N

MICROCHIP

MPLAB® C Compiler
For PIC32 MCUs
User’s Guide

88888888

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEeLOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit,
PICtail, PIC3? logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper.

Microchip received 1ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51686B-page ii

© 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUs USER’S GUIDE

Table of Contents

] = Lo = PR PURRPPRRPR 1
Chapter 1. Language Specifics
I [o1 o o 1H o 1 o o USRS 7
I 1 Te | e £ U PPRR 7
S @ V=T Y= SRR 7
1.4 File Naming CONVENLIONSuvuuiiiiieeieieiiiiiiie e e e e et e e e e e e eee e s e e e e e e eeennenn 7
1.5 DAtA SIOMAGE ..oiiiiiiiiiiiiiiiie e 8
1.6 Predefined MACIOScoooiiiiiiiii 10
1.7 Attributes and Pragmascoooveiiiiiiiieeeee e 12
1.8 Command LiNe OPLIONSccoeiiiiiiiiiieeeeee e 16
1.9 Compiling a Single File on the Command Lineccoooiiiiiiiiiiiiiiciiiinnees 41
1.10 Compiling Multiple Files on the Command Linecccceeeiiiiiiin. 42
1.11 Binary CONSLANTS ..ccoiieiiieiieeee e 42
Chapter 2. Library Environment
P2 I [11 o To [Tox 1o] I PP PTPPPPPPPP 43
2.2 HIGNIIGNES ..o 43
2R IS =Yg o F= Y (o I 1 PP PPPPPPPPPP 43
2.4 WEAK FUNCLIONSoiiiiiiiiiiiiieie ettt ettt ettt et e e e et e e e e e e e e e e e e eeeeaeaeees 43
2.5 “Helper’ Header FileSuuiiiiiiieiiiecs et e e e e ee e 44
2.6 MUIIIDS ..ottt ee e e e e e e e et e et e e et e eeeeeeeeeneeaeeeeees 45
Chapter 3. Interrupts
G 700 R 1 70T [0 Tt i o] I PP PPTPPPPP 47
B2 HIGhIIGNES e 47
3.3 Specifying an Interrupt Handler FUNCLIONcoiiiiiiiiiiiiicce e a7
3.4 Associating a Handler Function with an Exception Vectorcccccvvveeennn. 48
3.5 EXCeption HANGIEIScoovviiiiii i 51
Chapter 4. Low-Level Processor Control
g I 1 0T [T 4o o PP 53
4.2 HIGhIIGNTS .o 53
4.3 Generic Processor Header File ... 53
4.4 Processor Support Header FIlesoouviiiiiiiiiiiie e 53
4.5 Peripheral Library FUNCHONSoocoiiiiiiiiiii st e e e 54
4.6 Special FUNCLION REJISIEN ACCESSuuviiiieiiiiiiiiiiiee e 55
4.7 CPO REQISTEI ACCESS evttuiiiiiieeieieeeeiiiie s e e e e e e et e e e e e e e e et e e e e eeeeeaene s 55
4.8 Configuration Bit ACCESSuuiiiiiieiiiiiiiiie ettt 56

© 2009 Microchip Technology Inc. DS51686B-page iii

MPLAB® C Compiler for PIC32 MCUs User’s Guide

Chapter 5. Compiler Run-time Environment

5.1 INIFOAUCTION oo 59
5.2 HIGhIIGNTS ... 59
5.3 Register CONVENLIONSccoiviiiiiiii et e e e e e e e 59
5.4 STACK USAQGE ...eeeiiieiiiiiiiie ettt e e e e e 60
5.5 HEAP USAQE ..ot 61
5.6 Function Calling CONVENTIONouiiiiiiiiiiiiiiiieee e 61
5.7 Start-up and INitializationuoiiiiiii i 63
5.8 Contents of the Default Linker SCriptcccvviiiiiiiiiiiicce e 75
5.9 RAM FUNCHONS ..o 87
Appendix A. Implementation Defined Behavior
Y A Va1 0T W Tox 1o] o [RURPPSPRRN 89
YN 1o] e £ SEPPPPPRR 89
AL OVEIVIEW <.ttt e e e e e e e e e ettt e e e e e e eeeeettat s aeeeeaeeeesnenns 89
N I = 1 g £ F= 11 o] o PP PP 89
F NI =1 AV (o] 0= | PR 90
N G [0 [T o 11 1= PP PTPPPPPPPP 91
YN A O g =T - Vi (=] ¢ PR 91
F N e I [0] =0 =T PSPPI 92
AL FlOAtING-POINToviiiiiiiiiiie e 93
A.10 Arrays and POINEEIS ...couvuuiiiiiiceie et s e e e e e e e e e e aaeneaas 94
AL LL HINES i e a e e e e e e e aaeeerraan 95
A.12 Structures, Unions, Enumerations, and Bit fieldscccccovviviiiiiiiiiieeinnnee. 95
NG I O U 1 1= = PSP 96
N B = Tod =T = 1 (o] PP PPPPPPPPP 96
F N TS = 1] 1 1= £ P 96
A.16 Pre-Processing DIFECHVESccovviiiiiiiiiiiie e e e e e 96
A7 LIibrary FUNCHONS ...ooooiiiiiiiieiie ettt e e 98
F N R I Y ol o1 L=Tox (1 = PP 103
Appendix B. Open Source Licensing
[00 I 1 o o 11 T o o TP 105
B.2 General PUBIIC LICENSEcoi oo 105
B.3 BSD LICENSE ...t e e e e e e e e e e 105
B.4 SUN MICTOSYSEEIMS ..evvutiiiiieeeeieeieiis e e et e e e e e e e e s r e e e e e e eeaae e e eeeas 106
1o 1= USSR 107
Worldwide Sales and SEIVICEouuuiuiiiiiiiii e 118

DS51686B-page iv

© 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR

MICROCHIP PIC32 MCUs USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

document.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX”" is the document number and “A” is the revision level of the

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
32-bit C Compiler. Iltems discussed in this chapter include:

Document Layout

Conventions Used in this Guide

Recommended Reading

The Microchip Web Site

Development Systems Customer Change Notification Service
Customer Support

Document Revision History

DOCUMENT LAYOUT

This document describes how to use the 32-bit C Compiler as a development tool to
emulate and debug firmware on a target board. The document layout is as follows:

Chapter 1. Language Specifics — discusses command line usage of the
compiler, attributes, pragmas, and data representation

Chapter 2. Library Environment — discusses using the compiler libraries
Chapter 3. Interrupts — presents an overview of interrupt processing

Chapter 4. Low-Level Processor Control — discusses access to the low-level
registers and configuration of the PIC32MX devices

Chapter 5. Compiler Run-time Environment — discusses the compiler run-time
environment

Appendix A. Implementation Defined Behavior — discusses the choices for
implementation defined behavior in compiler

Appendix B. Open Source Licensing — gives a summary of the open source
licenses used for portions of the compiler package

© 2009 Microchip Technology Inc. DS51686B-page 1

www.microchip.com

MPLAB® C Compiler for PIC32 MCUs User’s Guide

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User'’s Guide

Emphasized text

...Is the only compiler...

dialog

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

Atab

Click the Power tab

N‘Rnnnn

A number in verilog format,
where N is the total number of
digits, Ris the radix and nis a
digit.

40010, 2'hF1

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Courier New

Sample source code

#defi ne START

Filenames aut oexec. bat

File paths c:\nccl8\h

Keywords _asm _endasm static
Command-line options - Qpa+, -Opa-

Bit values 0, 1

Constants OxFF, ‘A

Italic Courier New

A variable argument

file.o,wherefilecanbe
any valid filename

Square brackets []

Optional arguments

nccl8 [options] file
[opti ons]

Curly brackets and pipe
character: { |}

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]1}

Ellipses...

Replaces repeated text

var _name [,
var _nane. . .|

Represents code supplied by
user

void main (void)
{
}

DS51686B-page 2

© 2009 Microchip Technology Inc.

Preface

RECOMMENDED READING

This user’s guide describes how to use 32-bit C Compiler. Other useful documents are
listed below. The following Microchip documents are available and recommended as
supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

Device-Specific Documentation

The Microchip web site contains many documents that describe 32-bit device functions
and features. Among these are:

« Individual and family data sheets

« Family reference manuals

* Programmer’s reference manuals

32-Bit Language Tools Libraries (DS51685)

Lists all library functions provided with the MPLAB C Compiler for PIC32 MCUs with
detailed descriptions of their use.

PIC32MX Configuration Settings

Lists the Configuration Bit Settings for the Microchip PIC32MX devices supported by
the MPLAB C Compiler for PIC32 MCUs’s #pragrma confi g.

C Standards Information

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

GCC Documents
http://gcc.gnu.org/onlinedocs/

http://sourceware.org/binutils/

© 2009 Microchip Technology Inc. DS51686B-page 3

http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/

MPLAB® C Compiler for PIC32 MCUs User’s Guide

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

e Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQSs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

e Compilers — The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ obiject linker); and all MPLAB librarians (including MPLIB™ object
librarian).

« Emulators — The latest information on Microchip in-circuit emulators. This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

¢ In-Circuit Debuggers — The latest information on the Microchip in-circuit
debuggers. These include MPLAB ICD 2 and PICkit™ 2.

« MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 device programmer and the PICSTART® Plus, PICkit™ 1,
PICkit™ 2 and PICkit™ 3 development programmers.

DS51686B-page 4 © 2009 Microchip Technology Inc.

www.microchip.com
www.microchip.com

Preface

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)

 Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY
Revision A (October 2007)

« |nitial Release of this document.

Revision B (July 2009)

¢ Changed product name from MPLAB C32 C Compiler to MPLAB C Compiler for
P1C32 MCUs throughout the document. Also changed references to C32 Libraries
to 32-Bit Language Tools Libraries.

e Added VERSION__and __ C32 VERSI ON__ to Section 1.6.1 “32-Bit C Com-
piler Macros”

e Added - msnmart-i o=[0| 1| 2] and - mapi o- debug to Section 1.8.1 “Options
Specific to PIC32MX Devices”, Table 1-2

« Added Section 1.11 “Binary Constants”

* Added __I SR SINGLE__ and __| SR_SINGLE_AT_VECTOR__ to
Section 2.5.1 “sys/attribs.h”

¢ Revised Section 3.3.2.1 “Interrupt Attribute”
e Added Section 3.4.4"“ ISR Macros”
e Added Section 3.4.4.3 “Interrupt-Vector Macros”

© 2009 Microchip Technology Inc. DS51686B-page 5

http://support.microchip.com

MPLAB® C Compiler for PIC32 MCUs User’s Guide

NOTES:

DS51686B-page 6 © 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUs USER’S GUIDE

Chapter 1. Language Specifics

1.1 INTRODUCTION

This chapter discusses command line usage of the 32-bit C compiler, attributes,
pragmas and data representation.

1.2 HIGHLIGHTS

Items discussed in this chapter are:

* Overview

* File Naming Conventions

« Data Storage

* Predefined Macros

« Attributes and Pragmas

* Command Line Options

« Compiling a Single File on the Command Line
e Compiling Multiple Files on the Command Line
 Binary Constants

1.3 OVERVIEW

The compilation driver program (pi ¢32- gcc) compiles, assembles and links C and
assembly language modules and library archives. Most of the compiler command line
options are common to all implementations of the GCC toolset. A few are specific to
the compiler.

The basic form of the compiler command line is:
pi c32-gcc [options] files

Note: Command line options and file name extensions are case sensitive. I

The available options are described in Section 1.8 “Command Line Options”.

For example, to compile, assemble and link the C source file hel | 0. ¢, creating the
absolute executable hel | 0. out .

pi c32-gcc -0 hello.out hello.c

1.4 FILE NAMING CONVENTIONS

The compilation driver recognizes the following file extensions, which are case

sensitive.
TABLE 1-1: FILE NAMES
Extensions Definition
file.c A C source file that must be preprocessed.
file.h A header file (not to be compiled or linked).
file.i A C source file that has already been pre-processed.
file.o An object file.

© 2009 Microchip Technology Inc. DS51686B-page 7

MPLAB® C Compiler for PIC32 MCUs User’s Guide

TABLE 1-1: FILE NAMES (CONTINUED)

Extensions Definition
file.s An assembly language source file.
file.S An assembly language source file that must be preprocessed.
other A file to be passed to the linker.

1.5 DATA STORAGE

151 Storage Endianness

The compiler stores multibyte values in little-endian format. That is, the Least
Significant Byte is stored at the lowest address.

For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:

Address 0x100 0x101 0x102 0x103
Data 0x78 0x56 0x34 0x12
152 Integer Representation

Integer values in the compiler are represented in 2's complement and vary in size from
8 to 64 bits. These values are available in compiled code via 1imits.h.

Type Bits Min Max
char,si gned char 8 -128 127
unsi gned char 8 0 255
short, signed short 16 -32768 | 32767
unsi gned short 16 0 65535
int,signed int,long,signed | ong 32 231 2311
unsi gned int, unsi gned | ong 32 0 2323
I ong | ong, signed long | ong 64 -288 2831
unsi gned | ong | ong 64 0 2641

153 Sighed and Unsigned Character Types

By default, values of type plain char are signed values. This behavior is
implementation-defined by the C standard, and some environments! define a plain
char value to be unsigned. The command line option - f unsi gned- char can be used
to set the default type to unsigned for a given translation unit.

154 Floating-Point Representation

The compiler uses the IEEE-754 floating-point format. Detail regarding the
implementation limits is available to a translation unitin f | oat . h.

Type Bits
f | oat 32
doubl e 64
| ong doubl e 64

155 Pointers

Pointers in the compiler are all 32 bits in size.

1. Notably, PowerPC and ARM

DS51686B-page 8

© 2009 Microchip Technology Inc.

Language Specifics

15.6 limts.h

Theli mi ts. h header file defines the ranges of values which can be represented by

the integer types.

Macro name Value Description
CHAR BI T 8 The size, in bits, of the smallest non-bit field
object.
SCHAR_ M N -128 The minimum value possible for an object of
type si gned char.
SCHAR_MAX 127 The maximum value possible for an object of
type si gned char.
UCHAR_MAX 255 The maximum value possible for an object of
type unsi gned char.
CHAR_M N -128 (or 0, see Signed | The minimum value possible for an object of
and Unsigned type char.
Character Types)
CHAR_VAX 127 (or 255, see The maximum value possible for an object of
Signed and Unsigned |type char.
Character Types)
MB_LEN_MAX 16 The maximum length of multibyte character in
any locale.
SHRT_M N -32768 The minimum value possible for an object of
type short int.
SHRT_MVAX 32767 The maximum value possible for an object of
type short int.
USHRT_VAX 65535 The maximum value possible for an object of
type unsi gned short int.
INT_MN 281 The minimum value possible for an object of
typei nt.
I NT_MAX 281 The maximum value possible for an object of
typei nt.
Ul NT_MAX 2321 The maximum value possible for an object of
type unsi gned int.
LONG M N 281 The minimum value possible for an object of
type | ong.
LONG_MAX 2311 The maximum value possible for an object of
type | ong.
ULONG_MAX 2321 The maximum value possible for an object of
type unsi gned | ong.
LLONG M N 283 The minimum value possible for an object of
type | ong | ong.
LLONG_MAX 2631 The maximum value possible for an object of
type | ong | ong.
ULLONG MAX 2641 The maximum value possible for an object of
type unsi gned | ong | ong.

© 2009 Microchip Technology Inc.

DS51686B-page 9

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.6 PREDEFINED MACROS

1.6.1 32-Bit C Compiler Macros

The compiler defines a number of macros, most with the prefix “_ MCHP_,” which
characterize the various target specific options, the target processor and other aspects

of the host environment.

_MCHP_SZI NT 32 or 64, depending on command line options
to set the size of an integer (- m nt 32
-m nt 64).

_MCHP_SZLONG 32 or 64, depending on command line options
to set the size of an integer (- m ong32
-m ong64) .

_MCHP_SZPTR 32 always since all pointers are 32 bits.

__nthp_no_fI oat Defined if - mo- f | oat specified.

__NO _FLOAT Defined if - mo- f | oat specified.

__ SOFT_FLQAT Defined if - mo- f | oat not specified.
Indicates that floating-point is supported via
library calls.

__PIC__ The translation unit is being compiled for

_pic__ position independent code.

__PIC32MX Always defined.

_PIc3amX__

Pl C32_FEATURE_SET__

The compiler predefines a macro based on
the features available for the selected device.
These macros are intended to be used when
writing code to take advantage of features
available on newer devices while maintaining
compatibility with older devices.

Examples: PIC32MX795F512L would use

Pl C32_FEATURE_SET__ == 795, and
PIC32MX340F128H would use
Pl C32_FEATURE_SET__ == 340.

Pl C32MX

Defined if - ansi is not specified.

_ LANGUAGE_ASSEMBLY
_ LANGUAGE_ASSEMBLY
_LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files).

LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files) and - ansi is not
specified.

_ LANGUAGE_C Defined if compiling a C file.

__LANGUAGE_C _

_LANGUAGE_C

LANGUACE_C Defined if compiling a C file and - ansi is not
specified.

__processor__ Where “processor” is the capitalized argument
to the - npr ocessor option. E.g.,
- npr ocessor =32nx12f 3456 will define
_ 32MX12F3456_ .

__VERSI ON__ The __VERSI ON__ macro expands to a string

constant describing the compiler in use. Do
not rely on its contents having any particular
form, but it should contain at least the release
number. Use the _ C32_VERSI ON__ macro
for a numeric version number.

DS51686B-page 10

© 2009 Microchip Technology Inc.

Language Specifics

_ C32_VERSI ON__

The C compiler defines the constant

_ C32_VERSI ON__, giving a numeric value
to the version identifier. This macro can be
used to construct applications that take
advantage of new compiler features while still
remaining backward compatible with older
versions. The value is based upon the major
and minor version numbers of the current
release. For example, release version 1.03
will have a __ C32_VERSI ON___ definition of
103. This macro can be used, in conjunction
with standard preprocessor comparison
statements, to conditionally include/exclude
various code constructs.

1.6.2 SDE Compatibility Macros

The MIPS® SDE (Software Development Environment) defines a number of macros,
most with the prefix “_MIPS_,” which characterize various target specific options, some
determined by command line options (e.g., - m nt 64). Where applicable, these
macros will be defined by the compiler in order to ease porting applications and

middleware from the SDE to the compiler.

M PS_ARCH_PI C32MX
M PS_TUNE_PI C32MX
_R3000

__R3000

__R3000__
__mps_soft_fl oat
M PSEL

__ MPSEL__

M PSEL

_M PS_SZINT 32 or 64, depending on command line options
to set the size of an integer (- m nt 32
-m nt 64).
_M PS_SZLONG 32 or 64, depending on command line options
to set the size of an integer (- mM ong32
-m ong64).
_MPS_SZPTR 32 always since all pointers are 32 bits.
__mps_no_float Defined if - mo- f | oat specified.
_mps__ Always defined.
_mips

R3000
M PSEL

Defined if - ansi is not specified.

_mps_fpr

Defined as 32.

__mpsl6
__m pslée

Defined if - m ps16 or - m ps16e specified.

__mips

Defined as 32.

_mps_isa_rev

Defined as 2.

_MPS_ISA

Defined as _M PS_| SA_M PS32.

__mps_single_float

Defined if - nsi ngl e- f | oat specified.

© 2009 Microchip Technology Inc.

DS51686B-page 11

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.7 ATTRIBUTES AND PRAGMAS

1.7.1 Function Attributes
al ways_i nli ne

If the function is declared i nl i ne, always inline the function, even if no optimization
level was specified.

| ongcal |

Always invoke the function by first loading its address into a register and then using the
contents of that register. This allows calling a function located beyond the 28-bit
addressing range of the direct CALL instruction.

far
Functionally equivalentto | ongcal | .
near

Always invoke the function with an absolute CALL instruction, even when the
-m ong- cal | s command line option is specified.

m psl16
Generate code for the function in the MIPS16® instruction set.
noni ps16

Always generate code for the function in the MIPS32® instruction set, even when
compiling the translation unit with the - m ps16 command line option.

i nterrupt

Generate prologue and epilogue code for the function as an interrupt handler function.
See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.

vect or

Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.

at _vector

Place the body of the function at the indicated exception vector address. See Chapter
3. “Interrupts” and Section 3.5 “Exception Handlers”.

naked

Generate no prologue or epilogue code for the function.

section (“nane”)

Place the function into the named section.

For example,

void __attribute__ ((section (“.wilma"))) baz () {return;}
Function baz will be placed in section . wi | na.

The - f f uncti on- sect i ons command line option has no effect on functions defined
with a sect i on attribute.

uni que_section

Place the function in a uniquely named section, justasiif - f f unct i on- sect i ons had
been specified. If the function also has a sect i on attribute, use that section name as
the prefix for generating the unique section name.

For example,
void _ attribute__ ((section (“.fred”), unique_section) foo (void) {return;}
Function f oo will be placed in section . f r ed. f 00.

DS51686B-page 12

© 2009 Microchip Technology Inc.

Language Specifics

noreturn

Indicate to the compiler that the function will never return. In some situations, this can
allow the compiler to generate more efficient code in the calling function since
optimizations can be performed without regard to behavior if the function ever did
return. Functions declared as nor et ur n should always have a return type of voi d.

noi nl i ne
The function will never be considered for inlining.
pure

If a function has no side effects other than its return value, and the return value is
dependent only on parameters and/or (nonvolatile) global variables, the compiler can
perform more aggressive optimizations around invocations of that function. Such
functions can be indicated with the pur e attribute.

const

If a pure function determines its return value exclusively from its parameters (i.e., does
not examine any global variables), it may be declared const , allowing for even more
aggressive optimization. Note that a function which de-references a pointer argument
is not const since the pointer de-reference uses a value which is not a parameter,
even though the pointer itself is a parameter.

format (type, format _index, first_to_check)

The f or mat attribute indicates that the function takes a pri ntf, scanf,strfti ne,
or st r f mon style format string and arguments and that the compiler should type check
those arguments against the format string, just as it does for the standard library
functions.

Thet ype parameterisoneofpri ntf,scanf,strfti nmeorstrf non (optionally with
surrounding double underscores, e.g., __pri ntf__) and determines how the format
string will be interpreted.

Thef or mat _i ndex parameter specifies which function parameter is the format string.
Function parameters are numbered from the left-most parameter, starting from 1.

The first _to_check parameter specifies which parameter is the first to check
against the format string. If f i r st _t o_check is zero, type checking is not performed
and the compiler only checks the format string for consistency (e.g., vf pri nt f).

format _arg (index)

Thef or mat _ar g attribute specifies that a function manipulates apri nt f style format
string and that the compiler should check the format string for consistency. The function
attribute which is a format string is identified by i ndex.

nonnul I (index, ...)

Indicate to the compiler that one or more pointer arguments to the function must be
non-null. If the compiler determines that a Null Pointer is passed as a value to a
non-null argument, and the - Whonnul | command line option was specified, a warning
diagnostic is issued.

If no arguments are give to the nonnul | attribute, all pointer arguments of the function
are marked as non-null.

unused

Indicate to the compiler that the function may not be used. The compiler will not issue
a warning for this function if it is not used.

© 2009 Microchip Technology Inc. DS51686B-page 13

MPLAB® C Compiler for PIC32 MCUs User’s Guide

used

Indicate to the compiler that the function is always used and code must be generated
for the function even if the compiler cannot see a reference to the function. For
example, if inline assembly is the only reference to a static function.

deprecat ed
When a function specified as depr ecat ed is used, a warning is generated.
war n_unused_resul t

A warning will be issued if the return value of the indicated function is unused by a
caller.

weak

A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead. For example, this is useful when a library function is
implemented such that it can be overridden by a user written function.

mal | oc

Any non-Null Pointer return value from the indicated function will not alias any other
pointer which is live at the point when the function returns. This allows the compiler to
improve optimization.

alias (“symnbol ")
Indicates that the function is an alias for another symbol. For example,

void foo (void) { /* stuff */ }
void bar (void) __attribute__ ((alias(“fo0")));

Symbol bar is considered to be an alias for symbol f 0o.

1.7.2 Variable Attributes
aligned (n)
The attributed variable will be aligned on the next n byte boundary.

The al i gned attribute can also be used on a structure member. Such a member will
be aligned to the indicated boundary within the structure.

If the alignment value n is omitted, the alignment of the variable is set 8 (the largest
alignment value for a basic data type).

Note that the al i gned attribute is used to increase the alignment of a variable, not
reduce it. To decrease the alignment value of a variable, use the packed attribute.

cl eanup (function)

Indicate a function to call when the attributed automatic function scope variable goes
out of scope.

The indicated function should take a single parameter, a pointer to a type compatible
with the attributed variable, and have voi d return type.

deprecat ed
When a variable specified as depr ecat ed is used, a warning is generated.
packed

The attributed variable or structure member will have the smallest possible alignment.
That is, no alignment padding storage will be allocated for the declaration. Used in
combination with the al i gned attribute, packed can be used to set an arbitrary
alignment restriction, greater or lesser than the default alignment for the type of the
variable or structure member.

DS51686B-page 14

© 2009 Microchip Technology Inc.

Language Specifics

section (“nane”)

Place the function into the named section.

For example,

unsigned int dan __attribute__ ((section (“.quixote”)))
Variable dan will be placed in section . qui xot e.

The - f dat a- sect i ons command line option has no effect on variables defined with
a sect i on attribute unless uni que_sect i on is also specified.

uni que_section

Place the variable in a uniquely named section, justasif- f dat a- sect i ons had been
specified. If the variable also has a sect i on attribute, use that section name as the
prefix for generating the unigue section name.

