same as .ifndef.

.ifne absolute-expression

This directive assembles the following section of code if the argument is not equal to
zero (in other words, this is equivalent to . if).

.ifnes stringl,string2

This directive is like . ifeqgs, but the sense of the test is reversed: this assembles the
following section of code if the two strings are not the same.

7.9 DIRECTIVES FOR SUBSTITUTION/EXPANSION

Substitution/expansion directives are:

e .exitm

* .irp symbol, value; [, ..., valuey]endr
e .irpc symbol, valueendr

¢ .macro

.exitm

Exit early from the current macro definition. See .macro directive.

.irp symbol, value;
[, ..., value,]

.endr

Evaluate a sequence of statements assigning different values to symbol. The
sequence of statements starts at the . irp directive, and is terminated by a .endr
directive. For each value, symbol is set to value, and the sequence of statements is

DS51833A-page 80

© 2009 Microchip Technology Inc.

Assembler Directives

assembled. If no value is listed, the sequence of statements is assembled once, with
symbol set to the null string. To refer to symbol within the sequence of statements,
use \symbol.
For example, assembling

.irp reg,0,1,2,3

lw Sa\reg, 1032+\reg($sp)

.endr

is equivalent to assembling

1w $a0,1032+0
1w $al,1032+1
1w $a2,1032+2
lw $a3,1032+3

$sp
$sp
$sp

)
)
)
$sp)

.irpc symbol, value

.endr

Evaluate a sequence of statements assigning different values to symbol. The
sequence of statements starts at the . irpc directive, and is terminated by an .endr
directive. For each character in value, symbol is set to the character, and the
sequence of statements is assembled. If no value is listed, the sequence of statements
is assembled once, with symbol set to the null string. To refer to symbo1l within the
sequence of statements, use \ symbol.

For example, assembling

.irpc reg, 0123
1w $a\reg, 1032+\reg($sp)
.endr

is equivalent to assembling

lw $a0,1032+0
1w $al,1032+1
1w $a2,1032+2
1w $a3,1032+3

$sp)
$sp)
$sp)
$sp)

.macro

The directives .macro and . endm allow you to define macros that generate assembly
output. For example, this definition specifies a macro SuM that puts a sequence of
numbers into memory:

.macro SUM from=0, to=5
.long \from

Lif \+o-\from

SUM " (\from+1)", \+0
.endif

.endm

With that definition, ‘suM 0, 5’ is equivalent to this assembly input:

.long 0
.long
.long
.long
.long
.long

g W N R

© 2009 Microchip Technology Inc. DS51833A-page 81

32-Bit Assembler, Linker and Utilities User’s Guide

.macro macname

.macro macname macargs ...

Begin the definition of a macro called macname. If your macro definition requires argu-
ments, specify their names after the macro name, separated by commas or spaces.
You can supply a default value for any macro argument by following the name with
=deflt. For example, these are all valid . macro statements:

¢ .macro comm
Begin the definition of a macro called comm, which takes no arguments.

¢ .macro plusl p, pl
.macro plusl p pl
Either statement begins the definition of a macro called plus1, which takes two
arguments; within the macro definition, write \p or \p1 to evaluate the arguments.
* .macro reserve_ str pl=0 p2
Begin the definition of a macro called reserve str, with two arguments. The
first argument has a default value, but not the second. After the definition is com-
plete, you can call the macro either as ‘reserve_str a,b’ (with \p1 evaluating
to a and \p2 evaluating to b), or as ‘reserve_str ,b’ (with \p1 evaluating as
the default, in this case ‘0’, and \p2 evaluating to b).

When you call a macro, you can specify the argument values either by position, or by
keyword. For example, ‘'SUM 9,17’ is equivalentto ‘sum to=9, from=17".

.endm

Mark the end of a macro definition.

.exitm

Exit early from the current macro definition.