For example,

int tin __attribute__ ((section (“.ofcatfood”), unique_section)
Variable t i n will be placed in section . of cat f ood.

transparent _uni on

When a function parameter of union type has the t r anspar ent _uni on attribute
attached, corresponding arguments are passed as if the type were the type of the first
member of the union.

unused

Indicate to the compiler that the variable may not be used. The compiler will not issue
a warning for this variable if it is not used.

weak

A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead.

1.7.3 Pragmas
#pragma i nterrupt

Mark a function as an interrupt handler. The prologue and epilogue code for the
function will perform more extensive context preservation. See Chapter
3. “Interrupts” and Section 3.5 “Exception Handlers”.

#pragma vect or

Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.
#pragma config

The #pragma config directive specifies the processor-specific configuration settings
(i.e., Configuration bits) to be used by the application. See Chapter 4. “Low-Level
Processor Control”.

© 2009 Microchip Technology Inc. DS51686B-page 15

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.8 COMMAND LINE OPTIONS

The compiler has many options for controlling compilation, all of which are case
sensitive.
Options Specific to PIC32MX Devices
Options for Controlling the Kind of Output
Options for Controlling the C Dialect
Options for Controlling Warnings and Errors

Options for Debugging

Options for Controlling Optimization
Options for Controlling the Preprocessor

Options for Assembling
Options for Linking
Options for Directory Search

Options for Code Generation Conventions

1.8.1 Options Specific to PIC32MX Devices
TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS
Option Definition
- npr ocessor Selects the device for which to compile.
(e.g., - npr ocessor =32MX360F512L)
-m pslé Generate (do not generate) MIPS16® code.
- mo-m ps16
-mo- f | oat Don't use floating-point libraries.

-msi ngl e-f 1 oat

Assume that the floating-point coprocessor only
supports single-precision operations.

- ndoubl e- f | oat

Assume that the floating-point coprocessor supports
double-precision operations. This is the default.

-m ong64

Force | ong types to be 64 bits wide. See - ml ong32
for an explanation of the default and the way that the
pointer size is determined.

-m ong32

Force | ong, i nt, and pointer types to be 32 bits wide.
The default size of i nts, | ongs and poi nt ersis 32
bits.

-G num

Put global and static items less than or equal to num
bytes into the small data or bss section instead of the
normal data or bss section. This allows the data to be
accessed using a single instruction.

All modules should be compiled with the same - G num
value.

- menbedded- dat a
- mo- enbedded- dat a

Allocate variables to the read-only data section first if
possible, then next in the small data section if possible,
otherwise in data. This gives slightly slower code than
the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some
embedded systems.

-muni nit-const-in-rodata
-m$Mmo-uni nit-const-in-rodata

Put uninitialized const variables in the read-only data
section. This option is only meaningful in conjunction
with - nenbedded- dat a.

-ntheck- zer o- di vi si on
-mo- check-zero-di vi si on

Trap (do not trap) on integer division by zero. The
default is - ntheck- zer o- di vi si on.

DS51686B-page 16

© 2009 Microchip Technology Inc.

Language Specifics

TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS (CONTINUED)
Option Definition

- rmencpy Force (do not force) the use of mencpy() for

- Mmo- nentpy non-trivial block moves. The default is - rmo- nmencpy,
which allows GCC to inline most constant-sized
copies.

-mong-calls Disable (do not disable) use of the j al instruction.

-mo-long-calls Calling functions using j al is more efficient but
requires the caller and callee to be in the same 256
megabyte segment.
This option has no effect on abicalls code. The default
is - mo- 1 ong-cal | s.

-mo- peri pheral -1ibs Do not use the standard peripheral libraries when

linking.

-nmsmart-i o=[0] 1] 2]

This option attempts to statically analyze format strings
passed to print f, scanf andthe ‘f’and ‘v’
variations of these functions. Uses of nonfloating-point
format arguments will be converted to use an
integer-only variation of the library function. For many
applications, this feature can reduce program-memory
usage.

-msnart - i 0=0 disables this option, while

-msnart - i 0=2 causes the compiler to be optimistic
and convert function calls with variable or unknown
format arguments. - nsmar t - i 0=1 is the default and
will convert only when the compiler can prove that
floating-point support is not required.

- mappi o- debug

Enable the APPIN/APPOUT debugging library
functions for the MPLAB ICD 3 debugger and MPLAB
REAL ICE emulator. This feature allows you to use the
DBPRINTF and related functions and macros as
described in the 32-bit Language Tool Libraries
document (DS51685). Enable this option only when
using a target PIC32 device that supports the
APPIN/APPOUT feature.

© 2009 Microchip Technology Inc.

DS51686B-page 17

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.8.2 Options for Controlling the Kind of Output

The following options control the kind of output produced by the compiler.
TABLE 1-3: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-C Compile or assemble the source files, but do not link. The default file
extension is . 0.

-E Stop after the preprocessing stage (i.e., before running the compiler
proper). The default output file is st dout .

-o file Place the outputinfil e.

-S Stop after compilation proper (i.e., before invoking the assembler). The
default output file extension is . s.

-V Print the commands executed during each stage of compilation.

- X You can specify the input language explicitly with the - x option:

-x language
Specify explicitly the language for the following input files (rather than

letting the compiler choose a default based on the file name suffix).
This option applies to all following input files until the next - x option.
The following values are supported by the compiler:

c

c- header

cpp- out put

assenbl er

assenbl er-wi th-cpp

-X none

Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes. This is the default
behavior but is needed if another - x option has been used. For
example:

pi c32-gcc -x assenbl er foo.asm bar.asm -x none

nmai n. ¢ mabonga. s

Without the - x none, the compiler assumes all the input files are for
the assembler.

--help Print a description of the command line options.

DS51686B-page 18 © 2009 Microchip Technology Inc.

Language Specifics

1.8.3

Options for Controlling the C Dialect

The following options define the kind of C dialect used by the compiler.

TABLE 1-4:

C DIALECT CONTROL OPTIONS

Option

Definition

- ansi

Support all (and only) ANSI-standard C programs.

-aux-info filenane

Output to the given filename prototyped declarations for all
functions declared and/or defined in a translation unit,
including those in header files. This option is silently
ignored in any language other than C. Besides
declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the
declaration was implicit, prototyped or unprototyped (I , N
for new or Ofor old, respectively, in the first character after
the line number and the colon), and whether it came from a
declaration or a definition (C or F, respectively, in the
following character). In the case of function definitions, a
K&R-style list of arguments followed by their declarations is
also provided, inside comments, after the declaration.

-ffreestandi ng

Assert that compilation takes place in a freestanding
environment. This implies - f no- bui | ti n. A freestanding
environment is one in which the standard library may not
exist, and program start-up may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to - f no- host ed.

-fno-asm

Do not recognize asm i nl i ne or typeof as a keyword,
so that code can use these words as identifiers. You can
use the keywords __asm__, __inline__ and
___typeof __ instead.

-ansi implies - f no-asm

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with
___builtin_ as prefix.

- f si gned- char

Let the type char be signed, like si gned char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsi gned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-tradi ti onal isused, inwhich case bit fields are always
unsigned.

- f unsi gned- char

Let the type char be unsigned, like unsi gned char.

-fwitabl e-strings

Store strings in the writable data segment and don’t make
them unique.

© 2009 Microchip Technology Inc.

DS51686B-page 19

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.8.4 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently
erroneous but that are risky or suggest there may have been an error.

You can request many specific warnings with options beginning - W for example,
-Wnplicit, torequestwarnings on implicit declarations. Each of these specific
warning options also has a negative form beginning - Who- to turn off warnings, for
example, - Who- i npl i ci t. This manual lists only one of the two forms, whichever is

not the default.

The following options control the amount and kinds of warnings produced by the

compiler.
TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL
Option Definition

-fsyntax-only

Check the code for syntax, but don’t do anything beyond that.

- pedanti c

Issue all the warnings demanded by strict ANSI C. Reject all
programs that use forbidden extensions.

-pedantic-errors

Like - pedant i c, except that errors are produced rather than
warnings.

-w

Inhibit all warning messages.

-Vl |

All of the - Woptions listed in this table combined. This
enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify
to prevent the warning), even in conjunction with macros.

-Whar - subscripts

Warn if an array subscript has type char.

- W omrent Warn whenever a comment-start sequence / * appears in a

-Woment s / * comment, or whenever a Backslash-Newline appears in a
/[comment.

- Wi v- by- zero Warn about compile-time integer division by zero. To inhibit

the warning messages, use - Who- di v- by- zer o.
Floating-point division by zero is not warned about, as it can
be a legitimate way of obtaining infinities and NaNs.

(This is the default.)

-Werror-inplicit-

function-decl aration

Give an error whenever a function is used before being
declared.

-\ or nat Check calls to pri nt f and scanf, etc., to make sure that
the arguments supplied have types appropriate to the format
string specified.

-Wnplicit Equivalent to specifying both - W nplicit-int and

-Wnplicit-function-decl aration.

decl aration

-Wnplicit-function-

Give a warning whenever a function is used before being
declared.

-Wnmplicit-int

Warn when a declaration does not specify a type.

- Wrai n

Warn if the type of mai n is suspicious. mai n should be a
function with external linkage, returning i nt , taking either
zero, two or three arguments of appropriate types.

- Wri ssi ng- braces

Warn if an aggregate or union initializer is not fully bracketed.
In the following example, the initializer for a is not fully
bracketed, but that for b is fully bracketed.

int a[2][2] ={ 0, 1, 2, 3};

int b[2][2] ={ {0, 1}, { 2, 3} };

DS51686B-page 20

© 2009 Microchip Technology Inc.

Language Specifics

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option

Definition

-Whul ti char
-Who-mul ti char

Warn if a multi-character char act er constant is used.
Usually, such constants are typographical errors. Since they
have implementation-defined values, they should not be
used in portable code. The following example illustrates the
use of a multi-character char act er constant:

char

xx(voi d)

{
return(' xx');

}

- Wpar ent heses

Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose
precedence people often find confusing.

-Weturn-type

Warn whenever a function is defined with a return-type that
defaults to i nt . Also warn about any r et ur n statement with
no return-value in a function whose return-type is not voi d.

-Wsequence- poi nt

Warn about code that may have undefined semantics
because of violations of sequence point rules in the C
standard.

The C standard defines the order in which expressionsina C
program are evaluated in terms of sequence points, which
represent a partial ordering between the execution of parts of
the program: those executed before the sequence point and
those executed after it. These occur after the evaluation of a
full expression (one which is not part of a larger expression),
after the evaluation of the first operand ofa &&, ||, ? : or,
(comma) operator, before a function is called (but after the
evaluation of its arguments and the expression denoting the
called function), and in certain other places. Other than as
expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather
than a total order, since, for example, if two functions are
called within one expression with no sequence point between
them, the order in which the functions are called is not
specified. However, the standards committee has ruled that
function calls do not overlap.

It is not specified, when, between sequence points
modifications to the values of objects take effect. Programs
whose behavior depends on this have undefined behavior,
The C standard specifies that “Between the previous and
next sequence point, an object shall have its stored value
modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine
the value to be stored.” If a program breaks these rules, the
results on any particular implementation are entirely
unpredictable.

Examples of code with undefined behavior are a = a++;
a[n] = b[n++] anda[i++] = i;.Some more
complicated cases are not diagnosed by this option, and it
may give an occasional false positive result, but in general it
has been found fairly effective at detecting this sort of
problem in programs.

© 2009 Microchip Technology Inc.

DS51686B-page 21

MPLAB® C Compiler for PIC32 MCUs User’s Guide

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option

Definition

-Wswi t ch

Warn whenever a swi t ch statement has an index of
enumeral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wyst em header s

Print warning messages for constructs found in system
header files. Warnings from system headers are normally
suppressed, on the assumption that they usually do not
indicate real problems and would only make the compiler
output harder to read. Using this command line option tells
the compiler to emit warnings from system headers as if they
occurred in user code. However, note that using - VIl | in
conjunction with this option does not warn about unknown
pragmas in system headers. For that, - Winknown- pr agnas
must also be used.

-Wrigraphs

Warn if any trigraphs are encountered (assuming they are
enabled).

-Wininitialized

Warn if an automatic variable is used without first being
initialized.

These warnings are possible only when optimization is
enabled, because they require data flow information that is
computed only when optimizing.

These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a
variable that is declared vol ati | e, or whose address is
taken, or whose size is other than 1, 2, 4 or 8 bytes. Also,
they do not occur for structures, unions or arrays, even when
they are in registers.

Note that there may be no warning about a variable that is
used only to compute a value that itself is never used,
because such computations may be deleted by data flow
analysis before the warnings are printed.

- Winknown- pr agnmas

Warn when a #pr agna directive is encountered which is not
understood by the compiler. If this command line option is
used, warnings will even be issued for unknown pragmas in
system header files. This is not the case if the warnings were
only enabled by the - WAl | command line option.

-Winused

Warn whenever a variable is unused aside from its
declaration, whenever a function is declared static but never
defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not
used.

In order to get a warning about an unused function
parameter, both - Wand - Winused must be specified.
Casting an expression to void suppresses this warning for an
expression. Similarly, the unused attribute suppresses this
warning for unused variables, parameters and labels.

-Winused- f uncti on

Warn whenever a static function is declared but not defined
or a non-inline static function is unused.

-Winused- | abel

Warn whenever a label is declared but not used. To suppress
this warning, use the unused attribute.

-Winused- par anet er

Warn whenever a function parameter is unused aside from its
declaration. To suppress this warning, use the unused
attribute.

DS51686B-page 22

© 2009 Microchip Technology Inc.

Language Specifics

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option

Definition

-Winused- vari abl e

Warn whenever a local variable or non-constant static
variable is unused aside from its declaration. To suppress this
warning, use the unused attribute.

-Winused- val ue

Warn whenever a statement computes a result that is
explicitly not used. To suppress this warning, cast the
expression to void.

© 2009 Microchip Technology Inc.

DS51686B-page 23

MPLAB® C Compiler for PIC32 MCUs User’s Guide

The following - Woptions are not implied by - Wl | . Some of them warn about

constructions that users generally do not consider questionable, but which you might
occasionally wish to check for. Others warn about constructions that are necessary or
hard to avoid in some cases, and there is no simple way to modify the code to suppress

the warning.

TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY

-WALL

Option

Definition

Print extra warning messages for these events:

¢ A nonvolatile automatic variable might be changed by a
call to | ongj np. These warnings are possible only in
optimizing compilation. The compiler sees only the calls
to set j np. It cannot know where | ongj np will be called.
In fact, a signal handler could call it at any point in the
code. As a result, a warning may be generated even
when there is in fact no problem, because | ongj np
cannot in fact be called at the place that would cause a
problem.

« A function could exit both viar et urn val ue; and
r et ur n; . Completing the function body without passing
any return statement is treated as r et ur n; .

« An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as x[i,] causes a
warning, but x[(voi d)i,j] does not.

* An unsigned value is compared against zero with < or <=.

« A comparison like x<=y<=z appears, This is equivalent
to(x<=y ? 1: 0) <= z, which is a different
interpretation from that of ordinary mathematical notation.

¢ Storage-class specifiers like st at i ¢ are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.

e If-WaAl | or-Winused is also specified, warn about
unused arguments.

« A comparison between signed and unsigned values could
produce an incorrect result when the signed value is
converted to unsigned. (But don’t warn if
- Who- si gn- conpar e is also specified.)

¢ An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for
X. h:
struct s { int f, g; };
struct t { struct s h; int i; };
struct t x ={ 1, 2, 31};

« An aggregate has an initializer that does not initialize all
members. For example, the following code would cause
such a warning, because x. h would be implicitly
initialized to zero:
struct s { int f, g, h; };
struct s x ={ 3, 41},

-\Waggregate-return

Warn if any functions that return structures or unions are
defined or called.

-Whad- f unct i on- cast

Warn whenever a function call is cast to a non-matching type.
For example, warn if i nt f oof () is cast to anything *.

DS51686B-page 24

© 2009 Microchip Technology Inc.

Language Specifics

TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY
-WALL (CONTINUED)
Option Definition
-Wast-align Warn whenever a pointer is cast, such that the required
alignment of the target is increased. For example, warn if a
char *iscasttoanint * .
-Wast - qual Warn whenever a pointer is cast, so as to remove a type

qualifier from the target type. For example, warn if a
const char * is castto an ordinary char *.

-Wonver si on

Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the
width or signedness of a fixed point argument, except when
the same as the default promotion.

Also, warn if a negative integer constant expression is
implicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsi gned) - 1.

-\\error

Make all warnings into errors.

-Wnline

Warn if a function can not be inlined, and either it was
declared as inline, or else the - fi nl i ne-functi ons option
was given.

-Warger-than-Ien

Warn whenever an object of larger than | en bytes is defined.

-Wong-1 ong
-Who- 1 ong- | ong

Warn if | ong | ong type is used. This is default. To inhibit the
warning messages, use - Who- | ong- | ong. Flags

- W ong- | ong and - Who- | ong- | ong are taken into account
only when - pedant i c flag is used.

- Whi ssi ng- decl arati ons

Warn if a global function is defined without a previous
declaration. Do so even if the definition itself provides a
prototype.

- Whi ssi ng-
format-attribute

If - W or mat is enabled, also warn about functions that might
be candidates for format attributes. Note these are only
possible candidates, not absolute ones. This option has no
effect unless - W or nat is enabled.

-Whri ssi ng-noreturn

Warn about functions that might be candidates for attribute
nor et ur n. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions.
Actually, do not ever return before adding the nor et urn
attribute, otherwise subtle code generation bugs could be
introduced.

- Wn ssi ng- pr ot ot ypes

Warn if a global function is defined without a previous
prototype declaration. This warning is issued even if the
definition itself provides a prototype. (This option can be used
to detect global functions that are not declared in header files.)

-Whest ed- ext erns

Warn if an ext er n declaration is encountered within a
function.

- Who- depr ecat ed-
decl arations

Do not warn about uses of functions, variables and types
marked as deprecated by using the depr ecat ed attribute.

- Whadded

Warn if padding is included in a structure, either to align an
element of the structure or to align the whole structure.

-Whointer-arith

Warn about anything that depends on the size of a function
type or of voi d. The compiler assigns these types a size of 1,
for convenience in calculations with voi d * pointers and
pointers to functions.

© 2009 Microchip Technology Inc.

DS51686B-page 25

MPLAB® C Compiler for PIC32 MCUs User’s Guide

TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY
-WALL (CONTINUED)

Option

Definition

- W edundant - decl s

Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

- Wshadow

Warn whenever a local variable shadows another local
variable.

-\Wi gn- conpar e
- Who- si gn- conpar e

Warn when a comparison between signed and unsigned
values could produce an incorrect result when the signed
value is converted to unsigned. This warning is also enabled
by - WTo get the other warnings of - Wwithout this warning,
use - W - Who- si gn- conpar e.

-Wstrict-prototypes

Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies
the argument types.)

-Wraditional

Warn about certain constructs that behave differently in

traditional and ANSI C.

« Macro arguments occurring within string constants in the
macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

« A function declared external in one block and then used
after the end of the block.

¢ A switch statement has an operand of type | ong.

¢ A nonstatic function declaration follows a static one. This
construct is not accepted by some traditional C compilers.

- Windef

Warn if an undefined identifier is evaluated in an #i f
directive.

-Winr eachabl e- code

Warn if the compiler detects that code will never be executed.
It is possible for this option to produce a warning even though
there are circumstances under which part of the affected line
can be executed, so care should be taken when removing
apparently-unreachable code. For instance, when a function is
inlined, a warning may mean that the line is unreachable in
only one inlined copy of the function.

-Wwite-strings

Give string constants the type const char [| engt h] so that
copying the address of one into a non-const char * pointer
gets a warning. At compile time, these warnings help you find
code that you can try to write into a string constant, but only if
you have been very careful about using const in declarations
and prototypes. Otherwise, it's just a nuisance, which is why
-\l | does not request these warnings.

DS51686B-page 26

© 2009 Microchip Technology Inc.

Language Specifics

1.85 Options for Debugging

The following options are used for debugging.

TABLE 1-7:

DEBUGGING OPTIONS

Option

Definition

-9

Produce debugging information.

The compiler supports the use of - g with - Omaking it possible

to debug optimized code. The shortcuts taken by optimized code

may occasionally produce surprising results:

* Some declared variables may not exist at all;

¢ Flow of control may briefly move unexpectedly;

* Some statements may not be executed because they
compute constant results or their values were already at
hand;

* Some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This

makes it reasonable to use the optimizer for programs that might

have bugs.

-Q

Makes the compiler print out each function name as it is
compiled, and print some statistics about each pass when it
finishes.

-save-t enps

Don't delete intermediate files. Place them in the current
directory and name them based on the source file. Thus,
compiling f 00. ¢ with - ¢ - save-t enps would produce the
following files:

foo.i (preprocessed file)

foo.s (assembly language file)

foo.o (objectfile)

© 2009 Microchip Technology Inc.

DS51686B-page 27

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.8.6

Options for Controlling Optimization

The following options control compiler optimizations.

TABLE 1-8:

GENERAL OPTIMIZATION OPTIONS

Option

Definition

-Q0

Do not optimize. (This is the default.)

Without - O, the compiler’s goal is to reduce the cost of
compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program
with a breakpoint between statements, you can then assign a
new value to any variable or change the program counter to
any other statement in the function and get exactly the results
you would expect from the source code.

The compiler only allocates variables declared r egi st er in
registers.

-0

Optimization level 1. Optimizing compilation takes somewhat
longer, and a lot more host memory for a large function.

With - O, the compiler tries to reduce code size and execution
time.

When - Ois specified, the compiler turns on

-fthread-j unps and

- f def er - pop. The compiler turns on

-fom t-frane-pointer.

Optimization level 2. The compiler performs nearly all
supported optimizations that do not involve a space-speed
trade-off. - Q2 turns on all optional optimizations except for
loop unrolling (- f unr ol | - 1 oops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing).Italso turns on force copy of
memory operands (- f f or ce- nen) and Frame Pointer
elimination (- f omi t - f r ame- poi nt er). As compared to - O,
this option increases both compilation time and the
performance of the generated code.

Optimization level 3. - O3 turns on all optimizations specified
by - @2 and also turns on the i nl i ne-functi ons option.

Optimize for size. - Cs enables all - @2 optimizations that do
not typically increase code size. It also performs further
optimizations designed to reduce code size.

The following options control specific optimizations. The - O2 option turns on all of
these optimizations except - funrol | -1 oops, -funrol I -al I -1 oops and

-fstrict-aliasing.

DS51686B-page 28

© 2009 Microchip Technology Inc.

Language Specifics

You can use the following flags in the rare cases when “fine-tuning” of optimizations to

be performed is desired.

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS

Option

Definition

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater
than n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next
32-byte boundary, but - f al i gn- f unct i ons=24 would align
to the next 32-byte boundary only if this can be done by
skipping 23 bytes or less.
-fno-align-functionsand-falign-functions=1are
equivalent and mean that functions are not aligned.

The assembler only supports this flag when n is a power of
two, so n is rounded up. If n is not specified, use a
machine-dependent default.

-falign-1abels
-falign-1abel s=n

Align all branch targets to a power-of-two boundary, skipping
up to n bytes like - f al i gn- f uncti ons. This option can
easily make code slower, because it must insert dummy
operations for when the branch target is reached in the usual
flow of the code.

If-falign-1oopsor-falign-junps are applicable and
are greater than this value, then their values are used instead.
If n is not specified, use a machine-dependent default which is
very likely to be 1, meaning no alignment.

-falign-1oops
-falign-1oops=n

Align loops to a power-of-two boundary, skipping up to n bytes
like - fal i gn-functi ons. The hope is that the loop is
executed many times, which makes up for any execution of
the dummy operations.

If n is not specified, use a machine-dependent default.

-fcal l er-saves

Enable values to be allocated in registers that are clobbered
by function calls, by emitting extra instructions to save and
restore the registers around such calls. Such allocation is
done only when it seems to result in better code than would
otherwise be produced.

-fcse-fol | owj unps

In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by any
other path. For example, when CSE encounters an i f
statement with an el se clause, CSE follows the jump when
the condition tested is false.

- fcse-ski p- bl ocks

This is similar to - f cse-f ol | ow j unps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple i f statement with no el se clause,

- f cse-ski p- bl ocks causes CSE to follow the jump around
the body of thei f .

- f expensi ve-
optim zations

Perform a number of minor optimizations that are relatively
expensive.

-ffunction-sections
-fdat a- secti ons

Place each function or data item into its own section in the
output file. The name of the function or the name of the data
item determines the section's name in the output file.

Only use these options when there are significant benefits for
doing so. When you specify these options, the assembler and
linker may create larger object and executable files and is also
slower.

-fgcse

Perform a global common subexpression elimination pass.
This pass also performs global constant and copy
propagation.

© 2009 Microchip Technology Inc.

DS51686B-page 29

MPLAB® C Compiler for PIC32 MCUs User’s Guide

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option

Definition

-fgcse-Im

When - f gcse- | mis enabled, global common subexpression
elimination attempts to move loads which are only killed by
stores into themselves. This allows a loop containing a
load/store sequence to change to a load outside the loop, and
a copy/store within the loop.

-fgcse-sm

When - f gcse- smis enabled, a store motion pass is run after
global common subexpression elimination. This pass attempts
to move stores out of loops. When used in conjunction with

- f gcse- 1 m loops containing a load/store sequence can
change to a load before the loop and a store after the loop.