\@

The assembler maintains a counter of how many macros it has executed in this
pseudo-variable; you can copy that number to your output with \@, but only within a
macro definition. In the following example, a recursive macro is used to allocate an
arbitrary number of labeled buffers:

.macro make buffers num, size
BUF\@: .space \size

if (\num - 1)

make buffers (\num - 1),\size

.endif

.endm

.bss
create BUFO..BUF3, 16 bytes each
make buffers 4,16

This example macro expands as shown in the following listing:

6 make buffers (\num - 1),\size

7 .endif

8 .endm

9

10 .bss

11 # create BUFO0..BUF3, 16 bytes each
12 make buffers 4,16

12 > BUFO:.space 16

12 0000 > .space 16

DS51833A-page 82

© 2009 Microchip Technology Inc.

Assembler Directives

12 > .if (4-1)

12 > make buffers (4-1),16

12 >> BUF1l:.space 16

12 0010 >> .space 16

12 >> .1f ((4-1)-1)

12 >> make buffers ((4-1)-1),16

12 >>> BUF2:.space 16

12 0020 >>> .space 16

12 >>> .if (((4-1)-1)-1)

12 >>> make buffers (((4-1)-1)-1),16
12 >>>> BUF3:.space 16

12 0030 >>>> .space 16

12 >>>> .1f ((((4-1)-1)-1)-1)

12 >>>> make_buffers ((((4-1)-1)-1)-1),16
12 >>>> .endif

12 >>> .endif

12 >> .endif

12 > .endif

.purgem “*name”

Undefine the macro name, so that later uses of the string will not be expanded. See
.macro directive.

.rept countendr

Repeat the sequence of lines between the . rept directive and the next . endr direc-
tive count times.
For example, assembling

.rept 3
.long 0
.endr

is equivalent to assembling

.long 0
.long 0
.long 0

7.10 DIRECTIVES THAT INCLUDE OTHER FILES

Directives that include data from other files are:

e .incbin “file” [,skip[, count]]
e .include “file”

.incbin “file” [,skipl, count]]

The . incbin directive includes £ile verbatim at the current location. The file is
assumed to contain binary data. The search paths used can be specified with the -1
command-line option (see Chapter 3. “Assembler Command Line Interface”).
Quotation marks are required around file.

The skip argument skips a number of bytes from the start of the file. The count
argument indicates the maximum number of bytes to read. Note that the data is not
aligned in any way, so it is the user’s responsibility to make sure that proper alignment
is provided both before and after the . incbin directive.

© 2009 Microchip Technology Inc. DS51833A-page 83

32-Bit Assembler, Linker and Utilities User’s Guide

.include “file”

Provides a way to include supporting files at specified points in your source code. The
code is assembled as if it followed the point of the . include. When the end of the
included file is reached, assembly of the original file continues at the statement
following the . include.

7.11 DIRECTIVES THAT CONTROL DIAGNOSTIC OUTPUT

Miscellaneous directives are:

* .abort

e .err

* .error "string"

e .fail expression
* .ident "comment"
* .print “string”

e .version “string”
e .warning "string"

.abort

Prints out the message “.abort detected. Abandoning ship.” and exits the program.

.err

If the assembler sees an . err directive, it will print an error message, and unless the
- Z option was used, it will not generate an object file. This directive can be used to
signal an error in conditionally compiled code.

.error "string"

Similar to . err, except that the specified string is printed.

.fail expression

Generates an error or a warning. If the value of the expression is 500 or more,
pic32-as will print a warning message. If the value is less than 500, as will print an
error message. The message will include the value of expression. This can occa-
sionally be useful inside complex nested macros or conditional assembly.

.ident "comment"

Appends comment to the section named . comment. This section is created if it does
not exist. The linker will ignore this section when allocating memory, but will combine
all . comment sections together, in link order.

.print “string”

Prints string on the standard output during assembly.

DS51833A-page 84

© 2009 Microchip Technology Inc.

Assembler Directives

.version “string”

This directive creates a . note section and places into it an ELF formatted note of type
NT_VERSION. The note’s name is set to string. .version is supported when the
output file format is ELF; otherwise, it is ignored.

.warning "string"

Similar to the directive . error, but emits a warning.

7.12 DIRECTIVES FOR DEBUG INFORMATION

Debug information directives are:

e .ent function

e .end

e .file fileno "filename"

e .fmask mask, offset

e .frame framereg, frameoffset, retreg
e .loc fileno, lineno [columnno]
e .mask mask, offset

* .size name, expression

* .slebl28 expr; [, ..., expr,]
* .type name, description

e .ulebl28 exprl(, ...,exprn]

.ent function

This directive marks the funct ion symbol as a function similarly to the generic . type
directive.