-fnove-al | - novabl es

Forces all invariant computations in loops to be moved outside
the loop.

-fno-defer-pop

Always pop the arguments to each function call as soon as
that function returns. The compiler normally lets arguments
accumulate on the stack for several function calls and pops
them all at once.

- fno- peephol e
- f no- peephol e2

Disable machine specific peephole optimizations. Peephole
optimizations occur at various points during the compilation.

- f no- peephol e disables peephole optimization on machine
instructions, while - f no- peephol e2 disables high level
peephole optimizations. To disable peephole entirely, use both
options.

-foptim ze-
regi ster-nove
-fregnove

Attempt to reassign register numbers in move instructions and
as operands of other simple instructions in order to maximize
the amount of register tying.

-fregnove and -foptin ze-regi ster-noves are the
same optimization.

-freduce-all-givs

Forces all general-induction variables in loops to be
strength-reduced.

These options may generate better or worse code. Results
are highly dependent on the structure of loops within the
source code.

-frenane-registers

Attempt to avoid false dependencies in scheduled code by
making use of registers left over after register allocation. This
optimization most benefits processors with lots of registers. It
can, however, make debugging impossible, since variables no
longer stay in a “home register”.

-frerun-cse-after-
| oop

Rerun common subexpression elimination after loop
optimizations has been performed.

-frerun-1 oop- opt

Run the loop optimizer twice.

-fschedul e-i nsns

Attempt to reorder instructions to eliminate instruction stalls
due to required data being unavailable.

-fschedul e-i nsns2

Similar to -f schedul e-i nsns, but requests an additional
pass of instruction scheduling after register allocation has
been done.

-fstrengt h-reduce

Perform the optimizations of loop strength reduction and
elimination of iteration variables.

DS51686B-page 30

© 2009 Microchip Technology Inc.

Language Specifics

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option

Definition

-fstrict-aliasing

Allows the compiler to assume the strictest aliasing rules
applicable to the language being compiled. For C, this
activates optimizations based on the type of expressions. In
particular, an object of one type is assumed never to reside at
the same address as an object of a different type, unless the
types are almost the same. For example, an unsi gned i nt
can alias ani nt, but not a voi d* or a doubl e. A character
type may alias any other type.
Pay special attention to code like this:
uni on a_union {

int i;

doubl e d;
i

int f() {

uni on a_union t;

t.d = 3.0;

return t.i;
}
The practice of reading from a different union member than
the one most recently written to (called “type-punning”) is
common. Even with - f stri ct - al i asi ng, type-punning is
allowed, provided the memory is accessed through the union
type. So, the code above works as expected. However, this
code might not:
int f() {

a union t;

int* ip;

t.d = 3.0;

ip=&.i;

return *ip;

}

-fthread-junps

Perform optimizations where a check is made to see if a jump
branches to a location where another comparison subsumed
by the first is found. If so, the first branch is redirected to either
the destination of the second branch or a point immediately
following it, depending on whether the condition is known to
be true or false.

-funroll -1 oops Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or run time. - funr ol | -1 oops implies both
-fstrength-reduce and -frerun-cse-after-1oop.

-funroll-all-Ioops Perform the optimization of loop unrolling. This is done for all

loops and usually makes programs run more slowly.
-funroll-all-Iloops implies - f strengt h-reduce, as
wellas -frerun-cse-after-1oop.

© 2009 Microchip Technology Inc.

DS51686B-page 31

MPLAB® C Compiler for PIC32 MCUs User’s Guide

Options of the form - f f | ag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of - f f 0o would be - f no- f 00. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 1-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option

Definition

-fforce-nmem

Force memory operands to be copied into registers
before doing arithmetic on them. This produces better
code by making all memory references potential common
subexpressions. When they are not common
subexpressions, instruction combination should eliminate
the separate register-load. The - O2 option turns on this
option.

-finline-functions

Integrate all simple functions into their callers. The
compiler heuristically decides which functions are simple
enough to be worth integrating in this way. If all calls to a
given function are integrated, and the function is declared
st ati c, then the function is normally not output as
assembler code in its own right.

-finline-limt=n

By default, the compiler limits the size of functions that
can be inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline (i.e., marked
with the i nl i ne keyword). n is the size of functions that
can be inlined in number of pseudo instructions (not
counting parameter handling). The default value of n is
10000. Increasing this value can result in more inlined
code at the cost of compilation time and memory
consumption.

Decreasing usually makes the compilation faster and less
code is inlined (which presumably means slower
programs). This option is particularly useful for programs
that use inlining.

Note: Pseudo instruction represents, in this particular
context, an abstract measurement of function's size. In no
way does it represent a count of assembly instructions
and as such, its exact meaning might change from one
release of the compiler to an another.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the
function is declared st at i ¢, output a separate run time
callable version of the function. This switch does not
affect ext er n inline functions.

-fkeep-static-consts

Emit variables declared static const when optimization
isn't turned on, even if the variables are not referenced.
The compiler enables this option by default. If you want to
force the compiler to check if the variable was referenced,
regardless of whether or not optimization is turned on,
use the - f no- keep- st ati c- const s option.

-fno-function-cse

Do not put function addresses in registers. Make each
instruction that calls a constant function contain the
function's address explicitly.

This option results in less efficient code, but some
strange hacks that alter the assembler output may be
confused by the optimizations performed when this option
is not used.

DS51686B-page 32

© 2009 Microchip Technology Inc.

Language Specifics

TABLE 1-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option

Definition

-fno-inline

Do not pay attention to the i nl i ne keyword. Normally
this option is used to keep the compiler from expanding
any functions inline. If optimization is not enabled, no
functions can be expanded inline.

-fom t-frame-pointer

Do not keep the Frame Pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore Frame Pointers. It also makes an extra
register available in many functions.

-foptim ze-sibling-calls |Optimize sibling and tail recursive calls.

1.8.7 Options for Controlling the Preprocessor

The following options control the compiler preprocessor.
TABLE 1-11: PREPROCESSOR OPTIONS

Option

Definition

- Aquestion (answer)

Assert the answer answer for question quest i on, incaseiitis
tested with a preprocessing conditional such as #i f

#questi on(answer) . - A- disables the standard assertions
that normally describe the target machine.

For example, the function prototype for main might be declared
as follows:

#i f #environ(freestandi ng)

int main(void);

#el se

int main(int argc, char *argv[]);

#endi f

A - Acommand line option could then be used to select
between the two prototypes. For example, to select the first of
the two, the following command line option could be used:

- Aenvi ron(freestandi ng)

-A -predi cate =answer

Cancel an assertion with the predicate pr edi cat e and
answer answer .

- A predicate =answer

Make an assertion with the predicate pr edi cat e and answer
answer . This form is preferred to the older form

- A predi cat e(answer), which is still supported, because it
does not use shell special characters.

-C Tell the preprocessor not to discard comments. Used with the
- E option.

-dD Tell the preprocessor to not remove macro definitions into the
output, in their proper sequence.

- Dmacro Define macro macr o with the string 1 as its definition.

- Dmacr o=def n Define macro macr o as def n. All instances of - Don the
command line are processed before any - U options.

-dM Tell the preprocessor to output only a list of the macro
definitions that are in effect at the end of preprocessing. Used
with the - E option.

-dN Like - dD except that the macro arguments and contents are

omitted. Only #def i ne nane is included in the output.

- f no- show col um

Do not print column numbers in diagnostics. This may be
necessary if diagnostics are being scanned by a program that
does not understand the column numbers, such as dejagnu.

Print the name of each header file used, in addition to other
normal activities.

© 2009 Microchip Technology Inc.

DS51686B-page 33

MPLAB® C Compiler for PIC32 MCUs User’s Guide

TABLE 1-11:

PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

Any directories you specify with - | options before the - | -
options are searched only for the case of #i ncl ude "file".
They are not searched for #i ncl ude <file>.

If additional directories are specified with - | options after the

- | -, these directories are searched for all #i ncl ude
directives. (Ordinarily all - I directories are used this way.)

In addition, the - | - option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for #i ncl ude "fil e". There is no way to
override this effect of - | - . With - | . you can specify searching
the directory that was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by
default, but it is often satisfactory.

- | - does not inhibit the use of the standard system directories
for header files. Thus, - | - and - nost di nc are independent.

-ldir

Add the directory di r to the head of the list of directories to be
searched for header files. This can be used to override a
system header file, substituting your own version, since these
directories are searched before the system header file
directories. If you use more than one - | option, the directories
are scanned in left-to-right order. The standard system
directories come after.

-idirafter dir

Add the directory di r to the second include path. The
directories on the second include path are searched when a
header file is not found in any of the directories in the main
include path (the one that - | adds to).

-imacros file

Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated
from the file is discarded, the only effect of - i macros fileis
to make the macros defined in file available for use in the main
input.

Any - Dand - U options on the command line are always
processed before - i macros fil e, regardless of the order in
which they are written. All the - i ncl ude and - i macr os
options are processed in the order in which they are written.

-include file

Process file as input before processing the regular input file. In
effect, the contents of file are compiled first. Any - Dand - U
options on the command line are always processed before
-include fil e, regardless of the order in which they are
written. All the - i ncl ude and - i macr os options are
processed in the order in which they are written.

-iprefix prefix

Specify pr ef i x as the prefix for subsequent - i wi t hprefi x
options.

-isystemdir

Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same special
treatment as is applied to the standard system directories.

-iwithprefix dir

Add a directory to the second include path. The directory’s
name is made by concatenating prefix and di r, where prefix
was specified previously with - i pr ef i x. If a prefix has not yet
been specified, the directory containing the installed passes of
the compiler is used as the default.

-iw thprefixbefore
dir

Add a directory to the main include path. The directory’s name
is made by concatenating prefix and di r, as in the case of
-iw thprefix.

DS51686B-page 34

© 2009 Microchip Technology Inc.

Language Specifics

TABLE 1-11: PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

Tell the preprocessor to output a rule suitable for make
describing the dependencies of each object file. For each
source file, the preprocessor outputs one make-rule whose
target is the object file name for that source file and whose
dependencies are all the #i ncl ude header files it uses. This
rule may be a single line or may be continued with \ - new i ne
if it is long. The list of rules is printed on standard output instead
of the preprocessed C program.

- Mimplies - E (see Section 1.8.2 “Options for Controlling
the Kind of Output”).

Like - Mbut the dependency information is written to a file and
compilation continues. The file containing the dependency
information is given the same name as the source file witha . d
extension.

-MF file

When used with - Mor - MM specifies a file in which to write the
dependencies. If no - MF switch is given, the preprocessor
sends the rules to the same place it would have sent
preprocessed output.

When used with the driver options, - MD or - M\VD, - MF,
overrides the default dependency output file.

Treat missing header files as generated files and assume they
live in the same directory as the source file. If - MGis specified,
then either - Mor - MMmust also be specified. - MGis not
supported with - MD or - MVD.

Like - Mbut the output mentions only the user header files
included with #i ncl ude “fil e". System header files included
with #i ncl ude <fi | e> are omitted.

Like - MD except mention only user header files, not system
header files.

This option instructs CPP to add a phony target for each
dependency other than the main file, causing each to depend
on nothing. These dummy rules work around errors make gives
if you remove header files without updating the make-file to
match.

This is typical output:

test.o: test.c test.h

test. h:

Same as - M, but it quotes any characters which are special to
nake.

-MQ ' $(obj pfx)foo. o' gives $$(obj pf x) f 0o. o:
foo.c

The default target is automatically quoted, as if it were given

with - MQ

- M target

Change the target of the rule emitted by dependency
generation. By default, CPP takes the name of the main input
file, including any path, deletes any file suffix such as . ¢, and
appends the platform’s usual object suffix. The result is the
target.

An - MT option sets the target to be exactly the string you
specify. If you want multiple targets, you can specify them as a
single argument to - M, or use multiple - MT options.

For example:

-MI ' $(obj pf x) foo. o' might give $(obj pf x) f 0o. o:
foo.c

© 2009 Microchip Technology Inc.

DS51686B-page 35

MPLAB® C Compiler for PIC32 MCUs User’s Guide

TABLE 1-11: PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

-nostdi nc

Do not search the standard system directories for header files.
Only the directories you have specified with - | options (and the
current directory, if appropriate) are searched. (See

Section 1.8.10 “Options for Directory Search”) for
information on - | .

By using both - nost di nc and - | -, the include-file search
path can be limited to only those directories explicitly specified.

Tell the preprocessor not to generate #l i ne directives. Used
with the - E option (see Section 1.8.2 “Options for
Controlling the Kind of Output”).

-trigraphs

Support ANSI C trigraphs. The - ansi option also has this
effect.

- Umacr o

Undefine macro nacr o. - Uoptions are evaluated after all - D
options, but before any - i ncl ude and - i macr os options.

- undef

Do not predefine any nonstandard macros (including
architecture flags).

1.8.8 Options for Assembling

The following options control assembler operations.
TABLE 1-12: ASSEMBLY OPTIONS

Option

Definition

-\\4, option

Pass opt i on as an option to the assembler. If opt i on contains
commas, it is split into multiple options at the commas.

DS51686B-page 36

© 2009 Microchip Technology Inc.

Language Specifics

1.8.9 Options for Linking

If any of the options - ¢, - Sor - E are used, the linker is not run and object file names
should not be used as arguments.

TABLE 1-13: LINKING OPTIONS

Option

Definition

-Ldir

Add directory di r to the list of directories to be searched for libraries
specified by the command line option - | .

-llibrary

Search the library named | i br ar y when linking.

The linker searches a standard list of directories for the library, which is
actually a file named | i bl i br ary. a. The linker then uses this file as if
it had been specified precisely by name.

It makes a difference where in the command you write this option. The
linker processes libraries and object files in the order they are specified.
Thus, f 00. 0 -1z bar. o searches library z after file f 00. o but before
bar . o. If bar . o refers to functions in | i bz. a, those functions may not
be loaded.

The directories searched include several standard system directories,
plus any that you specify with - L.

Normally the files found this way are library files (archive files whose
members are object files). The linker handles an archive file by scanning
through it for members which define symbols that have so far been
referenced but not defined. But if the file that is found is an ordinary
object file, it is linked in the usual fashion. The only difference between
using an - | option (e.g., - | nyl i b) and specifying a file name (e.g.,

I'i bryli b. a)isthat-| searches several directories, as specified.

By default the linker is directed to search:

<install-path>\lib

for libraries specified with the - | option. For a compiler installed into the
default location, this would be:

c:\Program Fil es\ M crochi p\ MPLAB C32\Ii b

This behavior can be overridden using the environment variables.

-nodefaul tlibs

Do not use the standard system libraries when linking. Only the libraries
you specify are passed to the linker. The compiler may generate calls to
mencnp, menset and mentpy. These entries are usually resolved by
entries in the standard compiler libraries. These entry points should be
supplied through some other mechanism when this option is specified.

-nostdlib

Do not use the standard system start-up files or libraries when linking.
No start-up files and only the libraries you specify are passed to the
linker. The compiler may generate calls to rencnp, nenset and
mencpy. These entries are usually resolved by entries in standard
compiler libraries. These entry points should be supplied through some
other mechanism when this option is specified.

-S

Remove all symbol table and relocation information from the
executable.

-u synbol

Pretend synbol is undefined to force linking of library modules to
define the symbol. It is legitimate to use - u multiple times with different
symbols to force loading of additional library modules.

-W, option

Pass opt i on as an option to the linker. If opt i on contains commas, it
is split into multiple options at the commas.

-Xl'i nker option

Pass opt i on as an option to the linker. You can use this to supply
system-specific linker options that the compiler does not know how to
recognize.

© 2009 Microchip Technology Inc.

DS51686B-page 37

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.8.10 Options for Directory Search

The following options specify to the compiler where to find directories and files to

search.
TABLE 1-14: DIRECTORY SEARCH OPTIONS
Option Definition
-Bprefix This option specifies where to find the executables, libraries,

include files and data files of the compiler itself.

The compiler driver program runs one or more of the
sub-programs pi ¢32- cpp, pi ¢32-ccl, pi c32-as and

pi c32-1d. Ittries pr ef i x as a prefix for each program it tries to
run.

For each sub-program to be run, the compiler driver first tries the
- B prefix, if any. Lastly, the driver searches the current PATH
environment variable for the subprogram.

- B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into - L options for the linker. They also apply to include
files in the preprocessor, because the compiler translates these
options into - i syst emoptions for the preprocessor. In this case,
the compiler appends i ncl ude to the prefix.

-specs=file

Process file after the compiler reads in the standard specs file, in
order to override the defaults that the pi c32- gcc driver program
uses when determining what switches to pass to pi ¢32-cc1,

pi c32- as, pi ¢32-1 d, etc. More than one - specs=fi | e can be
specified on the command line, and they are processed in order,
from left to right.

DS51686B-page 38

© 2009 Microchip Technology Inc.

Language Specifics

1.8.11 Options for Code Generation Conventions

Options of the form - f f | ag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of - f f oo would be - f no- f 00. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 1-15: CODE GENERATION CONVENTION OPTIONS

Option

Definition

-fargunent-alias
-fargunent-noal i as
- far gunent -

noal i as- gl obal

Specify the possible relationships among parameters and between
parameters and global data.

-fargunent - al i as specifies that arguments (parameters) may
alias each other and may alias global storage.

-fargunent - noal i as specifies that arguments do not alias
each other, but may alias global storage.

-fargunent - noal i as- gl obal specifies that arguments do not
alias each other and do not alias global storage.

Each language automatically uses whatever option is required by
the language standard. You should not need to use these options
yourself.

-fcall-saved-reg

Treat the register named r eg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way saves and
restores the register r eg if they use it.

It is an error to used this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.

A different sort of disaster results from the use of this flag for a
register in which function values are returned.

This flag should be used consistently through all modules.

-fcall-used-reg

Treat the register named r eg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register r eg.

It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.

This flag should be used consistently through all modules.

-ffixed-reg

Treat the register named r eg as a fixed register. Generated code
should never refer to it (except perhaps as a Stack Pointer, Frame
Pointer or in some other fixed role).

r eg must be the name of a register (e.g., - f f i xed- $0) .

© 2009 Microchip Technology Inc.

DS51686B-page 39

MPLAB® C Compiler for PIC32 MCUs User’s Guide

TABLE 1-15:

CODE GENERATION CONVENTION OPTIONS (CONTINUED)

Option

Definition

-finstrunent -
functions

Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions are called with the address of the current
function and its call site.
void __cyg_profile_func_enter

(void *this_fn, void *call_site);
void __cyg_profile_func_exit

(void *this_fn, void *call _site);
The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
The profiling functions should be provided by the user.
Function instrumentation requires the use of a Frame Pointer.
Some optimization levels disable the use of the Frame Pointer.
Using - f no- omi t - f r ame- poi nt er prevents this.
This instrumentation is also done for functions expanded inline in
other functions. The profiling calls indicates where, conceptually,
the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all
your uses of a function are expanded inline, this may mean an
additional expansion of code size. If you use ext ern inlinein
your C code, an addressable version of such functions must be
provided.
A function may be given the attribute
no_i nstrument _f uncti on, in which case this instrumentation
is not done.

-fno-ident

Ignore the #i dent directive.

- f pack-struct

Pack all structure members together without holes. Usually you
would not want to use this option, since it makes the code
sub-optimal, and the offsets of structure members won’t agree with
system libraries.

-fpcc-struct-
return

Return short st r uct and uni on values in memory like longer
ones, rather than in registers. This convention is less efficient, but
it has the advantage of allowing capability between 32-bit compiled
files and files compiled with other compilers.

Short structures and unions are those whose size and alignment
match that of an integer type.

-fno-short-doubl e

By default, the compiler uses a doubl e type equivalent to f | oat .
This option makes doubl e equivalentto | ong doubl e. Mixing
this option across modules can have unexpected results if
modules share double data either directly through argument
passage or indirectly through shared buffer space. Libraries
provided with the product function with either switch setting.

-fshort-enuns

Allocate to an enumtype only as many bytes as it needs for the
declared range of possible values. Specifically, the enumtype is
equivalent to the smallest integer type which has enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code
to make it more readable.

- f no- ver bose- asm the default, causes the extra information to
be omitted and is useful when comparing two assembler files.

-fvolatile

Consider all memory references through pointers to be volatile.

-fvolatil e-gl obal

Consider all memory references to external and global data items
to be volatile. The use of this switch has no effect on static data.

-fvolatile-static

Consider all memory references to static data to be volatile.

DS51686B-page 40

© 2009 Microchip Technology Inc.

Language Specifics

1.9 COMPILING A SINGLE FILE ON THE COMMAND LINE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler is installed on your c: drive in a directory called
Program Fi | es\ M crochi p\MPLAB C32. Therefore the following applies:

e c:\Program Fi | es\ M crochi p\ MPLAB C32\ pi ¢32nx\ i ncl ude — Include
directory for standard C header files.

e c:\Program Fi | es\ M crochi p\ MPLAB C32\ pi ¢32nk\i ncl ude\pr oc —
Include directory for PIC32MX device-specific header files.

e c:\Program Fi | es\ M crochi p\ MPLAB C32\ pi c32nx\ | i b — Library
directory structure for standard libraries and start-up files.

e c:\Program Fi | es\ M crochi p\ MPLAB
C32\ pi c32nx\ i ncl ude\peri pher al — Include directory for PIC32MX
peripheral library include files.

e c:\Program Fi | es\ M crochi p\ MPLAB C32\ pi c32nk\ | i b\ proc —
Directory for device-specific linker script fragments, register definition files and
configuration data may be found.

e c:\Program Fi | es\ M crochi p\ MPLAB C32\ bi n — Directory where the top
level tools executables are located. The PATH environment variable may include
this directory.

The following is a simple C program that adds two numbers.
Create the following program with any text editor and save it as ex1. c.
#i ncl ude <p32xxxx. h>

unsigned int x, y, z;

unsi gned int
add(unsi gned int a, unsigned int b)

{

return(a+b);

}

i nt
mai n(voi d)
{

X
y
z

:2’

:5’

= add(x,y);
return O;

}

The first line of the program includes the header file p32xxxx. h, which provides
definitions for all Special Function Registers (SFRs) on that part. For more information
on processor header files, see Chapter 4. “Low-Level Processor Control”.

Compile the program by typing the following at a DOS prompt:
C \> pic32-gcc -0 exl.out exl.c

The command line option - 0 ex1. out names the output executable file (if the - 0
option is not specified, then the output file is named a. out). The executable file may
be loaded into the MPLAB IDE.

If a hex file is required, for example, to load into a device programmer, then use the
following command:

C:\ > pi c32-bi n2hex ex1. out
This creates an Intel hex file named ex1. hex.

© 2009 Microchip Technology Inc. DS51686B-page 41

MPLAB® C Compiler for PIC32 MCUs User’s Guide

1.10 COMPILING MULTIPLE FILES ON THE COMMAND LINE

Move the Add() function into a file called add. ¢ to demonstrate the use of multiple
files in an application. That is:

File 1

/* exl.c */

#i ncl ude <p32xxxx. h>

int main(void);

unsi gned int add(unsigned int a, unsigned int b);
unsigned int x, y, z;

int mai n(void)

:2’
y =5

= Add(x,VY);
return O;

}
File 2

/* add.c */

#i ncl ude <p32xxxx. h>

unsi gned int

add(unsigned int a, unsigned int b)

{

return(a+b);

}
Compile both files by typing the following at a DOS prompt:
C.\> pic32-gcc -0 exl.out exl.c add.c

This command compiles the modules ex1. ¢ and add. c. The compiled modules are
linked with the compiler libraries and the executable file ex1. out is created.

1.11 BINARY CONSTANTS

A sequence of binary digits preceded by Ob or 0B (the numeral ‘0’ followed by the letter
‘b’ or ‘B’) is taken to be a binary integer. The binary digits consist of the numerals ‘0’
and ‘1’. For example, the (decimal) number 255 can be written as 0b11111111. Like
other integer constants, a binary constant may be suffixed by the letter ‘u’ or ‘U, to
specify that it is unsigned. A binary constant may also be suffixed by the letter ‘I " or ‘L,
to specify that it is long. Similarly, the suffix ‘| | * or ‘LL’ denotes a long long binary
constant.

Note: This binary-constant syntax may not be accepted by other C compilers.

DS51686B-page 42

© 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUs USER’S GUIDE

Chapter 2. Library Environment

2.1 INTRODUCTION

This chapter discusses using the 32-bit language tools libraries.

2.2 HIGHLIGHTS

Items discussed in this chapter are:

« Standard I/O

* Weak Functions

» “Helper” Header Files
e Multilibs

2.3 STANDARD I/O

The standard input/output library functions support two modes of operation, Simple and
Full. The Simple mode supports I/O via a two function interface on a single character
device used for st dout , st di n and st der r. The Full mode supports the complete
set of standard 1/O functions. The library will use Full mode if the application calls

f open, otherwise Simple mode is used.

Simple mode performs 1/O using four functions, _non_puts, _nmon_wite,
_nmon_get ¢ and _non_put c, to perform the raw device 1/0. The default
implementation of _non_get ¢ always returns failure (i.e., by default, character input is
not available). The defaultimplementation of _non_put c writes a character to UART2.
It is assumed that the application has performed any necessary initialization of the
UART. The default implementations of _non_put s and _non_w i t e both simply call
_non_put c iteratively. All four functions are defined as weak functions, and so may be
overridden by the user application if different functionality is desired. See the “32-Bit
Language Tools Libraries” for detailed information on these functions.

An application using Full mode must supply the standard low-level POSIX I/O functions
open,read,wite,l seek andcl ose. No defaultimplementations are provided. See
the “32-Bit Language Tools Libraries” (DS51685) for detailed information on these
functions.

2.4 WEAK FUNCTIONS

The standard library provides a number of weak function implementations of low-level
interfaces. User applications which use this functionality will often implement more full
featured versions of these functions. For details of the specific functions, see the
“32-Bit Language Tools Libraries Libraries” (DS51685).

As described above, the standard I/O library functions utilize a set of weak functions for
simple output: _non_write, nmon_putc, _non_puts,and_non_getc.

The standard start-up code (See Section 5.7 “ Start-up and Initialization”) invokes a
number of weak functions directly and provides weak handlers for bootstrap exceptions
and general exceptions: _on_reset, _nm _handl er,

_boot strap_excepti on_handl er, _general _exception_handl| er, and
_on_boot strap.

© 2009 Microchip Technology Inc. DS51686B-page 43

MPLAB® C Compiler for PIC32 MCUs User’s Guide

The standard library function exi t calls the weak function _exi t prior to returning.

The standard library functions for signals, si gnal and r ai se, are implemented as
weak functions which always fail.

The standard library functions for locales, set | ocal e and | ocal econv, are
implemented as weak functions which do nothing.

The standard library function for accessing environment variables, get env, is
implemented as a weak function which always returns null.

25 “HELPER” HEADER FILES

25.1 sys/attribs.h

Macros are provided for many commonly used attributes in order to enhance user code
readability.

__section__(s) Apply the sect i on attribute with section name s.

__unique_section__ Apply the uni que_sect i on attribute.

__ranfunc__ Locate the attributed function in the RAM function code
section.

__longranfunc__ Locate the attributed function in the RAM function code
section and apply the | ongcal | attribute.

__longcall __ Apply the | ongcal | attribute.

__ISR(v,ipl) Apply the i nt er r upt attribute with priority level i pl
and the vect or attribute with vector number v.

__I SR AT_VECTOR(v, ipl) Apply the i nt er r upt attribute with priority level i pl
and the at _vect or attribute with vector number v.

__ ISR SINGLE Specifies a function as an Interrupt Service Routine in
single-vector mode. This places a jump at the
single-vector location to the interrupt handler.

__ ISR _SINGLE_AT_VECTOR __ Places the entire single-vector interrupt handler at the
vector 0 location. When used, ensure that the vector
spacing is set to accommodate the size of the handler.

25.2 sys/kmem.h

System code may need to translate between virtual and physical addresses, as well as
between kernel segment addresses. Macros are provided to make these translations
easier and to determine the segment an address is in.

KVA_TO_PA(Vv) Translate a kernel virtual address to a physical address.

PA_TO _KVAO(pa) Translate a physical address to a KSEGO virtual address.

PA TO KVAl(pa) Translate a physical address to a KSEG1 virtual address.

KVAO_TO_KVA1(v) Translate a KSEGO virtual address to a KSEGL1 virtual address.

KVAL1_TO_KVAO(Vv) Translate a KSEG1 virtual address to a KSEGO virtual address.

IS _KVA(vV) Evaluates to 1 if the address is a kernel segment virtual address,
zero otherwise.

1'S_KVAO(V) Evaluate to 1 if the address is a KSEGO virtual address, zero
otherwise.

I'S_KVAL(V) Evaluate to 1 if the address is a KSEGL1 virtual address, zero
otherwise.

I'S_KVAO1(V) Evaluate to 1 if the address is either a KSEGO or a KSEG1 virtual
address, zero otherwise.

DS51686B-page 44

© 2009 Microchip Technology Inc.

Library Environment

26 MULTILIBS

2.6.1 What are Multilibs?

With multilibs, target libraries are built multiple times with a permutated set of options.
Multilibs are the resulting set of target libraries that are built with these options. When
the compiler shell is called to compile and link an application, the shell chooses the
version of the target library that has been built with the same options.

2.6.2 What Multilibs are Available for 32-Bit Language Tools?

The target libraries that are distributed with the compiler are built for the following

options:

» Size versus speed (- Cs vs. - B)

¢ 16-bit versus 32-bit (- mi ps16 vs. - mo- ni ps16)

« Software floating-point versus no floating-point support (- nsof t - f | oat vs.
-mo-fl oat)

By default the 32-bit language tools compile for - Q0, - nmo- m ps16, and

-msof t - f | oat . Therefore, the options that we are concerned about are - Cs or - C3,
-m ps16, and - mo- f | oat . Libraries built with the following command line options
are made available:

1. Default command line options
2. -Cs

3. -8

4. -mipsl6

5. -mmo-fl oat

6. -m psl6 -mo-fl oat

7. -OGs -mpsl6

8. -G -mmo-fl oat

9. -Os -mpsl6 -mo-fl oat
10. -8 -m psl6

11. -G8 -mmo-fl oat

12. -G8 -m psl6 -mo-fl oat

© 2009 Microchip Technology Inc. DS51686B-page 45

MPLAB® C Compiler for PIC32 MCUs User’s Guide

2.6.3 Where are the Multilibs Directories?

By default, the 32-bit language tools use the directory
<install-directory>/1ib/gcc/ to store the specific libraries and the directory
<install-directory>/<pi c32nmx>/1i b to store the target-specific libraries. Both
of these directory structures contain subdirectories for each of the multilib combinations
specified above. These subdirectories, respectively, are as follows:

.Isize

./ speed

./ mpsl6

./ no-f1 oat

./ m psl1l6/ no-fl oat
./sizel mpsl6

./ sizel no-fl oat

./ sizel m psl1l6/ no-fl oat
./ speed/ ni ps16

./ speed/ no-f | oat

12. ./ speed/ mi ps16/ no-fl oat

©oNoOkwWNE

ol
= o

2.6.4 Which Multilib Directory Are Selected?

This section looks at examples and provide details on which of the multilibs
subdirectories are chosen.

1. pic32-gcc foo.c

For this example, no command line options have been specified (i.e., the default
command line options are being used). In this case, the . subdirectories are
used.

2. pic32-gcc -0Gs foo.c

For this example, the command line option for optimizing for size has been
specified (i.e., - Gs is being used). In this case, the . / si ze subdirectories are
used.

3. pic32-gcc -2 foo.c

For this example, the command line option for optimizing has been specified,
however, this command line option optimizes for neither size nor space (i.e., - Q2
is being used). In this case, the . subdirectories are used.

4. pic32-gcc -Cs -mpsl6 foo.c

For this example, the command line options for optimizing for size and for
MIPS16 code have been specified (i.e., - Cs and - mi ps16 are being used). In
this case, the . / si ze/ ni ps16 subdirectories are used.

DS51686B-page 46 © 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUs USER’S GUIDE

Chapter 3. Interrupts

3.1 INTRODUCTION

Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.

PIC32MX devices support multiple interrupts, from both internal and external sources.
The devices allow high-priority interrupts to override any lower priority interrupts that
may be in progress.

The compiler provides full support for interrupt processing in C or inline assembly code.
This chapter presents an overview of interrupt processing.

3.2 HIGHLIGHTS

Items discussed in this chapter are:

« Specifying an Interrupt Handler Function
» Associating a Handler Function with an Exception Vector
« Exception Handlers

3.3 SPECIFYING AN INTERRUPT HANDLER FUNCTION

An interrupt handler function handles the context save and restore to ensure that upon
return from interrupt, the program context is maintained.

3.3.1 Handler Function Context Saving

The standard calling convention for C functions will already preserve zer o, s0- s7, gp,
sp, and f p. kO and k1 are used by the compiler to access and preserve non-GPR

context, but are always accessed atomically (i.e., in sequences with global interrupts
disabled), so they need not be preserved actively. In addition to the standard registers,
a handler function will actively preserve the a0- a3,t0-t 9, v0, vl and r a registers.

An interrupt handler function will also actively save and restore processor status
registers that are utilized by the handler function. Specifically, the EPC, SR, hi and |1 o
registers are preserved as context.

Handler functions specified as priority level 7 (highest priority) will use a shadow
register set to preserve the General Purpose Registers, enabling lower latency entry
into the application code of the handler function.

3.3.2 Marking a Function as an Interrupt Handler

A function is marked as a handler function via either the interrupt attribute or the
interrupt pragmal. Each method is functionally equivalent to the other. The interrupt is
specified as handling interrupts of a specific priority level or for operating in single
vector mode.

1. Note that pre-processor macros are not expanded in pragma directives.

© 2009 Microchip Technology Inc. DS51686B-page 47

MPLAB® C Compiler for PIC32 MCUs User’s Guide

3.3.21 INTERRUPT ATTRIBUTE

attribute ((interrupt([!PLn[SRS| SOFT| AUTO])))
Where n is in the range of 0..7, inclusive.

In early PIC32 devices, the shadow register set is hard coded to priority level 7 (IPL7).
For these devices, we specify __attribute_ ((interrupt(lPLn))),wherenis
the priority level. For IPL7, the compiler generates function prologue and epilogue code
utilizing the shadow register set for context saving. The compiler generates software
context-saving code when the user specifies lower IPL values.

Later PIC32 devices allow us to select, via configuration settings, which priority will use
the shadow register set. (Refer to the device data sheet to determine if your PIC32
device supports this feature.) This means we must specify which context-saving
mechanism to use for each Interrupt Service Routine. The compiler will generate
interrupt prologue and epilogue code utilizing shadow register context saving for

I PLNSRS. It will use software context saving for | PLnSOFT.

Note: Application code is responsible for applying the correct value to the
matching handler routine.

The compiler also supports an | PLnAUTOIPL specifier that uses the run-time value in
SRSCTL to determine whether it should use software or SRS context-saving code. The
compiler defaults to using | PLnAUTOwhen the IPL specifier is omitted from the

i nterrupt () attribute.

Note: SRS has the shortest latency and SOFT has a longer latency due to
registers saved on the stack. AUTOadds a few cycles to test if SRS or SOFT
should be used.

3.3.2.2 INTERRUPT PRAGMA

pragma interrupt function-name |PLn[AUTQ SOFT| SRS] [vector
[@vector-nunmber [, vector-nunber-list]]
pragma interrupt function-nane single [vector [@ O

Where n is in the range of 0..7, inclusive. The | PLn specifier may be all uppercase or
all lowercase.

The function definition for a handler function indicated by an interrupt pragma must
follow in the same translation unit as the pragma itself.

The i nt errupt attribute will also indicate that a function definition is an interrupt
handler. It is functionally equivalent to the interrupt pragma.

For example, the definitions of f oo below both indicate that it is an interrupt handler
function for an interrupt of priority 4 that uses software context saving.

#pragma i nterrupt foo | PLASOFT
voi d foo (void)

is functionally equivalent to
void __attribute__ ((interrupt(lIPL4SOFT))) foo (void)

3.4 ASSOCIATING A HANDLER FUNCTION WITH AN EXCEPTION VECTOR

There are 64 exception vectors, numbered 0..63 inclusive. Each interrupt source is
mapped to an exception vector as specified in the device data sheet. By default, four
words of space are reserved at each vector address for a dispatch to the handler
function for that exception source.

DS51686B-page 48

© 2009 Microchip Technology Inc.

Interrupts

An interrupt handler function can be associated with an interrupt vector either as the
target of a dispatch function located at the exception vector address, or as being
located directly at the exception vector address. A single handler function can be the
target of multiple dispatch functions.

The association of a handler function to one or more exception vector addresses is
specified via a clause of the interrupt pragma, a separate vector pragma, or a vector
attribute on the function declaration.

34.1 Interrupt Pragma Clause

The interrupt pragma has an optional vect or clause following the priority specifier.

pragma interrupt function-nane ipl-specifier [vector
[@vector-nunber [, vector-nunber-list]]

A dispatch function targeting the specified handler function will be created at the
exception vector address for the specified vector numbers. If the first vector number is
specified with a preceding “@” symbol, the handler function itself will be located there
directly.

For example, the following pragma specifies that function f oo will be created as an
interrupt handler function of priority four. f oo will be located at the address of exception
vector 54. A dispatch function targeting f oo will be created at exception vector address
34.

#pragma interrupt foo ipl4 vector @4, 34

The following pragma specifies that function bar will be created as an interrupt handler
function of priority five. bar will be located in general purpose program memory (.text
section). A dispatch function targeting bar will be created at exception vector address
23.

#pragma i nterrupt bar ipl5 vector 23

3.4.2 Vector Pragma

The vect or pragma creates one or more dispatch functions targeting the indicated
function. For target functions specified with the i nt er r upt pragma, this functions as
if the vector clause had been used. The target function of a vect or pragma can be
any function, including external functions implemented in assembly or by other means.

pragma vector function-nane vector vector-nunber [,
vect or - nunber-1i st]

The following pragma defines a dispatch function targeting f oo at exception vector
address 54.

#pragma vector foo 54

3.4.3 Vector Attribute

A handler function can be associated with one or more exception vector addresses via
an attribute. The at _vect or attribute indicates that the handler function should itself
be placed at the exception vector address. The vect or attribute indicates that a
dispatch function should be created at the exception vector address(es).

For example, the following declaration specifies that function f oo will be created as an
interrupt handler function of priority four. f oo will be located at the address of exception
vector 54.

void __attribute__ ((interrupt(ipl4))) _ attribute__ ((at_vector(54)))
foo (void)

The following declaration specifies that function f oo will be created as an interrupt
handler function of priority four. Define dispatch functions targeting f 0o at exception
vector addresses 52 and 53.

© 2009 Microchip Technology Inc. DS51686B-page 49

MPLAB® C Compiler for PIC32 MCUs User’s Guide

void __attribute__ ((interrupt(ipl4))) _ attribute__ ((vector(53,
52))) foo (void)

3.4.4 __ISR Macros

The <sys/ attri bs. h> header file provides macros intended to simplify the
application of attributes to functions. There are also vector macros defined in the
processor header files. (See the appropriate header file in the compiler install
directory.)

3.4.41 __ISR(v, ipl)

Usethe | SR(v, ipl) macro to assign the vector-number location and associate it
with the software-assigned interrupt priority. This will place a jump to the interrupt
handler at the associated vector location. This macro also applies the nomips16
attribute since ISR functions are required to be MIPS32.

EXAMPLE 3-1: CORE TIMER VECTOR, IPL2SOFT

void __ | SR(_CORE TI MER VECTOR, |PL2SCOFT) Cor eTi ner Handl er (voi d);

Example 3-1 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places a dispatch function at the
associated vector location. To reach this function, the core timer interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of two. The
compiler generates software context-saving code for this handler function.

EXAMPLE 3-2: CORE SOFTWARE 0 VECTOR, IPL3SRS

void __ | SR(_CORE_SOFTWARE_0_VECTOR, | PL3SRS)
_Cor eSof t war el nt OHandl er (voi d);

Example 3-2 creates an interrupt handler function for the core software interrupt 0 that
has an interrupt priority level of three. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of three. The
device configuration fuses must assigh Shadow Register Set 1 to interrupt priority level
three. The compiler generates code that assumes that register context will be saved in
SRS1.

EXAMPLE 3-3: CORE SOFTWARE 1 VECTOR, IPLOAUTO

void __ | SR(_CORE_SOFTWARE_1_VECTOR, | PLOAUTO)
_Cor eSof t war el nt 1Handl er (voi d) ;

Example 3-3 creates an interrupt handler function for the core software interrupt 1 that
has an interrupt priority level of zero. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt 1 flag and
enable bits must be set, and the interrupt priority should be set to a level of zero. The
compiler generates code that determines at run time whether software context saving
is required.

EXAMPLE 3-4: CORE SOFTWARE 1 VECTOR, DEFAULT

void | SR(_CORE SOFTWARE 1 VECTOR) _Cor eSof t war el nt 1Handl er (voi d) ;

Example 3-4 is functionally equivalent to Example 3. Because the IPL specifier is
omitted, the compiler assumes | PLOAUTO

DS51686B-page 50

© 2009 Microchip Technology Inc.

Interrupts

3.4.42 __ISR_AT_VECTOR(y, ipl)

Usethe | SR AT VECTOR(v, ipl) to place the entire interrupt handler at the
vector location and associate it with the software-assigned interrupt priority. Application
code is responsible for making sure that the vector spacing is set to accommodate the
size of the handler. This macro also applies the nomips16 attribute since ISR functions
are required to be MIPS32.

EXAMPLE 3-5: CORE TIMER VECTOR, IPL2SOFT

void | SR AT _VECTOR(_CORE_TI MER VECTOR, | PL2SOFT)
Cor eTi ner Handl er (voi d) ;

Example 3-5 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places the entire interrupt handler at the
vector location. It does not use a dispatch function. To reach this function, the core timer
interrupt flag and enable bits must be set, and the interrupt priority should be set to a
level of two. The compiler generates software context-saving code for this handler
function.

3.443 INTERRUPT-VECTOR MACROS

Each processor-support header file provides a macro for each interrupt-vector number
(for example, \ pi ¢32nx\ i ncl ude\ pr oc\ p32nmk360f 5121 . h. See the appropriate
header file in the compiler install directory). When used in conjunction with the
__I'SR() macro provided by the sys\ attri bs. h header file, these macros help
make an Interrupt Service Routine easier to write and maintain.

EXAMPLE 3-6: INTERRUPT-VECTOR WITH HANDLER

void ISR (_TIMER 1 VECTOR, |PL7SRS) Ti ner1Handl er (void);

Example 3-6 creates an interrupt handler function for the Timer 1 interrupt that has an
interrupt priority level of seven. The compiler places a dispatch function at the vector
location associated with macro _TI MER_1 VECTOR as defined in the device-specific
header file. To reach this function, the Timer 1 interrupt flag and enable bits must be
set, and the interrupt priority should be set to a level of seven. For devices that allow
assignment of shadow registers to specific IPL values, the device Configuration bit
settings must assign Shadow Register Set 1 to interrupt priority level seven. The
compiler generates code that assumes that register context will be saved in SRS1.

3.5 EXCEPTION HANDLERS

The PIC32MX devices also have two exception vectors for non-interrupt exceptions.
These exceptions are grouped into bootstrap exceptions and general exceptions.

3.5.1 Bootstrap Exception

A reset exception is any exception which occurs while bootstrap code is running
(St at usggy=1). All reset exceptions are vectored to 0xBFC00380.

At this location the 32-bit toolchain places a branch instruction targeting a function
named _boot strap_excepti on_handl er () . In the standard library, a default
weak version of this function is provided which merely goes into an infinite loop. If the
user application provides an implementation of

_boot strap_excepti on_handl er (), that implementation will be used instead.

© 2009 Microchip Technology Inc. DS51686B-page 51

MPLAB® C Compiler for PIC32 MCUs User’s Guide

3.5.2 General Exception

A general exception is any non-interrupt exception which occurs during program
execution outside of bootstrap code (St at usyg,=0). General exceptions are vectored
to offset 0x180 from EBase.

At this location the 32-bit toolchain places a branch instruction targeting a function
named _gener al _excepti on_cont ext (). The provided implementation of this
function saves context, calls an application handler function, restores context and
performs a return from the exception instruction. The context saved is the hi and | o
registers and all General Purpose Registers except sO- s8, which are defined to be
preserved by all called functions and so are not necessary to actively save again here.
The values of the Cause and St at us registers are passed to the application handler
function (_gener al _excepti on_handl er ()). If the user application provides an
implementation of _gener al _excepti on_cont ext (), that implementation will be
used instead.

voi d _general _exception_handl er (unsigned cause, unsigned status);

A weak default implementation of _gener al _excepti on_handl er () is provided in
the standard library which merely goes into an infinite loop. If the user application
provides an implementation of _gener al _excepti on_handl er (), that
implementation will be used instead.

DS51686B-page 52

© 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUs USER’S GUIDE

Chapter 4. Low-Level Processor Control

4.1 INTRODUCTION

This chapter discusses access to the low-level registers and configuration of the
PIC32MX devices.

4.2 HIGHLIGHTS

Items discussed in this chapter are:

» Generic Processor Header File

» Processor Support Header Files
* Peripheral Library Functions

« Special Function Register Access
« CPO Register Access

« Configuration Bit Access

4.3 GENERIC PROCESSOR HEADER FILE

The generic processor header file is a C file that includes the correct processor-specific
header file based on the processor specified with the - npr ocessor command line
option. The generic processor header file is located in

c:\Program Fil es\ M crochi p\ MPLAB C32\ pi ¢32nmx\ i ncl ude, where
c:\Program Fil es\ M crochi p\ MPLAB C32 is the directory in which the 32-bit
toolchain was installed. Besides including the correct processor-specific header file,
the generic processor header file also provides #def i nes which allow the use of
conventional register names from within assembly language files.

To include the generic processor header file, use the following from within your source
code:

#i ncl ude <p32xxxx. h>

Inclusion of the generic processor header file allows your source code to be compiled
for any of the processors supported by the 32-bit toolchain without having to change
the file which is being included.

4.4 PROCESSOR SUPPORT HEADER FILES

The processor-specific header files are files that contain external declarations for the
Special Function Registers (SFRs) for use in either C or assembly. By convention, each
SFR is named using the same name that appears in the data sheet — for example,
WDTCON for the Watchdog Timer Control register. If the register has individual bits that
may be of interest, there is also be a structure t ypedef defined for that SFR, where
the name of the structure t ypedef is the name of the register with bi t s_t appended
— for example, _ WDTCONbi t s_t . The individual bits (or bit fields) are named in the
structure using the names in the data sheet. For example, in the PIC32MX360F512L
processor-specific header file, the WDTCON register for use with C is declared as:

© 2009 Microchip Technology Inc. DS51686B-page 53

MPLAB® C Compiler for PIC32 MCUs User’s Guide

extern volatile unsigned int WDOTCON __attribute_ ((section("sfrs")));
typedef union {

struct {
unsi gned WDTCLR: 1;
unsi gned :1;
unsi gned SWDTPSO:
unsi gned SWDTPSL:
unsi gned SWDTPS2:
unsi gned SWDTPS3:
unsi gned SWDTPS4:
unsi gned : 8;
unsi gned ON: 1;

b

struct {
unsi gned : 2;
unsi gned WDTPSTA: 5;
unsi gned :1;
unsi gned PWRTPSTA: 3;

b

struct {

unsi gned w. 32;

H

} __ VWDTCONbits_t;
extern volatile _ WDTCONbits_t WDTCONbits asm ("WDTCON") _ attribute_ ((section("sfrs")));

PR R

Note: The symbols WDTCON and WDTCONbits refer to the same register and
resolve to the same address as can be seen by the declaration for
WDTCONbits.

For use with assembly, the WDTCON register is declared as: . ext er n WDTCON.

The processor-specific header files are located in

c:\Program Fi |l es\ M crochi p\ MPLAB C32\ pi c32nx\i ncl ude\ pr oc, where
c:\Program Fi |l es\ M crochi p\ MPLAB C32 is the directory in which the 32-bit
toolchain was installed. To include a processor-specific header file, it is recommended
that you include the generic processor header file (see Section 4.3 “Generic
Processor Header File”), however, if you would like to specifically call out the
processor-specific header file, use the following from your source file (example
assumes inclusion of the processor-specific header file for the PIC32MX360F512L):

#i ncl ude <proc/ p32nx360f 512| . h>

4.5 PERIPHERAL LIBRARY FUNCTIONS

Many of the peripherals of the PIC32MX devices are supported by the peripheral library
functions provided with the compiler tools. See the “32-Bit Language Tools Libraries”
(DS51685) for details on the functions provided.

DS51686B-page 54 © 2009 Microchip Technology Inc.

Low-Level Processor Control

46 SPECIAL FUNCTION REGISTER ACCESS

There are three steps to follow when using SFRs in an application.

1. Include either the generic processor header file (i.e., p32xxxx. h) or the
processor-specific header file for the appropriate device (e.g.,
proc/ p32m360f 512] . h).
#i ncl ude <p32xxxx. h>

2. Access SFRs like any other C variables. The source code can write to and/or
read from the SFRs. For example, the following statement clears all the bits to
zero in the Special Function Register for Timer 1:
TMR1L = 0;
The next statement enables the Watchdog Timer:
WDTCONbits. ON = 1;

3. Link with the default linker script or include the pr ocessor . o file for the
appropriate processor in your project.

4.7 CPO REGISTER ACCESS
4.7.1 CPO Register Definitions Header File

The CPO register definitions header file (cpOdef s. h) is a file that contains definitions
for the CPO registers and their fields. In addition, it contains macros for accessing the
CPO registers. The CPO register definitions header file is located in

c:\Program Fil es\ M crochi p\ MPLAB C32\ pi c32nx\i ncl ude, where
c:\Program Fil es\ M crochi p\ MPLAB C32 is the directory in which the 32-bit
toolchain was installed. The CPO register definitions header file was designed to work
with either Assembly or C files.

The CPO register definitions header file is dependent on macros defined within the
processor generic header file (See Section 4.3 “Generic Processor Header File”).
To include the CPO register definitions header file, use the following from within your
source code:

#i ncl ude <p32xxxx. h>

4.7.2 CPO Register Definitions
When the CPO register definitions header file is included from an Assembly file, the
CPO registers are defined as:
#defi ne _CPO_recrster name $regi ster_nunber, sel ect_nunber
For example, the | nt Ct | register is defined as:
#define _CPO_I NTCTL $12, 1

When the CPO register definitions header file is included from a C file, the CPO registers
and selects are defined as:

#defi ne _CPO_recrsTer naMe regi ster_nunber
#defi ne _CPO_recister nave_SELECT sel ect _nunber

For example, the | nt Ct | register is defined as:
#define _CPO_I NTCTL 12
#define _CPO_I NTCTL_SELECT 1

4.7.3 CPO Register Field Definitions

When the CPO register definitions header file is included from either an Assembly or a
C file, three #def i nes exist for each of the CPO register fields.