.end

End program.

.file fileno "filename"

When emitting dwarf2 line-number information . £ile assigns filenames to the
.debug_line file name table. The £ileno operand should be a unique positive inte-
ger to use as the index of the entry in the table. The filename operand is a C string
literal.

The detail of £ilename indices is exposed to the user because the filename table is
shared with the . debug_info section of the dwarf2 debugging information, and thus
the user must know the exact indices that table entries will have.

.fmask mask, offset

Not used for current PIC32 MCUs. Maintain mask 0x00000000 and offset 0.

© 2009 Microchip Technology Inc. DS51833A-page 85

32-Bit Assembler, Linker and Utilities User’s Guide

.frame framereg, frameoffset, retreg

This directive describes the shape of the stack frame. The virtual Frame Pointer in use
is framereg; normally this is either $fp or $sp. The Frame Pointer is frameoffset
bytes below the canonical frame address (CFA), which is the value of the Stack Pointer
on entry to the function. The return address is initially located in retreg until it is saved
as indicated in . mask.

.loc fileno, lineno [columnnol

The object file’s debugging information contains a line-number matrix that correlates an
assembly instruction to a line and column of source code. The . loc directive will add
a matrix row corresponding to the assembly instruction immediately following the direc-
tive. The fileno, lineno, and columnno will be applied to the debug state machine
before the row is added.

.mask mask, offset

Indicate which of the integer registers are saved in the current function’s stack frame.
mask is interpreted a bit mask in which bit n set indicates that register n is saved. The
registers are saved in a block located of fset bytes from the canonical frame address
(CFA), which is the value of the Stack Pointer on entry to the function.

.silze name, expression

This directive sets the size associated with a symbol name. The size in bytes is
computed from expression which can make use of label arithmetic. This directive is
typically used to set the size of function symbols.

.slebl28 expr, [, ..., expr,]

slebl28 stands for “signed little-endian base 128.” This is a compact, variable-length
representation of numbers used by the DWARF symbolic-debugging format.

.type name, description

This sets the type of symbol name to be either a function symbol or an object symbol.
There are five different syntaxes supported for the type descriptionfield, in order to
provide compatibility with various other assemblers. The syntaxes supported are:

.type <names>, #function
.type <names>, #object
.type <name>,@function
.type <names,@object
.type <names>, $function
.type <names>, $object
.type <name>, "function"
.type <names>, "object"
.type <name> STT FUNCTION
.type <name> STT_ OBJECT

.ulebl28 expr;[,...,expr,]

uleb128 stands for “unsigned little endian base 128.” This is a compact, variable-length
representation of numbers used by the DWARF symbolic-debugging format.

DS51833A-page 86 © 2009 Microchip Technology Inc.

Assembler Directives

7.13 DIRECTIVES THAT CONTROL CODE GENERATION

Directives controlling assembler code-generation behavior are:

* .set noat

e .set at

* .set noautoextend
* .set autoextend

* .set nomacro

* .set macro

* .set mipslée

* .set nomipslée

* .set noreorder

* .set reorder

.set noat

When synthesizing some address formats, the assembler may require a scratch regis-
ter. By default, the assembler will quietly use the at ($1) register, which is reserved as
an assembler temporary by convention. In some cases, the compiler should not use
that register. The .set noat directive prevents the assembler from quietly using that
register.

.set at

Allow the assembler to quietly use the at ($1) register.

.set noautoextend

By default, MIPS16 instructions are automatically extended to 32 bits when necessary.
The directive . set noautoextend will turn this off. When .set noautoextendis
in effect, any 32-bit instruction must be explicitly extended with the .e modifier (e.g.,
“li.e $4,1000'). The directive . set autoextend may be used to once again automat-
ically extend instructions when necessary.

.set autoextend

Enable auto-extension of MIPS16 instructions to 32 bits.

.set nomacro

The assembler supports synthesized instructions, an instruction mnemonic that syn-
thesizes into multiple machine instructions. For instance, the sleu instruction assem-
bles into an s1tu instruction and an xor1i instruction. The .set nomacro directive
causes the assembler to emit a warning message when an instruction expands into
more than one machine instruction.