_CPO_recrster_name_r1erp naMe_POSI T ON - the starting bit location

© 2009 Microchip Technology Inc. DS51686B-page 55

MPLAB® C Compiler for PIC32 MCUs User’s Guide

_CPO_recrster_name_rrerp NaMe_MASK — the bits that are part of this field are set
_CPO_recrster_name_rrerp NaMe_LENGTH-the number of bits that this field occupies
For example, the vector spacing field of the | nt Ct | register has the following defines:

#define _CPO_I NTCTL_VS PGS TI ON 0x00000005
#define _CPO_I NTCTL_VS MASK 0x000003E0
#define _CPO_INTCTL_VS LENGTH 0x00000005

4.7.4 CPO Access Macros

When the CPO register definitions header file is included from a C file, CPO access
macros are defined. Each CPO register may have up to six different access macros
defined:

_CPO_CET_recIsTer namE () Returns the value for register, REGISTER NAME.

_CPO_SET_reczster name (val) Sets the register, recrsTER NaME, to val, and
returns void. Only defined for registers that
contain a writable field.

_CPO_XCH_reczster_name (val) Sets the register, recrsTER NaME, to val, and
returns the previous register value. Only
defined for registers that contain a writable
field.

_CPO_BI S_recrsTer name (Set) Sets the register, REGISTER NAME, tO

(reg |= set), and returns the previous register
value. Only defined for registers that contain
writable bit fields.

_CPO_BI C_reczster_name (clr) Sets the register, REGISTER NAME, tO

(reg &= ~clr), and returns the previous
register value. Only defined for registers that
contain writable bit fields.

_CPO_BCS_recrster_name (clr, set) Sets the register, REGISTER NAME, tO

(reg = (reg & ~clr) | set), and returns the
previous register value. Only defined for
registers that contain writable bit fields.

4.8 CONFIGURATION BIT ACCESS

4.8.1 #pragma config

The #pr agnma conf i g directive specifies the processor-specific configuration settings
(i.e., Configuration bits) to be used by the application. Refer to the “PIC32MX
Configuration Settings” online help (found under MPLAB IDE>Help>Topics>Language
Tools) for more information. (If using the compiler from the command line, this help file
is located at the default location at C: \ Progr am Fi | es\ M cr ochi p\ MPLAB

C32\ doc\ hl pPI C32MXConf i gSet . chm).

Configuration settings may be specified with multiple #pr agma conf i g directives.
The compiler verifies that the configuration settings specified are valid for the processor
for which it is compiling. If a given setting in the Configuration Word has not been
specified in any #pr agma conf i g directive, the bits associated with that setting
default to the unprogrammed value.

For each Configuration Word for which a setting is specified with the #pr agna confi g
directive, the compiler generates a read-only data section named . conf i g_addr ess,
where addr ess is the hexadecimal representation of the address of the Configuration
Word. For example, if a configuration setting was specified for the Configuration Word
located at address OxBFCO2FFC, a read-only data section named

. confi g_BFCO2FFC would be created.

DS51686B-page 56

© 2009 Microchip Technology Inc.

Low-Level Processor Control

48.1.1 SYNTAX
pragma-config-directive:
pragnma config setting-list

setting-list:

setting

| setting-list, setting

setting:

setting-name = value-name
The setting-name and value-name are device specific and can be determined by
utilizing the PIC32MX Configuration Settings document.

48.1.2 EXAMPLE

The following example shows how the #pr agma conf i g directive might be utilized.
The example does the following:

« Enables the Watchdog Timer,
« Sets the Watchdog Postscaler to 1:128, and
 Selects the HS Oscillator for the Primary Oscillator

#pragma config FWDTEN = ON, WDTPS = PS128
#pragma config POSCMOD = HS

void main (void)

{

© 2009 Microchip Technology Inc. DS51686B-page 57

MPLAB® C Compiler for PIC32 MCUs User’s Guide

NOTES:

DS51686B-page 58 © 2009 Microchip Technology Inc.

MICROCHIP

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

Chapter 5. Compiler Run-time Environment

5.1 INTRODUCTION

This chapter discusses the compiler run-time environment.

5.2 HIGHLIGHTS

Items discussed in this chapter are:

¢ Register Conventions

« Stack Usage
* Heap Usage

¢ Function Calling Convention
 Start-up and Initialization
« Contents of the Default Linker Script

* RAM Functions

5.3 REGISTER CONVENTIONS

TABLE 5-1: REGISTER CONVENTIONS
Register Name | Software Name Use

$0 zero Always 0 when read.

$1 at Assembler temporary variable.

$2-$3 v0-v1l Return value from functions.

$4-$7 a0-a3 Used for passing arguments to functions.

$8-$15 to-t7 Temporary registers used by compiler for expression
evaluation. Values not saved across function calls.

$16-$23 s0-s7 Temporary registers whose values are saved across
function calls.

$24-$25 t8-t9 Temporary registers used by compiler for expression
evaluation. Values not saved across function calls.

$26-$27 kO- k1 Reserved for interrupt/trap handler.

$28 ap Global Painter.

$29 sp Stack Pointer.

$30 fp or s8 Frame Pointer if needed. Additional temporary saved
register if not.

$31 ra Return address for functions.

© 2009 Microchip Technology Inc.

DS51686B-page 59

MPLAB® C Compiler for PIC32 MCUs User’s Guide

5.4 STACK USAGE

The compiler dedicates General Purpose Register 29 as the software Stack Pointer. All
processor stack operations, including function call, interrupts and exceptions use the
software stack. The stack grows downward from high addresses to low addresses.

By default, the size of the stack is 1024 bytes. The size of the stack may be changed
by specifying the size on the linker command line using the

- -def sym mi n_st ack_si ze linker command line option. An example of allocating
a stack of 2048 bytes using the command line is:

pi c32-gcc foo.c -W, --defsym _ni n_stack_si ze=2048

The run-time stack grows downward from higher addresses to lower addresses (see
Figure 5-1). The compiler uses two working registers to manage the stack:

* Register 29 (sp) — This is the Stack Pointer. It points to the next free location on

the stack.

» Register 30 (f p) — This is the Frame Pointer. It points to the current function’s
frame. Each function, if required, creates a new frame from which automatic and
temporary variables are allocated. Compiler optimization may eliminate Stack
Pointer references via the Frame Pointer to equivalent references via the Stack
Pointer. This optimization allows the Frame Pointer to be used as a General

Purpose Register.

FIGURE 5-1: STACK FRA

ME

Space for more
arguments if
necessary

a

Space for argument 4

Space for argument 3

Space for argument 2

./
\

FP—»

Space for argument 1

Local variables and
temporary values

Callee

Register save area

Space for arguments
used in function calls

SP—»

Stack grows
toward
lower
addresses

DS51686B-page 60

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

5.5 HEAP USAGE

The C run-time heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, cal | oc, mal | oc and r eal | oc. If you do not use any of these functions,
then you do not need to allocate a heap. By default, a heap is not created.

If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library function that
uses one of these functions, then a heap must be created. A heap is created by
specifying its size on the linker command line using the - - def sym m n_heap_si ze
linker command line option. An example of allocating a heap of 512 bytes using the
command line is:

pi c32-gcc foo.c -W, --defsym _m n_heap_si ze=512

The linker allocates the heap immediately before the stack.

5.6 FUNCTION CALLING CONVENTION

The Stack Pointer is always aligned on a 4-byte boundary.

» All integer types smaller than a 32-bit integer are first converted to a 32-bit value.
The first four 32 bits of arguments are passed via registers a0-a3 (see Table 5-2
for how many registers are required for each data type).

« Although some arguments may be passed in registers, space is still allocated on
the stack for all arguments to be passed to a function (see Figure 5-2).

* When calling a function:

- Registers a0-a3 are used for passing arguments to functions. Values in these
registers are not preserved across function calls.

- Registerst 0-t 7 and t 8-t 9 are caller saved registers. The calling function
must push these values onto the stack for the registers’ values to be saved.

- Registers s0-s7 are called saved registers. The function being called must
save any of these registers it modifies.

- Register s8 is a saved register if the optimizer eliminates its use as the Frame
Pointer. s8 is a reserved register otherwise.

- Register r a contains the return address of a function call.

TABLE 5-2: REGISTERS REQUIRED
Data Type Number of Registers Required

char

short

int

| ong

l ong | ong
f | oat

doubl e
| ong doubl e
Structure Up to 4, depending on the size of the struct.

N(N|R[IN|R|R|R|R

© 2009 Microchip Technology Inc. DS51686B-page 61

MPLAB® C Compiler for PIC32 MCUs User’s Guide

FIGURE 5-2: PASSING ARGUMENTS

Example 1:

int add (int, int)
a= add (5, 10);

SP+4 undefined a0 5

Sp undefined al 10

Example 2:

voi d foo (double, double)
call= foo (10.5, 20.1);

SP+12 undefined a0 10.5
SP +8 al
SP +4 a2
undefined 20.1
SP a3
Example 3:

voi d cal cul ate (doubl e, double, int)
cal culate (50.3, 100.0, .10);

.10
SP + 16
SP + 12
undefined a0 50.3
SP+8 al
SP+4 a2
undefined 100.0
SP a3

DS51686B-page 62 © 2009 Microchip Technology Inc.

Compiler Run-time Environment

5.7 START-UP AND INITIALIZATION

57.1 Provisions

The following provisions are made regarding the run-time model:
* Kernel mode only
* KSEG1 only

¢ RAM functions are attributed with __ranfunc__ or__l ongranfunc__,
meaning that all RAM functions end up in the . r anf unc section

5.7.2 PIC32MX Start-up Code

The PIC32MX start-up code must perform the following:

Jump to NMI Handler if an NMI Occurred
Initialize Stack Pointer and Heap
Initialize Global Pointer
Call “On Reset” Procedure
Clear Uninitialized Data Sections
Copy Initialized Data from Program Flash to Data Memory
Copy RAM Functions from Program Flash to Data Memory
Initialize Bus Matrix Registers
Initialize CPO Registers
. Trace Control 2 Register (TraceControl2 — CPO Register 23, Select 2)
. Call “On Bootstrap” Procedure
. Change Location of Exception Vectors
13. Call Main

© N gD RE

B oR e
N P O

5721 JUMP TO NMI HANDLER IF AN NMI OCCURRED

If an NMI caused entry to the Reset vector, a jump to an NMI handler procedure
(_nm _handl er) occurs. A weak version of the NMI handler procedure is provided
that performs an ERET. The _nm _handl er function must be attributed with

nom psl6 [e.g., _attribute__((nom psl6))] since the start-up code jumps to
this function.

5.7.2.2 INITIALIZE STACK POINTER AND HEAP

The Stack Pointer (sp) register must be initialized in the start-up code. To enable the
start-up code to initialize the sp register, the linker script must initialize a variable which
points to the end of KSEG1 data memory?. This variable is named _st ack. The user
can change the minimum amount of stack space allocated by providing the command
line option - - def sym _ni n_st ack_si ze=Nto the linker. _ni n_stack_si ze is
provided by the linker script with a default value of 1024.

On a similar note, the user may wish to utilize a heap with their application. While the
start-up code does not need to initialize the heap, the standard C libraries (sbr k) must
be made aware of the heap location and its size. The linker script creates a variable to
identify the beginning of the heap. The location of the heap is the end of the utilized
KSEG1 data memory. This variable is named _heap. The user can change the
minimum amount of heap space allocated by providing the command line option
--defsym _m n_heap_si ze=Mto the linker. _m n_heap_si ze is provided by the

1. The end of data memory are different based on whether RAM functions exist. If RAM functions exist, then
part of the DRM must be configured for kernel program to contain the RAM functions, and the Stack
Pointer is located one word prior to the beginning of the DRM kernel program boundary address. If RAM
functions do not exist, then the Stack Pointer is located at the true end of DRM.

© 2009 Microchip Technology Inc. DS51686B-page 63

MPLAB® C Compiler for PIC32 MCUs User’s Guide

linker script with a default value of 0. If the heap is used when the heap size is set to
zero, the behavior is the same as when the heap usage exceeds the minimum heap
size. Namely, it overflows into the space allocated for the stack.

The heap and the stack use the unallocated KSEG1 data memory, with the heap
starting from the end of allocated KSEG1 data memory and growing upwards towards
the stack while the stack starts at the end of KSEG1 data memory and grows
downwards towards the heap. If enough space is not available based on the minimum
amount of heap size and stack size requested, the linker issues an error.

FIGURE 5-3: STACK AND HEAP LAYOUT

_heap
—_—

_min_heap_size

» PFM

reset
.boot_excpt . BFM

stack .stack
_

_min_stack_size

Program Flash Memory

Data RAM Memory

FIGURE 5-4: STACK AND HEAP LAYOUT WITH RAM FUNCTIONS

_heap
_—
l _min_heap_size
PF
T _min_stack_size

_stack
_

1 excpt . BFM Potentially unused

roaram Flash Memory

Data RAM Memory

5.7.2.3 INITIALIZE GLOBAL POINTER

The compiler toolchain supports Global Pointer (gp) relative addressing. Loads and
stores to data lying within 32KB of either side of the address stored in the gp register
can be performed in a single instruction using the gp register as the base register.

DS51686B-page 64

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

Without the Global Pointer, loading data from a static memory area takes two
instructions — one to load the Most Significant bits of the 32-bit constant address
computed by the compiler/linker and one to do the data load.

To utilize gp-relative addressing, the compiler and assembler must group all of the
“small” variables and constants into one of the following sections:

e . lit4. «lit8

e . sdat a. * sbss

e .sdata.* * sbss. *

e .gnu. linkonce.s.* e .gnu. linkonce. sbh. *

The linker must then group all of the above input sections together. The run-time
start-up code mustinitialize the gp register to point to the “middle” of this output section.
To enable the start-up code to initialize the gp register, the linker script must initialize a
variable which is 32 KB from the start of the output section containing the “small”
variables and constants. This variable is named _gp (to match core linker scripts).
Besides being initialized in the standard GPR set, the Global Pointer must also be
initialized in the register shadow set.

FIGURE 5-5: GLOBAL POINTER LOCATION

app_excpt -got
xt 0x8000 .sdata
. Jitg

r—— Jditd

gp

- _min_heap_size

PFM

boot_excpt R Potentially unused
k BFM ¥

Program Flash Memory Data RAM Memory

5.7.2.4 CALL “ON RESET” PROCEDURE

A procedure is called after initializing a minimum ‘C’ context. This procedure allows
users to perform actions almost immediately on Reset of the device. An empty weak
version of this procedure (_on_r eset) is provided with the start-up code. Special
consideration needs to be taken by the user if this procedure is written in ‘C’. Most
importantly, statically allocated variables are not initialized (with either the specified
initializer or a zero as required for uninitialized variables).

5.7.25 CLEAR UNINITIALIZED DATA SECTIONS

There are two uninitialized data sections—. sbss and . bss. The . sbss section is a
data segment containing uninitialized variables less than or equal to n bytes where n
is determined by the - Gnh command line option. The . bss section is a data segment
containing uninitialized variables not included in . sbss.

© 2009 Microchip Technology Inc. DS51686B-page 65

MPLAB® C Compiler for PIC32 MCUs User’s Guide

The C standard requires that the uninitialized data sections be initialized to 0 on
start-up. In order to initialize these sections, the linker script must allocate these
sections contiguously and initialize two variables — one for the start address of the
uninitialized data section and one for the end address of the uninitialized data section.
The start-up code clears all data memory locations between these two addresses.
These variables are named _bss_begi n and _bss_end, respectively.

FIGURE 5-6: UNINITIALIZED DATA

.app_excpt

_bss_begin
—_—

_bss_end

min_heap_size

Program Flash Memory Data RAM Memory

5.7.2.6 COPY INITIALIZED DATA FROM PROGRAM FLASH TO DATA MEMORY

Similar to uninitialized data sections, four initialized data sections exist:. sdat a,
.data,.lit4,and.lit8. The. sdat a section is a data segment containing
initialized variables less than or equal to n bytes where n is determined by the - Gn
command line option. The . dat a section is a data segment containing initialized
variables not included in . sdata. The.lit4 and. | it 8 sections contain constants
(usually floating-point) which the assembler decides to store in memory rather than in
the instruction stream.

On start-up, a copy of the initialized data exists in the program Flash. This data must
be copied to data memory. To facilitate this, the linker script must initialize three
variables—one for the start address of the image in program Flash, one for the start
address of the section in data memory, and one for the end address of the section in
data memory. The start-up code copies all data memory locations from program Flash
image to data memory using these variables. These variables are named

_data_i mage_begi n, _dat a_begi n, and _dat a_end, respectively.

DS51686B-page 66 © 2009 Microchip Technology Inc.

Compiler Run-time Environment

FIGURE 5-7: INITIALIZED DATA
data_begin
data
.got
.sdata
ditg
dataend | _ _ _ _ _ G-
_data_image_begin
.bss
.got (image) heap
sdata (image)
Jit8 (image) -~ _min_heap_size
Jitd (image)
ramfune (image
ck
amfunc
f BFM 4
Program Flash Memory Data RAM Memory

5.7.27 COPY RAM FUNCTIONS FROM PROGRAM FLASH TO DATA MEMORY

RAM functions are similar to initialized data, except that the data that exists in the
program Flash represents functions instead of initial values for symbols. Similar to the
way that initialized data is copied from program Flash to data memory, the linker script
must initialize three variables—one for the start address of the image in program Flash,
one for the start address of the section in data memory and one for the end address of
the section in data memory. The start-up code copies the memory locations from the
program Flash image to the data memory using these variables. These variables are
named _ranf unc_i mage_begi n, _ranfunc_begi n,and _r anf unc_end,
respectively.

FIGURE 5-8: RAM FUNCTIONS

_ramfunc_image_begin
=7 = T T Tramfunc (image) ~ — | PFM

_ramfunc_begin

-ramfunc } ramfunc_length
—_—k e e = = = 4

ramfunc_end

.boot_excpt BFM Potentially unused

Program Flash Memory Data RAM Memory

5.7.2.8 INITIALIZE BUS MATRIX REGISTERS

The bus matrix registers (BMXDKPBA, BMXDUDBA, BMXDUPBA) should be initialized by
the start-up code if any RAM functions exist, otherwise, these registers should not be
modified. To determine whether any RAM functions exist in the application, the linker
script provides a variable that contains the length of the . r anf unc section®. This

1. All functions attributed with __ranfunc__ or __| ongranf unc__ are placed in the . r anf unc section.

© 2009 Microchip Technology Inc. DS51686B-page 67

MPLAB® C Compiler for PIC32 MCUs User’s Guide

variable is named _r anf unc_I| engt h. In addition, the linker script provides three
variables that contain the address of the bus matrix registers. These variables are
named _bnmxdkpba_addr ess, bnxdudba_addr ess, and _bnxdupba_addr ess.
The following calculations are used to calculate these addresses:

_bmxdkpba_address = _ranfunc_begin -

ORI Gl N(${ DATA_MEMORY_LOCATI ON}) ;
_bmxdudba_addr ess LENGTH(${ DATA_MEMORY_LCCATI ON\})
_bnxdupba_addr ess LENGTH(${ DATA_MEMORY_LCCATI ON})

The linker script ensures that RAM functions are aligned to a 2K alignment boundary
as is required by the BMXDKPBA register.

FIGURE 5-9: BUS MATRIX INITIALIZATION

- _min_heap_size

_ramfunc_begin

ramfunc }_ramfunc_len gth

- BFM Potentially unused

Program Flash Memory Data RAM Memory

5.7.29 INITIALIZE CPO REGISTERS

The CPO registers are initialized in the following order:

Count register
Conpar e register
EBase register
IntCt1 register
Cause register

6. St at us register

[SAE A o

5.7.2.9.1 Hardware Enable Register (HAREna — CPO Register 7, Select 0)

This register contains a bit mask that determines which hardware registers are
accessible via the RDHWR instruction. Privileged software may determine which of the
hardware registers are accessible by the RDHWR instruction. In doing so, a register may
be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to
provide direct access to the Count register, access to the register may be individually
disabled and the return value can be virtualized by the operating system.

No initialization is performed on this register in the PIC32MX start-up code.

DS51686B-page 68 © 2009 Microchip Technology Inc.

Compiler Run-time Environment

5.7.2.9.2 Bad Virtual Address Register (BadVAddr — CPO Register 8, Select 0)

This register is a read-only register that captures the most recent virtual address that
caused an Address Error exception (AdEL or AJES).

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.3 Count Register (Count — CPO Register 9, Select 0)

This register acts as a timer, incrementing at a constant rate, whether or not an
instruction is executed, retired, or any forward progress is made through the pipeline.
The counter increments every other clock, if the DC bit in the Cause register is 0. The
Count register can be written for functional or diagnostic purposes, including at Reset
or to synchronize processors. By writing the Count p, bit in the Debug register, it is
possible to control whether the Count register continues incrementing while the
processor is in Debug mode.

This register is cleared in the PIC32MX start-up code.

5.7.2.9.4 Compare Register (Compare — CP0O Register 11, Select 0)

This register acts in conjunction with the Count register to implement a timer and timer
interrupt function. The timer interrupt is an output of the core. The Conpar e register
maintains a stable value and does not change on its own. When the value of the Count
register equals the value of the Conpar e register, the SI _Ti ner | nt pin is asserted.
This pin remains asserted until the Conrpar e register is written. The SI _Ti mer | nt pin
can be fed back into the core on one of the interrupt pins to generate an interrupt. For
diagnostic purposes, the Conpar e register is a read/write register. In normal use,
however, the Conpar e register is write-only. Writing a value to the Conpar e register,
as a side effect, clears the timer interrupt.

This register is set to OXFFFFFFFF in the PIC32MX start-up code.

5.7.2.9.5 Status Register (St at us — CP0 Register 12, Select 0)

This register is a read/write register that contains the operating mode, Interrupt
Enabling, and the diagnostic states of the processor. Fields of this register combine to
create operating modes for the processor.

The following settings are initialized by the PIC32MX start-up code

(Ob000000000Xx0xXx0?00000000000000000):

¢ Access to Coprocessor 0 not allowed in User mode (CUO = 0)

« User mode uses configured endianess (RE = 0)

* No change to exception vectors location (BEV = no change)

« No change to flag bits that indicate reason for entry to the Reset exception vector
(SR, NM = no change)

« If CorExtend User Defined Instructions have been implemented
(Confi gypy == 1), CorExtend is enabled (CEE = 1), otherwise, CorExtend is
disabled (CEE = 0).

« Interrupt masks are cleared to disable any pending interrupt requests (I M7. . | M2
=0, IM..IM = 0)

« Interrupt priority level is 0 (I PL = 0)

« Base mode is Kernel mode (UM = 0)

 Error level is normal (ERL = 0)

« Exception level is normal (EXL = 0)

« Interrupts are disabled (I E = 0)

© 2009 Microchip Technology Inc. DS51686B-page 69

MPLAB® C Compiler for PIC32 MCUs User’s Guide

5.7.2.9.6 Interrupt Control Register (I ntCt1 — CPO Register 12, Select 1)

This register controls the expanded interrupt capability added in Release 2 of the
Architecture, including vectored interrupts and support for an external interrupt
controller.

This register contains the vector spacing for interrupt handling. The vector spacing
portion of this register (bits 9..5) is initialized with the value of the _vect or _spaci ng
symbol by the PIC32MX start-up code. All other bits are set to ‘1.

5.7.2.9.7 Shadow Register Control Register (SRSCt 1 — CPO Register 12, Select 2)
This register controls the operation of the GPR shadow sets in the processor.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.8 Shadow Register Map Register (SRSMap — CP0O Register 12, Select 3)

This register contains eight 4-bit fields that provide the mapping from a vector number
to the shadow set number to use when servicing such an interrupt. The values from this
register are not used for a non-interrupt exception, or a non-vectored interrupt
(Cause;y = OorlntCtl g = 0).Insuch cases, the shadow set number comes from
SRSCt | pgs- If SRSCt | 444 IS zero, the results of a software read or write of this register
are UNPREDICTABLE. The operation of the processor is UNDEFINED if a value is
written to any field in this register that is greater than the value of SRSCt | ;;5¢. The
SRSMap register contains the shadow register set numbers for vector numbers 7..0.
The same shadow set number can be established for multiple interrupt vectors,
creating a many-to-one mapping from a vector to a single shadow register set number.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.9 Cause Register (Cause — CPO Register 13, Select 0)

This register primarily describes the cause of the most Recent exception. In addition,
fields also control software interrupt requests and the vector through which interrupts
are dispatched. With the exception of the DC, | V, and | P1. . | PO fields, all fields in the
Cause register are read-only. Release 2 of the Architecture added optional support for
an External Interrupt Controller (EIC) interrupt mode, in which | P7. . | P2 are
interpreted as the Requested Interrupt Priority Level (RI PL).

The following settings are initialized by the PIC32MX start-up code:

< Enable counting of Count register (DC = no change)
« Use the special exception vector (16#200) (1 V = 1)
 Disable software interrupt requests (I P1. . 1 PO = 0)

5.7.2.9.10 Exception Program Counter (EPC— CPO Register 14, Select 0)

This register is a read/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are
significant and must be writable. For synchronous (precise) exceptions, the EPC
contains one of the following:

« The virtual address of the instruction that was the direct cause of the exception

« The virtual address of the immediately preceding branch or jump instruction, when
the exception causing instruction is a branch delay slot and the Br anch Del ay
bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit
in the St at us register is set, however, the register can still be written via the MTCO
instruction.

No initialization is performed on this register in the PIC32MX start-up code.

DS51686B-page 70

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

5.7.2.9.11 Processor Identification Register (PRid — CP0O Register 15, Select 0)

This register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the
processor.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.12 Exception Base Register (EBase — CPO Register 15, Select 1)

This register is a read/write register containing the base address of the exception
vectors used when St at us gy equals 0, and a read-only CPU number value that may
be used by software to distinguish different processors in a multi-processor system.
The EBase register provides the ability for software to identify the specific processor
within a multi-processor system, and allows the exception vectors for each processor
to be different, especially in systems composed of heterogeneous processors. Bits
31..12 of the EBase register are concatenated with zeros to form the base of the
exception vectors when St at usggy is 0. The exception vector base address comes
from fixed defaults when St at usggy is 1, or for any EJTAG Debug exception. The reset
state of bits 31..12 of the EBase register initialize the exception base register to
16#80000000, providing backward compatibility with Release 1 implementations. Bits
31..30 of the EBase register are fixed with the value 2#10 to force the exception base
address to be in KSEGO or KSEG1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with
St at usggy equal 1. The operation of the processor is UNDEFINED if the Exception
Base field is written with a different value when St at usggy is 0.

Combining bits 31..30 with the Exception Base field allows the base address of the
exception vectors to be placed at any 4K byte page boundary. If vectored interrupts are
used, a vector offset greater than 4K byte can be generated. In this case, bit 12 of the
Exception Base field must be zero. The operation of the processor is UNDEFINED if
software writes bit 12 of the Exception Base field with a 1 and enables the use of a
vectored interrupt whose offset is greater than 4K bytes from the exception base
address.

This register us initialized with the value of the _ebase_addr ess symbol by the
PIC32MX start-up code. _ebase_addr ess is provided by the linker script with a
default value of the start of KSEG1 program memory. The user can change this value
by providing the command line option - —def sym _ebase_addr ess=Ato the linker.

5.7.2.9.13 Config Register (Config — CPO Register 16, Select 0)

This register specifies various configuration and capabilities information. Most of the
fields in the Conf i g register are initialized by hardware during the Reset exception
process, or are constant.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.14 Configl Register (Configl — CP0O Register 16, Select 1)

This register is an adjunct to the Conf i g register and encodes additional information
about the capabilities present on the core. All fields in the Conf i g1 register are
read-only.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.15 Config2 Register (Config2 — CP0 Register 16, Select 2)

This register is an adjunct to the Conf i g register and is reserved to encode additional
capabilities information. Conf i g2 is allocated for showing the configuration of level 2/3
caches. These fields are reset to 0 because L2/L3 caches are not supported on the
core. All fields in the Conf i g2 register are read-only.

No initialization is performed on this register in the PIC32MX start-up code.

© 2009 Microchip Technology Inc. DS51686B-page 71

MPLAB® C Compiler for PIC32 MCUs User’s Guide

5.7.2.9.16 Config3 Register (Config3 — CPO Register 16, Select 3)

This register encodes additional capabilities. All fields in the Conf i g3 register are
read-only.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.17 Debug Register (Debug — CP0O Register 23, Select 0)

This register is used to control the debug exception and provide information about the
cause of the debug exception and when re-entering at the debug exception vector due
to a normal exception in Debug mode. The read-only information bits are updated
every time the debug exception is taken or when a normal exception is taken when
already in Debug mode. Only the DMbit and the EJTAG,.,. field are valid when read
from non-Debug mode. The values of all other bits and fields are UNPREDICTABLE.
Operation of the processor is UNDEFINED if the Debug register is written from
non-Debug mode.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.18 Trace Control Register (TraceControl — CPO Register 23, Select 1)

This register provides control and status information. The Tr aceCont r ol register is
only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10 TRACE CONTROL 2 REGISTER (TraceControl2 — CPO REGISTER 23,
SELECT 2)

This register provides additional control and status information. The Tr aceCont r ol 2
register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.1 User Trace Data Register (UserTraceData — CPO Register 23, Select 3)

When this register is written to, a trace record is written indicating a type 1 or type 2
user format. This type is based on the UT bit in the Tr aceCont r ol register. This
register cannot be written in consecutive cycles. The trace output data is
UNPREDICTABLE if this register is written in consecutive cycles. The

User Tr aceDat a register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.2 TraceBPC Register (TraceBPC— CPO Register 23, Select 4)

This register is used to control start and stop of tracing using an EJTAG hardware
breakpoint. The hardware breakpoint would then be set as a triggered source and
optionally also as a Debug exception breakpoint. The Tr aceBPC register is only
implemented if both the hardware breakpoints and the EJTAG Trace cap are present.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.3 Debug2 Register (Debug2 — CPO Register 23, Select 5)

This register holds additional information about Complex Breakpoint exceptions. The
Debug? register is only implemented if complex hardware breakpoints are present.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.4 Debug Exception Program Counter (DEPC — CPO Register 24, Select 0)

This register is a read/write register that contains the address at which processing
resumes after a debug exception or Debug mode exception has been serviced. For
synchronous (precise) debug and Debug mode exceptions, the DEPC contains either:

DS51686B-page 72

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

« The virtual address of the instruction that was the direct cause of the debug
exception, or

« The virtual address of the immediately preceding branch or jump instruction, when
the debug exception causing instruction is in a branch delay slot, and the Debug
Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC
contains the virtual address of the instruction where execution should resume after the
debug handler code is executed.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.5 Error Exception Program Counter (ErrorEPC— CPO Register 30,
Select 0)

This register is a read/write register, similar to the EPCregister, except that it is used on
error exceptions. All bits of the Er r or EPC are significant and must be writable. It is also
used to store the program counter on Reset, Soft Reset, and non-maskable interrupt
(NMI) exceptions. The Er r or EPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address can be:

« The virtual address of the instruction that caused the exception, or

« The virtual address of the immediately preceding branch or jump instruction when
the error causing instruction is a branch delay slot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the
Er r or EPCregister.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.6 Debug Exception Save Register (DeSave — CPO Register 31, Select 0)

This register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save on of the GPRs that is then
used to save the rest of the context to a pre-determined memory area (such as in the
EJTAG Probe). This register allows the safe debugging of exception handlers and other
types of code where the existence of a valid stack for context saving cannot be
assumed.

No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.11 CALL “ON BOOTSTRAP” PROCEDURE

A procedure is called after initializing the CPO registers. This procedure allows users to
perform actions during bootstrap (i.e., while St at uszgy is set) and before entering into
the main routine. An empty weak version of this procedure (_on_boot st rap) is
provided with the start-up code. This procedure may be used for performing hardware
initialization and/or for initializing the environment required by an RTOS.

5.7.2.12 CHANGE LOCATION OF EXCEPTION VECTORS

Immediately before calling the applications main routine, the St at usggy iS cleared to
change the location of the exception vectors from the bootstrap location to the normal
location.

5.7.2.13 CALL MAIN

The last thing that the start-up code performs is a call to the main routine. If the user
returns from main, the start-up code goes into an infinite loop.

© 2009 Microchip Technology Inc. DS51686B-page 73

MPLAB® C Compiler for PIC32 MCUs User’s Guide

5.7.3 Exceptions

In addition, two weak general exception handlers are provided that can be overridden
by the application—one to handle exceptions when St at usggy is 1

(_boot st rap_excepti on_handl er) and one to handle exceptions when

St at usggy is 0 (_gener al _excepti on_handl er). Both the weak Reset exception
handler and the weak general exception handler provided with the start-up code enters
an infinite loop. The start-up code arranges for a jump to the reset exception handler to
be located at 0OxBFC00380 and a jump to the general exception handler to be located
at EBASE + 0x180.

Both handlers must be attributed with the noni ps16 [e.g., __attribute_
((nom ps16))] since the start-up code jumps to these functions.

FIGURE 5-10: EXCEPTIONS

_ebase_address
oxt80<

0xBFCO0380
] I sy

Program Flash Memaory

DS51686B-page 74

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

5.8

574

Symbols Required by Start-up Code and C Library

This section details the symbols that are required by the start-up code and C library.
Currently the default linker script defines these symbols. If an application provides a
custom linker script, the user must ensure that all of the following symbols are provided
in order for the start-up code and C library to function:

Symbol Name

Description

_bnmxdkpba_addr ess

The address to place into the BMXDKPBA register if
ranfunc| engt h is greater than 0.

_bnmxdudba_addr ess

The address to place into the BMXDUDBA register if
_ranfunc_I| engt h is greater than 0.

_bnmxdupba_addr ess

The address to place into the BMXDUPBA register if
ranfunc| engt h is greater than 0.

_bss_begin The starting location of the uninitialized data.
Uninitialized data includes both . shss and . bss.

_bss_end The end location of the uninitialized data.
Uninitialized data includes both . shss and . bss.

_data _begin The starting location of the initialized data.
Initialized data includes . dat a, . got, . sdat a,
lit8,and . lit4.

_data_end The end location of the initialized data. Initialized

data includes . dat a, . got, . sdata, .1it8, and
lit4.

_dat a_i nage_begi n

The starting location in program memory of the
image of initialized data. Initialized data includes
.data,.got,.sdata,.lit8,and.lit4.

_ebase_address

The location of EBASE.

_end The end of data allocation. Should be identical to
_heap.

_ap Points to the “middle” of the small variables region.
By convention this is 0x8000 bytes from the first
location used for small variables.

_heap The starting location of the heap in DRM.

_ranfunc_begin

The starting location of the RAM functions. This
should be located at a 2K boundary as it is used to
initialize the BMXDKPBA register.

_ranfunc_end

The end location of the RAM functions.

_ranfunc_i mage_begin

The starting location in program memory of the
image of RAM functions.

ranfunc| ength

The length of the . r anf unc section.

_stack

The starting location of the stack in DRM.
Remember that the stack grows from the bottom of
data memory so this symbol should point to the
bottom of the section allocated for the stack.

_vector_spaci ng

The initialization value for the vector spacing field in
the I nt &t | register.

CONTENTS OF THE DEFAULT LINKER SCRIPT

The default linker script contains the following categories of information:

e Output Format and Entry Points

« Default Values for Minimum Stack and Heap Sizes

* Processor Definitions Include File

© 2009 Microchip Technology Inc.

DS51686B-page 75

MPLAB® C Compiler for PIC32 MCUs User’s Guide

Inclusion of Processor-Specific Object File(s)

Base Exception Vector Address and Vector Spacing Symbols
Memory Address Equates

Memory Regions

Configuration Words Input/Output Section Map
 Input/Output Section Map

Note: Alladdresses specified in the linker scripts should be specified as virtual not
physical addresses.

5.8.1 Output Format and Entry Points

The first several lines of the default linker script define the output format and the entry
point for the application. Copies of the default linker scripts are provided in
C\programfiles\...\MPLAB C32\ pi c32nx\li b\l dscripts.

OUTPUT_FORMAT("el f32-tradlittlem ps")

OUTPUT_ARCH(pi ¢32nx)

ENTRY(_r eset)

The QUTPUT_FORNAT line selects the object file format for the output file. The output
object file format generated by the 32-bit language tools is a traditional, little-endian,
MIPS, ELF32 format.

The QUTPUT_ARCH line selects the specific machine architecture for the output file.
The output files generated by the 32-bit language tools contains information that
identifies the file was generated for the PIC32MX architecture.

The ENTRY line selects the entry point of the application. This is the symbol identifying
the location of the first instruction to execute. The 32-bit language tools begins
execution at the instruction identified by the _r eset label.

5.8.2 Default Values for Minimum Stack and Heap Sizes

The next section of the default linker script provides default values for the minimum
stack and heap sizes.

/*

* Provide for a mninum stack and heap size

* - _mn_stack_size - represents the mni mum space that nust
* be made avail able for the stack. Can
* be overridden fromthe command |ine

* using the linker's --defsym option.

* - _mn_heap_size - represents the mnimum space that nust
* be made avail able for the heap. Can
* be overridden fromthe comrand |ine

* using the linker's --defsym option.

*/

EXTERN (_mi n_stack_size _mi n_heap_si ze)

PROVI DE(_m n_stack_si ze = 0x400) ;

PROVI DE(_m n_heap_si ze = 0) ;

The EXTERN line ensures that the rest of the linker script has access to the default
valuesof _m n_stack_si zeand_m n_heap_si ze assuming that the user does not
override these values using the linker’s - - def symcommand line option.

The two PROVI DE lines ensure that a default value is provided for both
_min_stack_sizeand_m n_heap_si ze. The default value for the minimum stack
size is 1024 bytes (0x400). The default value for the minimum heap size is 0 bytes.

DS51686B-page 76

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

5.8.3 Processor Definitions Include File

The next line in the default linker script pulls in information specific to the processor.
I NCLUDE procdefs.|d

The file pr ocdef s. | d is included in the linker script at this point. The file is searched
for in the current directory and in any directory specified with the - L command line
option. The compiler shell ensures that the correct directory is passed to the linker with
the - L command line option based on the processor selected with the - npr ocessor
command line option.

The processor definitions linker script contains the following pieces of information:

« Inclusion of Processor-Specific Object File(s)

» Base Exception Vector Address and Vector Spacing Symbols
« Memory Address Equates

* Memory Regions

« Configuration Words Input/Output Section Map

5.8.3.1 INCLUSION OF PROCESSOR-SPECIFIC OBJECT FILE(S)

This section of the processor definitions linker script ensures that the
processor-specific object file(s) get included in the link.

/**

* Processor-specific object file. Contains SFR definitions

**/

I NPUT(“ processor.o0")

The | NPUT line specifies that pr ocessor . o should be included in the link as if this file
were named on the command line. The linker attempts to find this file in the current
directory. If it is not found, the linker searches through the library search paths (i.e., the
paths specified with the - L command line option).

5.8.3.2 BASE EXCEPTION VECTOR ADDRESS AND VECTOR SPACING
SYMBOLS

This section of the processor definitions linker script defines values for the base
exception vector address and vector spacing.

/****'k'k*'k***'k*'k*'k*'k**

* For interrupt vector handling

**/

_vector_spaci ng= 0x00000001;
_ebase_address= 0x9FC01000

The first line defines a value of 1 for _vect or _spaci ng. The available memory for
exceptions only supports a vector spacing of 1. The second line defines the location of
the base exception vector address (EBASE). This address is located in the KSEGO boot
segment.

5.8.3.3 MEMORY ADDRESS EQUATES

This section of the processor definitions linker script provides information about certain
memory addresses required by the default linker script.

/****'k'k*'k***'k*'k*'k*'k**

* Menory Address Equates
**/
_RESET_ADDR= 0xBFC00000;

_BEV_EXCPT_ADDR= 0xBFQ00380;

_DBG_EXCPT_ADDR= 0xBFQ00480;

_DBG_CODE_ADDR= 0xBFC02000;

_GEN_EXCPT_ADDR= _ebase_address + 0x180;

© 2009 Microchip Technology Inc. DS51686B-page 77

MPLAB® C Compiler for PIC32 MCUs User’s Guide

The _RESET_ADDR defines the processor’s Reset address. This is the virtual begin
address of the IFM Boot section in Kernel mode.

The _BEV_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and St at usggy = 1.

The _DBG_EXCPT_ADDR defines the address that the processor jumps to when a
debug exception is encountered.

The _DBG_CODE_ADDR defines the address that the start address of the debug
executive.

The _GEN_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and St at usggy = 0.

5.8.3.4 MEMORY REGIONS

This section of the processor definitions linker script provides information about the
memory regions that are available on the device.
/**

* Menory Regions

*

* Mermory regions without attributes cannot be used for

* orphaned sections. Only sections specifically assigned to

* these regions can be allocated into these regions.

**/

MEMORY

{
ksegO_program nem (rx) ORI G N = 0x9D000000, LENGTH = 0x8000
kseg0_boot _nem ORI G N = 0x9FC00490, LENGTH = 0x970
exception_nmem ORI G N = Ox9FC01000, LENGTH = 0x1000
ksegl_boot _nmem ORI G N = 0xBFC00000, LENGTH = 0x490
debug_exec_nmem ORI G N = 0xBFC02000, LENGTH = OxFFO
config3 ORI G N = 0xBFCO2FF0O, LENGTH = 0x4
config2 ORI G N = 0xBFCO2FF4, LENGTH = 0x4
configl ORI G N = 0xBFCO2FF8, LENGIH = 0x4
configo ORI G N = 0xBFCO2FFC, LENGTH = 0x4
ksegl_data_nmem (w x) ORI G N = 0xA0000000, LENGTH = 0x2000
sfrs ORI G N = 0xBF800000, LENGTH = 0x10000

}

Eleven memory regions are defined with an associated start address and length:

Program memory region (kseg0_pr ogr am_nen) for application code

Boot memory regions (kseg0_boot _nmemand ksegl_boot _nenj

Exception memory region (excepti on_nenj

Debug executive memory region (debug_exec_nem

Configuration memory regions (conf i g3, confi g2, confi g1, and confi g0)
Data memory region (ksegl _data_nem

7. SFR memory region (sfrs)

o0k whE

The default linker script uses these names to locate sections into the correct regions.
Sections which are non-standard become orphaned sections. The attributes of the
memory regions are used to locate these orphaned sections. The attributes (r x)
specify that read-only sections or executable sections can be located into the program
memory regions. Similarly, the attributes (W x) specify that sections that are not
read-only and not executable can be located in the data memory region. Since no
attributes are specified for the boot memory region, the configuration memory regions,
or the SFR memory region, only specified sections may be located in these regions

DS51686B-page 78

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

(i.e., orphaned sections may not be located in the boot memory regions, the exception
memory region, the configuration memory regions, the debug executive memory
region, or the SFR memory region).

5.8.3.5 CONFIGURATION WORDS INPUT/OUTPUT SECTION MAP

The last section in the processor definitions linker script is the input/output section map
for Configuration Words. This section map is additive to the Input/Output Section Map
found in the default linker script (see Section 5.8.4 “Input/Output Section Map”). It
defines how input sections for Configuration Words are mapped to output sections for
Configuration Words. Note that input sections are portions of an application that are
defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section. All output sections
are specified within a SECTI ONS command in the linker script.

For each Configuration Word that exists on the specific processor, a distinct output
section named . confi g_addr ess exists where address is the location of the
Configuration Word in memory. Each of these sections contains the data created by the
#pragma confi g directive (see Section 4.8.1 “#pragma config”) for that
Configuration Word. Each section is assigned to their respective memory region

(confi gn).
SECTI ONS
{

.config_BFCO2FFO0 : ({
*(. confi g_BFCO2FFO0)

} > config3

.confi g_BFCO2FF4 : ({
*(. confi g_BFCO2FF4)

} > config2

.confi g_BFCO2FF8 : ({
*(.confi g _BFCO2FF8)

} > configl

.confi g_BFCO2FFC : ({
*(. confi g_BFCO2FFC)

} > configO

}

5.8.4 Input/Output Section Map

The last section in the default linker script is the input/output section map. The section
map is the heart of the linker script. It defines how input sections are mapped to output
sections. Note that input sections are portions of an application that are defined in
source code, while output sections are created by the linker. Generally, several input
sections may be combined into a single output section. All output sections are specified
within a SECTI ONS command in the linker script.

The following output sections may be created by the linker:

 .reset Section

* .bev_excpt Section

« .dbg_excpt Section

« .dbg_code Section

e .app_excpt Section

« .vector_O .. .vector_63 Sections
 _start-up Section

 .text Section

 .rodata Sectionn

© 2009 Microchip Technology Inc. DS51686B-page 79

MPLAB® C Compiler for PIC32 MCUs User’s Guide

» .sdata2 Section
¢ .sbss2 Section

« .dbg_data Section
« .data Section

e .got Section
 .sdata Section

« lit8 Section

« lit4 Section
 .sbss Section
 .bss Section

* .heap Section
 .stack Section

« .ramfunc Section
» Stack Location

« Debug Sections

58.4.1 .RESET SECTION

This section contains the code that is executed when the processor performs a Reset.
This section is located at the Reset address (_ RESET _ADDR) as specified in the
processor definitions linker script and is assigned to the boot memory region

(ksegl _boot nem.

.reset _RESET_ADDR

{

*(.reset)
} > ksegl_boot _mem

5.8.4.2 .BEV_EXCPT SECTION

This section contains the handler for exceptions that occur when St at usgg; = 1. This
section is located at the BEV exception address (_ BEV_EXCPT_ADDR) as specified in
the processor definitions linker script and is assigned to the boot memory region
(ksegl boot nem.
. bev_excpt _BEV_EXCPT_ADDR :
{

*(. bev_handl er)
} > ksegl_boot _nmem

5.8.43 .DBG_EXCPT SECTION

This section reserves space for the debug exception vector. This section is only
allocated if the symbol _ DEBUGGER has been defined. (This symbol is defined if the

- ndebugger command line option is specified to the shell.) This section is located at
the debug exception address (_DBG_EXCPT_ADDR) as specified in the processor
definitions linker script and is assigned to the boot memory region

(ksegl boot _nmem. The section is marked as NOLOAD as itis only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.

. dbg_excpt _DBG_EXCPT_ADDR (NOLOAD)

{
+= (DEFI NED (_DEBUGGER) ? 0x8 :

} > ksegl_boot _nmem

0x0) ;

DS51686B-page 80

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

5.8.44 .DBG_CODE SECTION

This section reserves space for the debug exception handler. This section is only
allocated if the symbol _ DEBUGCGER has been defined. (This symbol is defined if the

- ndebugger command line option is specified to the shell.) This section is located at
the debug code address (_DBG_CODE_ADDR) as specified in the processor definitions
linker script and is assigned to the debug executive memory region
(debug_exec_nem. The section is marked as NOLOAD as it is only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.

.dbg_code _DBG_CODE_ADDR (NOLOAD)

{
+= (DEFI NED (_DEBUGGER) ? OXFFO : 0x0);

} > debug_exec_nmem

5845 .APP_EXCPT SECTION

This section contains the handler for exceptions that occur when St at usggy = 0. This
section is located at the general exception address (_ GEN_EXCPT_ADDR) as specified
in the processor definitions linker script and is assigned to the exception memory
region (excepti on_nen).

.app_excpt _GEN_EXCPT_ADDR :

{
*(.gen_handl er)
} > exception_nmem

58.4.6 .VECTOR_O.. .VECTOR_63 SECTIONS

These sections contain the handler for each of the interrupt vectors. These sections are
located at the correct vectored addresses using the formula:

_ebase_address + 0x200 + (_vector_spacing << 5) * n
where n is the respective vector number.

Each of the sections is followed by an assert that ensures the code located at the vector
does not exceed the vector spacing specified.

.vector_n _ebase_address + 0x200 + (_vector_spacing << 5) * n :

{

*(.vector_n)
} > exception_nmem
ASSERT (SI ZEOF(.vector_n) < (_vector_spacing << 5), "function at
exception vector n too |arge")

5.8.4.7 .START-UP SECTION

This section contains the C start-up code. This section is assigned to the KSEGO boot
memory region (kseg0_boot _nen).
.startup ORI G N(kseg0O_boot _nmem

{
*(.startup)
} > ksegO_boot _nmem

5.8.4.8 .TEXT SECTION

This section collects executable code from all of the application’s input files. This
section is assigned to the program memory region (kseg0_pr ogr am nem) and has a
fill value of NOP (0) . Symbols are defined to represent the begin (_t ext _begi n) and
end (_t ext _end) addresses of this section.

.text ORI A N(ksegO_program nmem
{

_text_begin = . ;

© 2009 Microchip Technology Inc. DS51686B-page 81

MPLAB® C Compiler for PIC32 MCUs User’s Guide

(.text .stub .text. .gnu.linkonce.t.*)
KEEP (*(.text.*personality*))
* (. gnu. war ni ng)
*(.mpsl6.fn. *)
(.mpsl6.call.)
_text_end = . ;
} > ksegO_program nem =0

5.8.49 .RODATA SECTION

This section collects the read-only sections from all of the application’s input files. This
section is assigned to the program memory region (kseg0_pr ogr am _nem).

.rodata

{

(.rodata .rodata. .gnu.linkonce.r.*)
*(.rodat al)
} > ksegO_program nmem

5.8.4.10 .SDATA2 SECTION

This section collects the small initialized constant global and static data from all of the
application’s input files. Because of the constant nature of the data, this section is also
a read-only section. This section is assigned to the program memory region
(ksegO_pr ogram nem.

/*

* Small initialized constant global and static data can be
* placed in the .sdata2 section. This is different from

* _.sdata, which contains small initialized non-constant

* global and static data.

*/

. sdat a2

{

(.sdata2 .sdata2. .gnu.linkonce.s2.*%)
} > ksegO_program nem

5.8.4.11 .SBSS2 SECTION

This section collects the small uninitialized constant global and static data from all of
the application’s input files. Because of the constant nature of the data, this section is
also a read-only section. This section is assigned to the program memory region
(ksegO_program nmem.
/ *

* Uninitialized constant gl obal and static data (i.e.,

* variables which will always be zero). Again, this is

* different from.sbss, which contains small non-initialized,

* non-constant global and static data.

*/
. Sbss2

{
(.sbss2 .sbss2. .gnu.linkonce.sb2.*)
} > ksegO_program nmem

5.8.4.12 .DBG_DATA SECTION

This section reserves space for the data required by the debug exception handler. This
section is only allocated if the symbol _ DEBUGGER has been defined. (This symbol is
defined if the - rdebugger command line option is specified to the shell.) This section
is assigned to the data memory region (ksegl_dat a_mem). The section is marked as
NOLOAD as it is only intended to ensure that application data cannot be placed at
locations reserved for the debug executive.