.set macro

Suppress warnings for synthesized instructions.

.set mipslé6e

Assemble with the MIPS16e ISA extension.

© 2009 Microchip Technology Inc. DS51833A-page 87

32-Bit Assembler, Linker and Utilities User’s Guide

.set nomipslée

Do not assemble with the MIPS16e ISA extension.

.set noreorder

By default, the assembler attempts to fill a branch or delay slot automatically by reor-
dering the instructions around it. This feature can be very useful.

Occasionally, you'll want to retain precise control over your instruction ordering. Use
the . set noreorder directive to tell the assembler to suppress this feature until it

encounters a .set reorder directive.

.set reorder

Allow the assembler to reorder instructions to fill a branch or delay slot.

DS51833A-page 88 © 2009 Microchip Technology Inc.

\ MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR

MICROCHIP PIC32 MCUs USER’S GUIDE

Part 2 - MPLAB Object Linker for PIC32 MCUs

Chapter 8. LINKEr OVEIVIEWuiiiiiiiieeeeeee ettt s e e e e e e e e e e e e e eeaaae s s e e e aeaeeaeeeees 91
Chapter 9. Linker Command-Line INterface........cccccceeeeeeieiiiiiieeees e 99
Chapter 10. LiNKer SCIIPLS .uuuuiiii it e e e e e e e e e eeees 111
Chapter 11. LiNKer ProCeSSING ...ccciiii it e e e ee e e e e e e eeaas 133

© 2009 Microchip Technology Inc. DS51833A-page 89

32-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS51833A-page 90 © 2009 Microchip Technology Inc.

N MPLAB® ASSEMBLER,
LINKER AND UTILITIES FOR
MICROCHIP PIC32 MCUs USER'’S GUIDE

Chapter 8. Linker Overview

8.1 INTRODUCTION

MPLAB Obiject Linker for PIC32 MCUs (pic32-14d) produces binary code from relo-
catable object code and archives for the PIC32 MCU family of devices. The 32-bit linker
is a Windows console application that provides a platform for developing executable
code. The linker is a part of the GNU linker from the Free Software Foundation.

Topics covered in this chapter are:

« Linker and Other Development Tools
* Feature Set
* Input/Output Files

8.2 LINKER AND OTHER DEVELOPMENT TOOLS

The PIC32 linker translates object files from the PIC32 assembler and archives files
from the PIC32 archiver/librarian into an executable file. See Figure 8-1 for an overview
of the tools process flow.

FIGURE 8-1: TOOLS PROCESS FLOW
C Source Files J
(*.0)
[
v N Cqmpiler
Assembly Source J C Compiler Driver
Files (*.S) ’L p Program
¢ J
Source Files (*. s) J
—
Assembler
- ¢ J
() ~ Object i
Archiver (Librarian) [« ‘e(ﬁ] O|)es
-
Object File Libraries : P Linker Script
(*.a) Linker < (*.1d)

A 4

MPLAB® IDE 1

Executable File Debug Tool

(*.elf) e

Command Line
Simulator

v

© 2009 Microchip Technology Inc. DS51833A-page 91

32-Bit Assembler, Linker and Utilities User’s Guide

8.3 FEATURE SET

Notable features of the linker include:

« User-defined minimum stack allocation
 User-defined heap allocation

« Available for Windows

« Linker scripts for all current PIC32 devices
* Command-Line Interface

* Integrated component of MPLAB IDE

8.4 INPUT/OUTPUT FILES

Linker input and output files are listed below.

TABLE 8-1: LINKER FILES

Extension Description
Input
.0 Obiject Files
.a Library Files
.14 Linker Script File
Output
.exe, .out Linker Output Files
.map Map File

Unlike the MPLINK linker, the 32-bit linker does not generate absolute listing files. The
32-bit linker is capable of creating a map file and a binary ELF file (that may or may not
contain debugging information). For text output similar to the MPLINK linker listing file,
run the ELF file through the pic32-objdump binary utility.

8.4.1 Object Files

Relocatable code produced by the assembler. The linker accepts the ELF object file
format.

8.4.2 Library Files

A collection of object files grouped together for convenience.