DS51686B-page 82

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

. dbg_data (NOLQAD)

{
+= (DEFI NED (_DEBUGGER) ? 0x200 : 0x0);
} > ksegl _data_nem

5.8.4.13 .DATA SECTION

This section collects the initialized data from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nem with a load address
located in the program memory region (ksegO_pr ogr am_nemnj. Symbols are defined
to represent the virtual begin (_dat a_begi n) and end (_dat a_end) addresses of this
section, as well as the physical begin address of the data in program memory

(_dat a_i nage_begi n).

.data

{
_data_begin = . ;
(.data .data. .gnu.linkonce.d.*)
KEEP (*(.gnu.linkonce. d.*personality*))
*(.datal)
} > ksegl_dat a_nmem AT> ksegO_program nmem
_data_i mage_begi n = LOADADDR(. data) ;

5.8.4.14 .GOT SECTION

This section collects the global offset table from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nem with a load address
located in the program memory region (kseg0_pr ogr am _nem). A symbol is defined

to represent the location of the Global Pointer (_gp).

_gp = ALIG\(16) + Ox7FFO ;
. got
{
*(.got.plt) *(.got)
} > ksegl_data_nmem AT> ksegO_program nmem

5.8.4.15 .SDATA SECTION

This section collects the small initialized data from all of the application’s input files.
This section is assigned to the data memory region (ksegl_dat a_mnem) with a load
address located in the program memory region (kseg0_pr ogr am_nem). Symbols are
defined to represent the virtual begin (_sdat a_begi n) and end (_sdat a_end)
addresses of this section.

/*
* W want the small data sections together, so
* single-instruction offsets can access themall, and

* initialized data all before uninitialized, so
* we can shorten the on-di sk segnent size.
*/
.sdata
{
_sdata_begin = . ;
(.sdata .sdata. .gnu.linkonce.s.*)
_sdata_end = . ;
} > ksegl_data_nem AT> ksegO_program nem

© 2009 Microchip Technology Inc. DS51686B-page 83

MPLAB® C Compiler for PIC32 MCUs User’s Guide

5.8.4.16 .LIT8 SECTION

This section collects the 8-byte constants (usually floating-point) which the assembler
decides to store in memory rather than in the instruction stream from all of the
application’s input files. This section is assigned to the data memory region
(ksegl_dat a_mnemn) with a load address located in the program memory region
(ksegO_pr ogram nem.

1it8 :

{
*(.1it8)
} > ksegl_data_nmem AT> ksegO_program nmem

5.8.4.17 .LIT4 SECTION

This section collects the 4-byte constants (usually floating-point) which the assembler
decides to store in memory rather than in the instruction stream from all of the
application’s input files. This section is assigned to the data memory region
(ksegl_dat a_men) with a load address located in the program memory region
(ksegO_pr ogram nem). A symbol is defined to represent the virtual end address of
the initialized data (_dat a_end).

dit4

{

*(.lit4)
} > ksegl_dat a_nmem AT> ksegO_program nmem
_data_end = . ;

5.8.4.18 .SBSS SECTION

This section collects the small uninitialized data from all of the application’s input files.
This section is assigned to the data memory region (ksegl_dat a_nem). A symbol is
defined to represent the virtual begin address of uninitialized data (_bss_begi n).
Symbols are also defined to represent the virtual begin (_sbss_begi n) and end
(_sbss_end) addresses of this section.

_bss_begin = . ;
. sbss
{
_shss_begin = . ;

*(. dynsbss)
(.sbss .sbss. .gnu.linkonce.sb.*)
*(. sconmon)
_shss_end = . ;
} > ksegl_data_nmem

5.8.4.19 .BSS SECTION

This section collects the uninitialized data from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nem). A symbol is
defined to represent the virtual end address of uninitialized data (_bss_end). A symbol
is also defined to represent the virtual end address of data memory (_end).

. bss
{
*(. dynbss)
(.bss .bss. .gnu.linkonce.b.*)
*(COVMON)
/*

* Align here to ensure that the .bss section occupies
space up to _end. Align after .bss to ensure correct
alignnent even if the .bss section disappears because
there are no input sections.

* * *

DS51686B-page 84

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

*/
= ALIGN(32 / 8) ;
} > ksegl _data_nem
= ALIGN(32 / 8) ;
_end = . ;
_bss end = . ;

5.8.4.20 .HEAP SECTION

This section reserves space for the heap, which is required for dynamic memory
allocation. A symbol is defined to represent the virtual address of the heap (_heap).
The minimum amount of space reserved for the heap is determined by the symbol
_mn_heap_si ze.

/* Heap allocating takes a chunk of menory follow ng BSS */

. heap ALI GN(4)

{

_heap = . ;
+= _m n_heap_si ze ;
} > ksegl _data_nem

5.8.4.21 .STACK SECTION

This section reserves space for the stack. The minimum amount of space reserved for
the stack is determined by the symbol _m n_st ack_si ze.

/* Stack allocation follows the heap */
.stack ALI GN(4)

{
+= mn_stack_size ;
} > ksegl _data_nem

5.8.4.22 .RAMFUNC SECTION

This section collects the RAM functions from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nen) with aload address
located in the program memory region (kseg0_pr ogr am_nem). Symbols are defined
to represent the virtual begin (_r anf unc_begi n) and end (_r anf unc_end)
addresses of this section, as well as the physical begin address of the RAM functions
in program memory (_r anf unc_i mage_begi n) and a length of the RAM functions
(_ranfunc_I| engt h). In addition, the addresses for the bus matrix registers are
calculated (_bnmxdkpba_addr ess, _bnxdudba_addr ess, and
_bnmxdupba_addr ess).
/*
* RAM functions go at the end of our stack and heap all ocation.
* Alignment of 2K required by the boundary register (BMXDKPBA).
*/
.ranfunc ALl G\(2K)
{
_ranfunc_begin = . ;
(.ranfunc .ranfunc.)
= ALIGN(4) ;
_ranfunc_end = . ;
} > ksegl_data_nem AT> ksegO_program nem
_ranfunc_i mage_begi n = LOADADDR(. r anfunc) ;
_ranfunc_length = SI ZEOF(.ranfunc) ;
_bmxdkpba_addr ess _ranfunc_begin - ORI G N(ksegl_data_nen) ;
_bmxdudba_addr ess LENGTH(ksegl data_nem;
_bmxdupba_addr ess LENGTH(ksegl_dat a_nen);

© 2009 Microchip Technology Inc. DS51686B-page 85

MPLAB® C Compiler for PIC32 MCUs User’s Guide

5.8.4.23 STACK LOCATION

A symbol is defined to represent the location of the Stack Pointer (_st ack). This
location is dependent on whether RAM functions exist in the application. If RAM
functions exist, then the location of the Stack Pointer should include the gap between
the stack section and the beginning of the . r anf unc section caused by the alignment
of the . r anf unc section minus one word. If RAM functions do not exist, then the
location of the Stack Pointer should be the end of the KSEG1 data memory.
/ *

* The actual top of stack should include the gap between

* the stack section and the beginning of the .ranfunc

* section caused by the alignnment of the .ranfunc section

* mnus 1 word. |If RAMfunctions do not exist, then the top
* of the stack should point to the end of the ksegl data

* menory.

*

/
_stack = (_ranfunc_length > 0)
? _ranfunc_begin - 4
ORI G N(ksegl_data_men) + LENGTH(ksegl_data_nen)
ASSERT((_mi n_stack_size + _m n_heap_size) <= (_stack - _heap),
"Not enough space to allocate both stack and heap. Reduce heap
and/ or stack size.")

5.8.4.24 DEBUG SECTIONS

The debug sections contain debugging information. They are not loaded into program
flash.

/* Stabs debuggi ng sections. */
.stab 0: { *(.stab) }

.stabstr 0: { *(.stabstr) }

. st ab. excl 0: { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
. stab. i ndex 0: { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
. coment 0: { *(.coment) }

/* DWARF debug sections
Synbol s in the DWARF debuggi ng sections are relative
to the beginning of the section so we begin themat 0. */
/[* DWARF 1 */
. debug 0: { *(.debug) }
.line 0: { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnanes) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
. debug_pubnanes 0 : { *(.debug_pubnanes) }

/* DWARF 2 */

.debug_i nfo 0: { *(.debug_info .gnu.linkonce.wi.*) }
. debug_abbr ev 0 : { *(.debug_abbrev) }

. debug_l i ne 0: { *(.debug_line) }

. debug_franme 0: { *(.debug_frane) }

. debug_str 0: { *(.debug_str) }

. debug_I oc 0: { *(.debug_loc) }

.debug_macinfo O : { *(.debug_nacinfo) }

[* SA/MPS DAVMARF 2 extensions */
. debug_weaknanmes 0 : { *(.debug_weaknanes) }
. debug_funcnanmes 0 : { *(.debug_funcnanes) }

DS51686B-page 86

© 2009 Microchip Technology Inc.

Compiler Run-time Environment

.debug_typenanes 0 : { *(.debug_typenanes) }
.debug_varnames 0 : { *(.debug_varnanes) }
/DI SCARDY : { *(.note.GNU stack) }

5.9 RAM FUNCTIONS

Functions may be located in RAM to improve performance. The __ranfunc__ and
__longranfunc__ specifiers are used on a function declaration to specify that the
function will be executed out of RAM.

Functions specified as a RAM function will be copied to RAM by the start-up code and
all calls to those functions will reference the RAM location. Functions located in RAM
will be in a different 512MB memory segment than functions located in program
memory, so the | ongcal | attribute should be applied to any RAM function which will
be called from a function notin RAM. The __I| ongr anf unc__ specifier will apply the
| ongcal | attribute as well as place the function in RAM?.

/* function ‘foo’ will be placed in RAM */
void __ranfunc__ foo (void)

{

}

/* function ‘bar’ will be placed in RAM and wi |l be invoked
using the full 32 bit address */

void __longranfunc__ bar (void)

{

}

1. Specifying __longranfunc__ is functionally equivalent to specifying both __ranfunc__ and
__longcall __.

© 2009 Microchip Technology Inc. DS51686B-page 87

MPLAB® C Compiler for PIC32 MCUs User’s Guide

NOTES:

DS51686B-page 88 © 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUs USER’S GUIDE

Appendix A. Implementation Defined Behavior

A.1 INTRODUCTION

This chapter discusses the choices for implementation defined behavior in compiler.

A.2 HIGHLIGHTS

Items discussed in this chapter are:

¢ Overview

 Translation

« Environment

« |ldentifiers

e Characters

* Integers

¢ Floating-Point

* Arrays and Pointers

e Hints

« Structures, Unions, Enumerations, and Bit fields
e Qualifiers

» Declarators

» Statements

» Pre-Processing Directives
* Library Functions
 Architecture

A.3 OVERVIEW

ISO C requires a conforming implementation to document the choices for behaviors
defined in the standard as “implementation-defined.” The following sections list all such
areas, the choices made for the compiler, and the corresponding section number from
the ISO/IEC 9899:1999 standard.

A.4 TRANSLATION
ISO Standard: “How a diagnostic is identified (3.10, 5.1.1.3).”
Implementation: All output to st derr is a diagnostic.
ISO Standard: “Whether each nonempty sequence of white-space characters
other than new-line is retained or replaced by one space character

in translation phase 3 (5.1.1.2).”

Implementation: Each sequence of whitespace is replaced by a single character.

© 2009 Microchip Technology Inc. DS51686B-page 89

MPLAB® C Compiler for PIC32 MCUs User’s Guide

A5 ENVIRONMENT

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The name and type of the function called at program start-up in a
freestanding environment (5.1.2.1).”

i nt mai n (void);

“The effect of program termination in a freestanding environment
(5.1.2.1).”

An infinite loop (branch to self) instruction will be execute.

“An alternative manner in which the mai n function may be defined
(5.1.2.2.1).”

i nt mai n (void);

“The values given to the strings pointed to by the ar gv argument
tomain (5.1.2.2.1).7

No arguments are passed to mai n. Reference to ar gc orar gv is
undefined.

“What constitutes an interactive device (5.1.2.3).”
Application defined.

“Signals for which the equivalent of si gnal (si g,
is executed at program start-up (7.14.1.1).”

SIGIGN);

Signals are application defined.

“The form of the status returned to the host environment to
indicate unsuccessful termination when the SI GABRT signal is
raised and not caught (7.20.4.1).”

The host environment is application defined.

“The forms of the status returned to the host environment by the
exi t function to report successful and unsuccessful termination
(7.20.4.3).”

The host environment is application defined.

“The status returned to the host environment by the exi t function
if the value of its argument is other than zero, EXI T_SUCCESS, or
EXI T_FAI LURE (7.20.4.3).”

The host environment is application defined.

“The set of environment names and the method for altering the
environment list used by the get env function (7.20.4.4).”

The host environment is application defined.

DS51686B-page 90

© 2009 Microchip Technology Inc.

Implementation Defined Behavior

ISO Standard:

Implementation:

A.6 IDENTIFIERS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

A.7 CHARACTERS

ISO Standard:

Implementation:

ISO Standard:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The manner of execution of the string by the system function
(7.20.4.5).”

The host environment is application defined.

“Which additional multibyte characters may appear in identifiers
and their correspondence to universal character names (6.4.2).”

No.

“The number of significant initial characters in an identifier
(5.2.4.1,6.4.2).”

All characters are significant.

“The number of bits in a byte (C90 3.4, C99 3.6).”
8.

“The values of the members of the execution character set (C90
and C99 5.2.1).”

“The unigue value of the member of the execution character set
produced for each of the standard alphabetic escape sequences
(C90 and C995.2.2).”

The execution character set is ASCII.

“The value of a char object into which has been stored any
character other than a member of the basic execution character
set (C90 6.1.2.5, C99 6.2.5).”

The value of the char object is the 8-bit binary representation of
the character in the source character set. That is, no translation is
done.

“Which of signed char or unsigned char has the same range,
representation, and behavior as “plain” char (C90 6.1.2.5, C90
6.2.1.1,C99 6.2.5, C99 6.3.1.1).”

By default, signed char is functionally equivalent to plain char. The
options - f unsi gned- char and - f si gned- char can be used
to change the default.

“The mapping of members of the source character set (in
character constants and string literals) to members of the
execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99
5.1.1.2).”

The binary representation of the source character set is preserved
to the execution character set.

© 2009 Microchip Technology Inc.

DS51686B-page 91

MPLAB® C Compiler for PIC32 MCUs User’s Guide

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

A.8 INTEGERS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

“The value of an integer character constant containing more than
one character or containing a character or escape sequence that
does not map to a single-byte execution character (C90 6.1.3.4,
C99 6.4.4.4)."

The compiler determines the value for a multi-character character
constant one character at a time. The previous value is shifted left
by eight, and the bit pattern of the next character is masked in. The
final result is of type i nt . If the result is larger than can be
represented by an i nt, a warning diagnostic is issued and the
value truncated to i nt size.

“The value of a wide character constant containing more than one
multibyte character, or containing a multibyte character or escape
sequence not represented in the extended execution character set
(C906.1.3.4,C99 6.4.4.4).”

See previous.

“The current locale used to convert a wide character constant
consisting of a single multibyte character that maps to a member
of the extended execution character set into a corresponding wide
character code (C90 6.1.3.4, C99 6.4.4.4).”

LC_ALL

“The current locale used to convert a wide string literal into
corresponding wide character codes (C90 6.1.4, C99 6.4.5).”

LC_ALL

“The value of a string literal containing a multibyte character or
escape sequence not represented in the execution character set
(C906.1.4, C99 6.4.5).”

The binary representation of the characters is preserved from the
source character set.

“Any extended integer types that exist in the implementation (C99
6.2.5).”

There are no extended integer types.

“Whether signed integer types are represented using sign and
magnitude, two’s complement, or one’s complement, and whether
the extraordinary value is a trap representation or an ordinary
value (C99 6.2.6.2).”

All integer types are represented as two’s complement, and all bit
patterns are ordinary values.

“The rank of any extended integer type relative to another
extended integer type with the same precision (C99 6.3.1.1).”

DS51686B-page 92

© 2009 Microchip Technology Inc.

Implementation Defined Behavior

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

FLOATING-POINT

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

No extended integer types are supported.

“The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an
object of that type (C90 6.2.1.2, C99 6.3.1.3).”

When converting value X to a type of width N, the value of the
result is the Least Significant N bits of the 2’'s complement
representation of X. That is, X is truncated to N bits. No signal is
raised.

“The results of some bitwise operations on signed integers (C90
6.3, C99 6.5).”

Bitwise operations on signed values act on the 2's complement
representation, including the sign bit. The result of a signed right
shift expression is signh extended.

C99 allows some aspects of signed ‘<<’ to be undefined. The
compiler does not do so.

“The accuracy of the floating-point operations and of the library
functions in <math.h> and <complex.h> that return floating-point
results (C90 and C99 5.2.4.2.2).”

The accuracy is unknown.

“The accuracy of the conversions between floating-point internal
representations and string representations performed by the
library functions in <stdio.h>, <stdlib.h>, and <wchar.h> (C90 and
C995.2.4.2.2)."

The accuracy is unknown.

“The rounding behaviors characterized by non-standard values of
FLT_ROUNDS (C90 and C99 5.2.4.2.2)."

No such values are used.

“The evaluation methods characterized by non-standard negative
values of FLT_EVAL_METHOD (C90 and C99 5.2.4.2.2).”

No such values are used.

“The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original
value (C90 6.2.1.3, C99 6.3.1.4).”

C99 Annex F is followed.

“The direction of rounding when a floating-point number is

converted to a narrower floating-point number (C90 6.2.1.4,
6.3.1.5).”

© 2009 Microchip Technology Inc.

DS51686B-page 93

MPLAB® C Compiler for PIC32 MCUs User’s Guide

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:
ISO Standard:
Implementation:

ISO Standard:

Implementation:
ISO Standard:
Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

C99 Annex F is followed.

“How the nearest representable value or the larger or smaller
representable value immediately adjacent to the nearest
representable value is chosen for certain floating constants (C90
6.1.3.1, C99 6.4.4.2).”

C99 Annex F is followed.

“Whether and how floating expressions are contracted when not
disallowed by the FP_CONTRACT pragma (C99 6.5).”

The pragma is not implemented.

“The default state for the FENV_ACCESS pragma (C99 7.6.1).”
This pragma is not implemented.

“Additional floating-point exceptions, rounding modes,
environments, and classifications, and their macro names (C99
7.6,7.12)."

None supported.

“The default state for the FP_CONTRACT pragma (C99 7.12.2).”
This pragma is not implemented.

“Whether the “inexact” floating-point exception can be raised
when the rounded result actually does equal the mathematical
result in an IEC 60559 conformant implementation (C99 F.9).”
Unknown.

“Whether the “underflow” (and “inexact”) floating-point exception
can be raised when a result is tiny but not inexact in an IEC 60559

conformant implementation (C99 F.9).”

Unknown.

A.10 ARRAYS AND POINTERS

ISO Standard:

Implementation:

“The result of converting a pointer to an integer or vice versa (C90
6.3.4, C99 6.3.2.3).”

A cast from an integer to a pointer or vice versa results uses the
binary representation of the source type, reinterpreted as
appropriate for the destination type.

If the source type is larger than the destination type, the Most
Significant bits are discarded. When casting from a pointer to an
integer, if the source type is smaller than the destination type, the
result is sign extended. When casting from an integer to a pointer,
if the source type is smaller than the destination type, the result is
extended based on the signedness of the source type.

DS51686B-page 94

© 2009 Microchip Technology Inc.

Implementation Defined Behavior

A.11 HINTS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The size of the result of subtracting two pointers to elements of
the same array (C90 6.3.6, C99 6.5.6).”

32-bit signed integer.

“The extent to which suggestions made by using the register
storage-class specifier are effective (C90 6.5.1, C99 6.7.1).”

The register storage class specifier generally has no effect.

“The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).”

If-fno-inlineor- Q0 are specified, no functions will be inlined,
even if specified with the i nl i ne specifier. Otherwise, the
function may or may not be inlined dependent on the optimization
heuristics of the compiler.

A.12 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT FIELDS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

“A member of a union object is accessed using a member of a
different type (C90 6.3.2.3).”

The corresponding bytes of the union object are interpreted as an
object of the type of the member being accessed without regard
for alignment or other possible invalid conditions.

“Whether a “plain” i nt bit field is treated as a si gned i nt bit
field oras anunsi gned i nt bitfield (C906.5.2,C906.5.2.1, C99
6.7.2,C996.7.2.1).”

By default, a plain i nt bit field is treated as a signed integer. This
behavior can be altered by use of the - f unsi gned- bitfi el ds
command line option.

“Allowable bit field types other than _Bool , si gned i nt, and
unsi gned int (C996.7.2.1).”

No other types are supported.

“Whether a bit field can straddle a storage unit boundary (C90
6.5.2.1,C99 6.7.2.1).”

No.

“The order of allocation of bit fields within a unit (C90 6.5.2.1, C99
6.7.2.1).”

Bit fields are allocated left to right.

“The alignment of non-bit field members of structures (C90
6.5.2.1,C99 6.7.2.1).”

© 2009 Microchip Technology Inc.

DS51686B-page 95

MPLAB® C Compiler for PIC32 MCUs User’s Guide

Implementation:

ISO Standard:

Implementation:

A.13 QUALIFIERS

ISO Standard:

Implementation:

A.14 DECLARATORS

ISO Standard:

Implementation:

A.15 STATEMENTS

ISO Standard:

Implementation:

Each member is located to the lowest available offset allowable
according to the alignment restrictions of the member type.

“The integer type compatible with each enumerated type (C90
6.5.2.2,C99 6.7.2.2).”

If the enumeration values are all non-negative, the type is
unsi gned int,elseitisint.The-fshort-enunms command
line option can change this.

“What constitutes an access to an object that has volatile-qualified
type (C90 6.5.3, C99 6.7.3).”

Any expression which uses the value of or stores a value to a
volatile object is considered an access to that object. There is no
guarantee that such an access is atomic.

If an expression contains a reference to a volatile object but
neither uses the value nor stores to the object, the expression is
considered an access to the volatile object or not depending on
the type of the object. If the object is of scalar type, an aggregate
type with a single member of scalar type, or a union with members
of (only) scalar type, the expression is considered an access to the
volatile object. Otherwise, the expression is evaluated for its side
effects but is not considered an access to the volatile object.

For example,

volatile int a;

a, /* access to ‘a’ since ‘a is scalar */

“The maximum number of declarators that may modify an
arithmetic, structure or union type (C90 6.5.4).”

No limit.

“The maximum number of case values in a switch statement (C90
6.6.4.2).”

No limit.

A.16 PRE-PROCESSING DIRECTIVES

ISO Standard:

“How sequences in both forms of header names are mapped to
headers or external source file names (C90 6.1.7, C99 6.4.7).”

DS51686B-page 96

© 2009 Microchip Technology Inc.

Implementation Defined Behavior

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

The character sequence between the delimiters is considered to
be a string which is a file name for the host environment.

“Whether the value of a character constant in a constant
expression that controls conditional inclusion matches the value of
the same character constant in the execution character set (C90
6.8.1, C99 6.10.1).”

Yes.

“Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may have
a negative value (C90 6.8.1, C99 6.10.1).”

Yes.

“The places that are searched for an included < > delimited
header, and how the places are specified or the header is
identified (C90 6.8.2, C99 6.10.2).”

<install directory>/1ib/gcc/pic32nx/3.4.4/include

<install directory>/pic32nk/include

“How the named source file is searched for in an included “”
delimited header(C90 6.8.2, C99 6.10.2).”

The compiler first searches for the named file in the directory
containing the including file, the directories specified by the

- i quot e command line option (if any), then the directories which
are searched for a < > delimited header.

“The method by which preprocessing tokens are combined into a
header name (C90 6.8.2, C99 6.10.2).”

Alltokens, including whitespace, are considered part of the header
file name. Macro expansion is not performed on tokens inside the
delimiters.

“The nesting limit for #i ncl ude processing (C90 6.8.2, C99
6.10.2).”

No limit.

“The behavior on each recognized non-STDC #pr agna directive
(C90 6.8.6, C99 6.10.6)."

See Section 1.7 " Attributes and Pragmas”.
“The definitionsfor _ DATE_ _ and __TIME_ _ when
respectively, the date and time of translation are not available

(C90 6.8.8, C99 6.10.8).”

The date and time of translation are always available.

© 2009 Microchip Technology Inc.

DS51686B-page 97

MPLAB® C Compiler for PIC32 MCUs User’s Guide

A.17 LIBRARY FUNCTIONS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The Null Pointer constant to which the macro NULL expands
(C90 7.1.6, C99 7.17).”

(void *)0

“Any library facilities available to a freestanding program, other
than the minimal set required by clause 4 (5.1.2.1).”

See the “32-Bit Language Tools Libraries” (DS51685).

“The format of the diagnostic printed by the assert
(7.2.1.2).”

macro

“Failed assertion ‘message’ at line line of ‘filename’.\n”
“The default state for the FENV_ACCESS pragma (7.6.1).”
Unimplemented.

“The representation of floating-point exception flags stored by the
f eget except fl ag function (7.6.2.2).”

Unimplemented.

“Whether the f er ai seexcept function raises the inexact
exception in addition to the overflow or underflow exception
(7.6.2.3).”

Unimplemented.

“Floating environment macros other than FE_DFL_ENV that can
be used as the argument to the f eset env or f eupdat eenv
function (7.6.4.3, 7.6.4.4).”

Unimplemented.

“Strings other than “C’ and that may be passed as the
second argument to the set | ocal e function (7.11.1.1).”

None.