8.4.3 Linker Script File

Linker scripts, or command files:

« Instruct the linker where to locate sections
« Specify memory ranges for a given part
« Can be customized to locate user-defined sections at specific addresses

For more on linker script files, see Chapter 10. “Linker Scripts”.

DS51833A-page 92 © 2009 Microchip Technology Inc.

Linker Overview

EXAMPLE 8-1: LINKER SCRIPT

a complete working linker script.

Note: This simplified linker script example is for illustrative purposes only; it is not

OUTPUT_FORMAT("elf32—tradlittlemips")
OUTPUT_ARCH(pic32mX)
ENTRY (_reset)

MEMORY

{

kseg0 program mem(rx): ORIGIN=0x9D000000,

kseg0 _boot mem : ORIGIN=0x9FC00490,
exception mem : ORIGIN=0x9FC01000,
ksegl boot_mem : ORIGIN=0xBFC00000,
debug exec_mem : ORIGIN=0xBFC02000,
config3 : ORIGIN=0xBFCO2FFO,
config2 : ORIGIN=0xBFCO2FF4,
configl : ORIGIN=0xBFCO2FF8,
config0 : ORIGIN=0xBFCO2FFC,
ksegl data mem (w!x): ORIGIN=0xA0000000,
sfrs : ORIGIN=0xBF800000,
}

SECTIONS

{

.text ORIGIN (kseg0 program mem)
{
_text begin = . ;
(.text .stub .text.)
* (.mipslé6.fn.*)
(.mipsl6.call.)

_text end = . ;
} >kseg0 program mem =0
.data

{
_data begin = . ;
(.data .data. .gnu.linkonce.d.¥*)

KEEP (*(.gnu.linkonce.d.*personality*))

* (.datal)
} >ksegl data mem AT>kseg0 program mem
.bss

{
* (.dynbss)
(.bss .bss.)
* (COMMON)
= ALIGN (32 / 8) ;
} >ksegl data mem
.stack ALIGN (4)

+= _min stack_size ;
} >ksegl data mem

LENGTH=0x8000
LENGTH=0x970
LENGTH=0x1000
LENGTH=0x490
LENGTH=0xXFFO
LENGTH=0x4
LENGTH=0x4
LENGTH=0x4
LENGTH=0x4
LENGTH=0x2000
LENGTH=0x100000

© 2009 Microchip Technology Inc.

DS51833A-page 93

32-Bit Assembler, Linker and Utilities User’s Guide

8.4.4 Linker Output Files

By default, the name of the linker output binary file is a . out. You can override the
default name by specifying the -o option on the command line. MPLAB IDE’s project
manager uses the -o option to name the output file projectname.elf, where
projectname is the name of your MPLAB IDE project.

The format of the binary file is an Executable and Linking Format (ELF) file. The Exe-
cutable and Linking Format was originally developed and published by UNIX System
Laboratories (USL) as part of the Application Binary Interface (ABI). The ELF specifi-
cation is the result of the work of the Tool Interface Standards (TIS) Committee, an
association of members of the microcomputer industry formed to work toward stan-
dardization of the software interfaces visible to development tools.

The debugging information within the ELF file is in the DWARF Debugging Information
format. Also a result of the work of the TIS Committee, the DWARF format uses a series
of debugging entries to define a low-level representation of a source program. A
DWARF consumer, such as MPLAB IDE, can then use the representation to create an
accurate picture of the original source program

8.4.5 Map File

The map files produced by the linker consist of:

» Archive Member Table — lists the name of any members from archive files that are
included in the link.

« Memory Usage Report — shows the starting address and length of all output
sections in program memory and data memory. It also shows a percent utilization
of memory in the region.

* Memory Configuration — lists all of the memory regions defined for the link.

« Linker Script and Memory Map — shows modules, sections and symbols that are
included in the link as specified in the linker script.

« Outside Cross Reference Table (optional) — shows symbols, sorted by name. For
each symbol, a list of file names is given. If the symbol is defined, the first file
listed is the location of the definition. The remaining files listed contain references
to the symbol.

DS51833A-page 94

© 2009 Microchip Technology Inc.

Linker Overview

EXAMPLE 8-2: MAP FILE

Archive member included because of file (symbol)

size\libc.a(general-exception.o)

size/crt0.o (_general exception_ context)
size\libc.a(default-general-exception-handler.o)

size\libc.a(general-exception.o) (general exception handler)
size\libc.a(default-bootstrap-exception-handler.o)

size/crt0.o (bootstrap exception handler)
size\libc.a (default-on-reset.o)

size/crt0.o0 (_on reset)
size\libc.a(default-on-bootstrap.o)

size/crt0.o0 (_on bootstrap)
size\libc.a(default-nmi-handler.o)

size/crt0.o (_nmi_ handler)

Microchip PIC32 Memory-Usage Report

kseg0 Program-Memory Usage

section address length (dec) Description
.text 0x9d000000 0x678 1656 Application's executable code
.rodata 0x9d000678 0x14 20 Read-only constant data
.data 0x9d00068c 0xf 244 Data-initialization template
.sdata 0x9d000780 0x4 4 Small data-initialization template
Total kseg0 program mem used:

0x784 1924 0.4% of 0x80000

kseg0 Boot-Memory Usage

section address length (dec) Description
.startup 0x9fc00490 0xleO 480 C startup code
Total kseg0 boot mem used:

0x1e0 480 19.9% of 0x970

Exception-Memory Usage

section address length (dec) Description
.app_excpt 0x9£c01180 0x10 16 General-Exception handler
.vector 1 0x9fc01220 0x8 8 Interrupt Vector 1
Total exception mem used
0x18 24 0.6% of 0x1000

ksegl Boot-Memory Usage

section address length (dec) Description
.reset 0xbfc00000 0x10 16 Reset handler
.bev_excpt 0xbfc00380 0x10 16 BEV-Exception handler
Total ksegl boot mem used

0x20 32 2.7% of 0x490

Total Program Memory used

0x99c 2460 0.5% of 0x81e00
ksegl Data-Memory Usage
section address length (dec) Description
.data 0xa0000000 0xf4 244 Initialized data
.sdata 0xa00000f4 0x4 4 Small initialized data

© 2009 Microchip Technology Inc. DS51833A-page 95

32-Bit Assembler, Linker and Utilities User’s Guide

.sbss 0xa00000£8 0x4 4 Small uninitialized data
.bss 0xa00000fc 0x10c 268 Uninitialized data
.heap 0xa0000208 0x800 2048 Dynamic Memory heap
.stack 0xa0000a08 0x400 1024 Min space reserved for stack
Total ksegl data mem used
0xe08 3592 11.0% of 0x8000

Total Data Memory used

0xe08 3592 11.0% of 0x8000

Memory Configuration
Name Origin Length Attributes
kseg0_program mem 0x9d000000 0x00080000 XTr
kseg0_boot_mem 0x9fc00490 0x00000970
exception_mem 0x9£fc01000 0x00001000
ksegl boot_mem 0xbfc00000 0x000004590
config0 OxbfcO02ffc 0x00000004
ksegl data mem 0xa0000000 0x00008000 w Ix
sfrs 0xb£f800000 0x00100000
default 0x00000000 OxEffffffff
Linker script and memory map
LOAD size/crt0.o

0x00000800 _min heap size = 0x800

START GROUP

LOAD size\libc.a

LOAD size\libm.a

LOAD size\libmchp peripheral 32MX360F512L.a

END GROUP

LOAD C:/PIC32-Tools/bin/../lib/gcc/pic32mx/3.4.4/size\libgcc.a

0x00000400 PROVIDE (min stack size, 0x400)
0x00000000 PROVIDE (min heap size, 0x0)
LOAD ./proc/32MX360F512L\processor.o
0x00000001 PROVIDE (_vector_ spacing, 0x1)
0x9£c01000 _ebase_address = 0x9£c01000
0xbfc00000 _RESET ADDR = 0xbfc00000
0xbfc00380 _BEV_EXCPT ADDR = 0xbfc00380
0x9fc01180 _GEN_EXCPT ADDR = (_ebase_address + 0x180)
.reset 0xb£fc00000 0x10
* (.reset)
.reset 0xbfc00000 0x10 size/crt0.o
0xbfc00000 _reset
.bev_excpt 0xbf