“The types defined for f | oat _t and doubl e_t when the value
of the FLT_EVAL_METHOD macro is less than 0 or greater than 2
(7.12).”

Unimplemented.

“The infinity to which the | NFI NI TY macro expands, if any
(7.12).”

Unimplemented.

DS51686B-page 98

© 2009 Microchip Technology Inc.

Implementation Defined Behavior

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The quiet NaN to which the NAN macro expands, when it is
defined (7.12).”

Unimplemented.

“Domain errors for the mathematics functions, other than those
required by this International Standard (7.12.1).”

None.

“The values returned by the mathematics functions, and whether
errno is set to the value of the macro EDOM on domain errors
(7.12.1).”

errno is set to EDOMon domain errors.

“Whether the mathematics functions set er r no to the value of the
macro ERANGE on overflow and/or underflow range errors
(7.12.1).”

Yes.

“The default state for the FP_CONTRACT pragma (7.12.2)

Unimplemented.

“Whether a domain error occurs or zero is returned when the f nod
function has a second argument of zero (7.12.10.1).”

NaN is returned.

“The base-2 logarithm of the modulus used by the r enrgquo
function in reducing the quotient (7.12.10.3).”

Unimplemented.

“The set of signals, their semantics, and their default handling
(7.14).”

The default handling of signals is to always return failure. Actual
signal handling is application defined.

“If the equivalent of si gnal (si g, SI G DFL); isnotexecuted
prior to the call of a signal handler, the blocking of the signal that
is performed (7.14.1.1).”

Application defined.

“Whether the equivalent of si gnal (sig, SIGDFL); is
executed prior to the call of a signal handler for the signal SI G LL
(7.14.1.2).”

Application defined.

© 2009 Microchip Technology Inc.

DS51686B-page 99

MPLAB® C Compiler for PIC32 MCUs User’s Guide

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“Signal values other than SI GFPE, SI G LL, and SI GSEGV that
correspond to a computational exception (7.14.1.1).”

Application defined.

“Whether the last line of a text stream requires a terminating
new-line character (7.19.2).”

Yes.

“Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in
(7.19.2).”

Yes.

“The number of null characters that may be appended to data
written to a binary stream (7.19.2).”

No null characters are appended to a binary stream.

“Whether the file position indicator of an append-mode stream is
initially positioned at the beginning or end of the file (7.19.3).”

Application defined. The system level function open is called with
the O_APPEND flag.

“Whether a write on a text stream causes the associated file to be
truncated beyond that point (7.19.3).”

Application defined.

“The characteristics of file buffering (7.19.3).”

“Whether a zero-length file actually exists (7.19.3).”
Application defined.

“The rules for composing valid file names (7.19.3).”
Application defined.

“Whether the same file can be open multiple times (7.19.3).”
Application defined.

“The nature and choice of encodings used for multibyte characters
in files (7.19.3).”

Encodings are the same for each file.
“The effect of the r enbve function on an open file (7.19.4.1).”

Application defined. The system function unl i nk is called.

DS51686B-page 100

© 2009 Microchip Technology Inc.

Implementation Defined Behavior

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The effect if a file with the new name exists prior to a call to the
renane function (7.19.4.2).”

Application defined. The system function | i nk is called to create
the new filename, then unl i nk is called to remove the old
filename. Typically, | i nk will fail if the new filename already
exists.

“Whether an open temporary file is removed upon abnormal
program termination (7.19.4.3).”

No.

“What happens when the t npnam function is called more than
TMP_MAX times (7.19.4.4).”

Temporary names will wrap around and be reused.

“Which changes of mode are permitted (if any), and under what
circumstances (7.19.5.4).”

The file is closed via the system level cl ose function and
re-opened with the open function with the new mode. No
additional restriction beyond those of the application defined open
and cl ose functions are imposed.

“The style used to print an infinity or NaN, and the meaning of the
n-char-sequence if that style is printed for a NaN (7.19.6.1,
7.24.2.1).”

No char sequence is printed.

NaN is printed as “NaN”.

Infinity is printed as “[-/+]Inf".

“The output for % conversioninthefprintf orfwprintf
function (7.19.6.1, 7.24.2.1).”

Functionally equivalent to %x.

“The interpretation of a - character that is neither the first nor the
last character, nor the second where a ™ character is the first, in
the scanlist for 9% conversion in the f scanf orfwscanf
function (7.19.6.2, 7.24.2.1).”

Unknown

“The set of sequences matched by the % conversion in the
fscanf orfwscanf function(7.19.6.2,7.24.2.2).”

The same set of sequences matched by %x.

© 2009 Microchip Technology Inc.

DS51686B-page 101

MPLAB® C Compiler for PIC32 MCUs User’s Guide

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

“The interpretation of the input item corresponding to a %p
conversion in the f scanf orfwscanf function (7.19.6.2,
7.24.2.2).”

If the result is not a valid pointer, the behavior is undefined.
“The value to which the macro er r no is set by the f get pos,
fsetpos,orftell functions on failure (7.19.9.1, 7.19.9.3,
7.19.9.4).”

If the result exceeds LONG_MAX, er r no is set to ERANCGE.

Other errors are application defined according to the application
definition of the | seek function.

“The meaning of the n-char-sequence in a string converted by the
strtod,strtof,strtol d, wst od, wcst of , orwest ol d
function (7.20.1.3, 7.24.4.1.1).”

No meaning is attached to the sequence.

“Whether or not the strt od, strt of ,strtol d, west od,

west of , orwest ol d function sets er r no to ERANGE when
underflow occurs (7.20.1.3, 7.24.4.1.1).”

Yes.

“Whether the cal | oc, mal | oc, andr eal | oc functions return a
Null Pointer or a pointer to an allocated object when the size
requested is zero (7.20.3).”

A pointer to a statically allocated object is returned.

“Whether open output streams are flushed, open streams are
closed, or temporary files are removed when the abort function
is called (7.20.4.1).”

No.

“The termination status returned to the host environment by the
abort function (7.20.4.1).”

By default, there is no host environment.

“The value returned by the syst em function when its argument is
not a Null Pointer (7.20.4.5).”

Application defined.
“The local time zone and Daylight Saving Time (7.23.1).”
Application defined.

“The era for the cl ock function (7.23.2.1).”

DS51686B-page 102

© 2009 Microchip Technology Inc.

Implementation Defined Behavior

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

A.18 ARCHITECTURE

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

Application defined.

“The positive value fort m i sdst in anormalizedt mx structure

(7.23.2.6)."

1.

“The replacement string for the %&Z specifier to the strfti ne,
strfxtime,wesftinme, andwesf xti me functions in the “C’
locale (7.23.3.5, 7.23.3.6, 7.24.5.1, 7.24.5.2).”

Unimplemented.

“Whether or when the trigonometric, hyperbolic, base-e
exponential, base-e logarithmic, error, and log gamma functions
raise the inexact exception in an IEC 60559 conformant
implementation (F.9).”

No.

“Whether the inexact exception may be raised when the rounded
result actually does equal the mathematical result in an IEC 60559
conformant implementation (F.9).”

No.

“Whether the underflow (and inexact) exception may be raised
when a result is tiny but not inexact in an IEC 60559 conformant
implementation (F.9).”

No.

“Whether the functions honor the Rounding Direction mode (F.9).”

The Rounding mode is not forced.

“The values or expressions assigned to the macros specified in
the headers <f | oat . h>, <l i nmits. h> and <stdi nt. h> (C90
and C99 5.2.4.2, C99 7.18.2, 7.18.3).”

See Section 1.5.6 “1imits.h".

“The number, order, and encoding of bytes in any object (when not
explicitly specified in the standard) (C99 6.2.6.1).”

Little endian, populated from Least Significant Byte first. See
Section 1.5 “Data Storage”.

“The value of the result of the size of operator (C90 6.3.3.4, C99
6.5.3.4).”

See Section 1.5 “Data Storage”.

© 2009 Microchip Technology Inc.

DS51686B-page 103

MPLAB® C Compiler for PIC32 MCUs User’s Guide

NOTES:

DS51686B-page 104 © 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUs USER’S GUIDE

Appendix B. Open Source Licensing

B.1 INTRODUCTION

This chapter gives a summary of the open source licenses used for portions of the
compiler package.

B.2 GENERAL PUBLIC LICENSE

The executables for the compiler, assembler, linker, and associated binary utilities are
covered under the GNU General Public License. See the file doc/COPYING.GPL in the
product installation directory for the full text of the license.

B.3 BSD LICENSE

Portions of the standard library are distributed under the terms of the “BSD” license
from the University of California:

Copyright © Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developed by the University of California, Berkeley and
its contributors.

4. Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

© 2009 Microchip Technology Inc. DS51686B-page 105

MPLAB® C Compiler for PIC32 MCUs User’s Guide

B.4 SUN MICROSYSTEMS

Portions of the standard library are copyright Sun Microsystems and are distributed
under the permissions granted by the following terms:

Developed at SunPro, a Sun Microsystems, Inc. business. Permission to use, copy,
modify, and distribute this software is freely granted, provided that this notice is
preserved.

DS51686B-page 106 © 2009 Microchip Technology Inc.

MPLAB® C COMPILER
MICROCHIP FOR PIC32 MCUs USER'’S

| ndex

Symbols o | IS 65, 75, 83
_ C32_VERSION__ oot 11 heap . 63, 75, 85
TUSR MACIOS oo 50 _LANGUAGE_ASSEMBLY ..o, 10
__ISR_AT_VECTOR(V, iPl) e, 51 _LANGUAGE_Ci...oovvvvieieeieeeeeeeeeecttiene e 10
ISRV, GPI) e 50 _MCHP_ .o 10
— LANGUAGE_ASSEMBLY «..eveeveeeeeeeeeeeereeen, 10 _mchp_No_float.........ccooiiiii 10
_ LANGUAGE_ASSEMBLY __..ooevieeeeeeeeeceeereeen 10 _MCHP_SZINT oottt 10
 LANGUAGE_C .o 10 _MCHP_SZLONG.....coiiiiiiiiiiiiieeeieeeeee e 10
_ LANGUAGE_C__ oot 10 _MCHP_SZPTR ettt 10
1ONGIAMIUNG__ oo 63, 87 _Min_heap_Sizec.cccviiiiiiiiiiiiiiicis 63, 76
L UIMIPS oottt 11 _MIN_StACK_SIZ&....ooovivvvvirniiiiii 63,76, 85

MUPS_ oot 11 MPS .o 11
_ MIPS_ISB_TBV ..ot 11 CMIPS s 1
e 11 _MIPS_ARCH_PIC32MX.........oommrrrrorerrrsrrrrrre 11
_ MIPS_SOFt_FIOALceveieieeeeieiee s 11 ZMUPS_FPI s 11
_MPSLE oo s e e ean 11 MIPS_ISA o 11
CMIPSLBE oot 11 _MIps_No_float...........cccoviiiiiiiiiiiii 11
 MIPSEL oo 11 CMIPS_SZINT oo 11
UMIPSEL. oo 11 _MIPS_SZLONG.....coiiiiiiiiiiiiiieee e 11
TNO_FLOAT oo 10 _MIPS_SZPTR ...oiiieeeeeeceeeossssse e 11
TIPIC 10 “MIPS_TUNE_PIC32MXoorvrrrrreierreerresenneees 11
U PIC_ et 10 CMIPSEL o 11
_ PIC32_FEATURE_SET __ oooioeeieeeeeeeeeeeeen, 10 CMON_JELC weviviiiiiiiiiiiiee e 43
U PIC32MX ettt 10 _MON_PULC .o 43
UPIC32MX_ oot 10 _MON_PULS .o 43
 PIOCESSON oo 10 _MON_WIIE ..o, 43
—RBO00 ..o 11 NMI_NANIBT .o 43,63
~ RB000_ et 11 _ON_DOOLSIIaP ..o 43
TAMPUNC_ e 63. 87 _ON_TESBL ..o 43, 65
_SOFT_FLOAT ... 10 _RBOOO ... 11
_ VERSION__ oo 10 _FamfunC_DeGIN ... 67,75,85
_BEV_EXCPT_ADDRovieieeeeeeeeeeeeeeseeseeenn. 78. 80 _ramfunc_end ... 67,75, 85
_bmxdkpba_address............cocoerriririenienen. 68, 75, 85 _ramfunc_image_begin..................cooivvnnine. 67,75, 85
_bmxdudba_addressc..cccorrrrinrinnnn. 68, 75, 85 _ramfunc_Iength ... 68,75, 85
_bmxdupba_addressccooceereeeereeeennn. 68. 75, 85 TSl 76
_bootstrap_exception_handler........................... 43,74 CRESET_ADDR oo 78,80
_bootstrap_exception_handler()c..coeeen. 51 _SDSS_DeGIN oo 84
0SS _DEGINM e, 66, 75, 84 _ShSS_eNnd.....cooi, 84
BSS_EN v 66, 75, 84 _SdatA_DEGIN...ooooorvvvriii s 83
data_DegiN ..., 66, 75, 83 _sdata_endceeeeiiii e 83
_data_endooooieeeeeeeeeeeeeeeeen, 66, 75, 83, 84 CSEACK s 63, 75, 86
_data_image_Deginoceeeeeeeerereeereereenn. 66, 75, 83 _text begin......coo 81
_DBG_CODE_ADDRovieteerseeeeeeeeerereeenenn, 78,81 eXt eNd .o 81
_DBG_EXCPT_ADDRooveroeeesereeeresereeenan 78. 80 _VECIOr_SPACING ...ccevvieieeeeiiiiee e e 70, 75,77
_DEBUGGER ...ttt 80, 82 .app_excpt SECHioN........ccccovieiiiii 81
_ebase_addresscccoererriniieineineeas 71,75 -DBV_EXCPL SECHON ..o 80
_end __ 75, 84 BSS 65
X ettt 44 DSS Section.......oooii 84
_GEN_EXCPT_ADDR ...ovoeveveeeeeeeeeeeeeereereeenne 78. 81 .config_address........cceevieiiiiiiiie e 79
_general_exception_context() 52 AL e 66
_general_exception_handler.............oo.ovvveene.n. 43 74 .data SeCHioNcceviviiiii 83

© 2009 Microchip Technology Inc. DS51686B-page 107

MPLAB® C Compiler for PIC32 MCUs User’s Guide

.dbg_data Sectioncccuvrieeeiiiiiie e 82
.dbg_excpt SECHON.......ccueeeiiiiieie e 80
.got Section

it8 Section......cvvevvveeeeiiiiiiiceecins

JAMFUNC e
Famfunc SECHIONueevieiiiieiieeee e
.reset Section

.rodata Section

.SAata SECHONcovvvvieeeeeeeeeeeee e
.Sdata2 SEeCHONcooeviiiiiiiii e
StACK SECHON ...eviviiiiiieiee e
.Startup SECHON ...coovvveiiiieieiiieeee e
text Section

.vector_n Sections
“On Bootstrap” Procedurecccoovvveeiveiniiee e
HAEfINE wvvvveeeeeiee,

#pragmaccceeeeeennnnnes
#pragma config
#pragma interrupt
HPragma VECTONccoveeiiiiieenie e

Numerics
SMSMAIT-I0T L 17
PIC32MX Device-Specific Options

SMSMAM-I0= e 17
32-Bit C Compiler Macroscccoevvvveriveenniee e 10

alias (“symbol”)........oeeiiiiiie e
aligned (N) c..ooeeeevnnnnnen.
always_inline

at_vector Attribute
Attribute, Function

alias (“Symbol”).....ccceveririiii e 14
always_inline.........ccooviiiiei e 12
at_vector

CONSL .ttt
deprecated

FaE e
format (type, format_index, first_to_check)....... 13
format_arg (iINdeX).......ccoocveeeviiieiieie e 13
INEEITUPL .t 12
1ONGCAll......eiiiiiii 12

no_instrument_function
noinline

section (“name”)c.o......
unique_section
UNUSEd ..o

Attribute, Variable
aligned (N) .veveeeieciiee e 14
cleanup (function)........cccooveviiiieiniicecieeiee 14
deprecated

SECHION (“NAME”) ...viiiiiie et
transparent_union
unique_section
UNUSEd ..o

B
B 38
Bad Virtual Address Registercccoovveiivveeinnennnns 69

BadVAddr. See Bad Virtual Address Register

Bit FieldS.......oiiioiieee e

BMXDKPBA

BMXDUDBA

BMXDUPBA

Boot Memory Region
kseg0_boot_mem
ksegl_boot_mem

Bootstrap Exception

Branch Delay.........ccocvieiiiiiiiiiecccceeeee e

Bus Matrix Register........ccccceeviiiiiei e,

BMXDKPBAccooeiiieeeen.
BMXDUDBA....
BMXDUPBA ...

-fno-asm

DS51686B-page 108

© 2009 Microchip Technology Inc.

-fno-unsigned-bitfieldscccccceeeeiiiiiiieiins 19
-fsigned-bitfields..........cccocveeeeiiiiiei i 19
-fsigned-char ... 19
-funsigned-bitfields...........ccccoiiiiiini e 19
-funsigned-char..........ccccooiveiiinne e 19
-fwritable-Stringscococvieiiiie e 19
C StaCk USAQeocoiuiiiiieciiiieiee e 60
Call MAIN ... 73
CAllOC ... 61
CAST. ettt 22,24,25
Cause REQISIENocveeiiie e 69, 70
CRAT e 8,19, 20, 61
CHAR_BIT .ottt 9
CHAR_MAX ...ttt 9
CHAR_MIN ..ottt 9
cleanup (fuNCtion)cccceviieiiie e 14
ClOSE ...t 43
Code Generation Conventions Options 39
-fargument-alias...........cccceeieiiiiin i 39
-fargument-noalias.........c.cccccovviiniiiiiiee e 39
-fargument-noalias-globalccccocveinneenn. 39
-feall-saved ... 39
“feall-used ... 39
SFAXE i 39
-finstrument-functionscccccce v, 40
SfNO-IdeNt...cciiiiii 40
-fno-short-double ... 40
-fno-verbose-asm..........ccccceeiieii e 40
-fPACK-SIIUCEoeiiiiice 40
-fPCC-SIrUCE-TELUIN ..o, 40
-fShOrt-enUMS......coeiiiii e 40
-fverbose-asm........ccoociiiieiiii 40
-FVOlALIe ..o 40
-fvolatile-global...........ccccoiieiiii e 40
-fvolatile-statiC.........ooooeiieiiii e 40
Code Size, REAUCEcoeoeiiiiiieeee e, 28
Command Line Option, Compiler
S 33
-fdate-sections ... 15
-ffuNCioN-SECtioNS........evviiiiciie e 12
-fShort-enums.........oooiiii e 96
-funsigned-bitfields...........c.cccoriiniiiiiiie e 95
-funsigned-char..........ccccooiveiiiinie e 8
SIQUOLE .. 97
L 37
-MAEDUGUET ...vveiieeeiiieecc e 80, 81, 82
SMIPSLO . 12,45
-mips16 -mno-float.........cceeeviiiiiiiieiiiiee e 45
-mlong-callsccceveiiiiii e 12
=MNO-flOAL........eeiiiiiii 45
“MPFOCESSONeeiiiiiiiiiiiiiiiiirie e 77
S0 EXLL0UL ... 41
SO s 45
SO -MIPSLB ..o 45
-O3 -mips16 -mno-float..........cccevvvieriieeiieenne 45
-O3 -MNO-float........coovveiiiiiiiiiieee e 45
2O s 45
“OS -MIPSLB ...eeeeeiiiierieeccriee e 45
-Os -mips16 -mno-float..........ccccevvvveiniiee e 45
-OS -MNO-FloAL.....cvvi i 45

SWaALL e 22

SWNONNUI .o 13
Command Line Option, Linker

—=defSYM . 76

--defsym_min_stack_Sizeccccccvveriiennnenn. 60

O PP P PP PP PPPPP RPN 77
Command Line OPLioNScccueeerivieiiieeeiiiee e 16
COMMENIS......oeiiiiiie i 20, 33
Common Subexpression Elimination 29,30,31
Common SUDEXPreSSIONSevveiviveriiieiiee e 32
Compare REQISLENcoorieeeiiiieeirie e 69
Compiler

DIIVET oottt 7,38,41
Compiling Multiple Filesc.ccovoiiiiiiiiiiieeiieee 42
CON FIGN e 79
Config REGISIENeeeeiiiice e 71
Configl REGISLENocoiiieiiiiiecieeee e 71
Config2 REQISIENovviiiiiiieiieeccee e 71
Config3 REQISIEN ...uvvviiiiiiieeiecceee e 72
Configuration Bit ACCESSccvvuviiieeeeiiiiiiee e, 56
Configuration Memory Region

config3, config2, configl, config0...............cue... 78
Configuration Pragmaccccceevcvvvenieeeniieenns 56, 57
Configuration Wordscccceevuvveeeeeiiiiiieee e 56, 57
CONSE...tiiiiiii et 13
COUNL..ceiiii e 68
COUNt REJISTEN ... 69
COUNIDM ... 69
CPO ACCESS MACIOS.......cvviieeeeiiiieee e 56
CPO REQISEr ACCESSuvvviieeeiiiiiieeeeeiiiie e e e eiiiaeae s 55
CPO REQISIEISevveieeciciiiiee e 68
Customer Notification Service..........cccoevrvieieerinenen. 4
CUSIOMET SUPPOIt ...ceeiiiiiieieies e 5
D
D s 33,34, 36
Data Memory Region

ksegl_data_memccccvviiiieeiiiieniiee e 78
Data Memory SPacCecccuvvveeeiiiiieieeeiiiiieee e 61
DBD. See Debug Branch Delay
SOD 33
Debug Branch Delayccccovciiiiieeiiieceecc e 73
Debug Exception Program Counterc.ccceeeveee. 72
Debug Exception Save Registeroccoevveeiicnenn. 73
Debug Executive Memory Region

debug_exec_memcccocceeviieeiiiieenneee e 78
Debug REJISLENcccuvvviee e 69, 72
Debug SECHONS.....ccvvviiiieiiee e 86
debug_eXeC_MeM........ccoceveiiiieenieee e 81
Debug2 ReQISLErccovieeiiiieiee e 72
Debugging Information.............cccceciieeeiiiiiiie e 27
Debugging OPtioNSccoviviriieeiiiieeeeee e 27

B o PP 27

S0 e 27

-SAVE-TEMPS .o 27
—=dEfSYM Lo 76
-—defsym _ebase_address=Accccovveeeeiiinnenn. 71
--defsym _min_heap_size=M.......c..cccocviriieeininennns 63
--defsym _min_stack_size=N............ccccoceeeeiriirnnnenn. 63
--defsym_min_stack_Size.........ccccoviviviiiiiiiinieens 60
--defsym, _min_heap_Sizecccovrriiiiiiieeiineennn 61

© 2009 Microchip Technology Inc.

DS51686B-page 109

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DEPC. See Debug Exception Program Counter

deprecated Attributecccee e, 14,25
DESAVE ..ottt 73
DIrECLONES ..ot 34, 36
Directory Search Optionscccevvveeeiiee s 38

B 38

SSPECST ittt 38
SAM 33
SON e 33
Documentation

CONVENLIONSeiiiiiiiieiiee e 2

LAYOUL .ot 1
doUbIe ..o 8,40, 61
E
B 18, 33, 35, 36, 37
EBASE REQISIENcccvvviiieeciiiiiee e 71
EITAGVEN ...t 72
ENTRY Lo 76
EPC REQISIEN ..ot 47,70, 73
ERET oot 63
Error Control Options

-PEAANTIC-EITOIS ...eiieiee it 20

SWEITON e 25

-Werror-implicit-function-declaration.................. 20
Error Exception Program Counter...........ccccovcvveennee. 73
ErrorEPC. See Error Exception Program Counter
Exception Base RegiSter........ccooveeiiiieeiiieeeiiiieeee 71
Exception Memory Region

EXCEPON_IMEM ...oiiiiiiiiiiie e 78
Exception Program COUNLErccovveeeriireenneieenne. 70
EXCEPLON VECIONeviieieeeieeeee e 48
EXCEPHON_MEM ...t 81
EXecutables........cccoiiiiiiiiic 41
EXI. ettt e 44
EXL Bit .ot 70
EXTENSIONS ...ttt 35
EXTERN ..ottt 76
EXIEIM oot 25, 32,40
External Interrupt Controller............ococeevveeencieennen. 70
F
-falign-fuNCLioNScocvviiii e 29
-falign-labels.........ccooevieiii 29
-falign-lo0oPS......oveiiiei 29
A e 12
-fargument-aliasccoeevieiii 39
-fargument-noaliascccccccoeviiiiii e 39
-fargument-noalias-global.................ccccooiveeieiiinn.n. 39
-fealler-Saves.........cocoviiiiiiici 29
-feall-saved 39
feall-used. ... 39
-fese-fOllOW-JUMPS ...ocoviiiii e 29
-fcse-skip-blocks........oooviiiiiiii 29
-fdata-Sections.........cccveveieiii i 15, 29
-fdefer-pop. See -fno-defer
-fexpensive-optimizations...........ccccvvevvviniiee e 29
SFAIXEA e 39
-fforce-mem ... 28,32
-ffreestandingccocevieiiiiiii 19
-ffuNCLiON-SECHIONSvveiiiciie e 12,29

GO i 29
HGCSE-IM . 30
SFOCSE-SIM . 30
File EXIENSIONSuviiiiiiiiiiee e 7
FlE.C et 7
€N 7
BT e 7
B0 et 7
fl©.S e 8
FlE.S e 8
File Naming Conventionccccoccvveeneeeeineeensneenenes 7
FIE.C et 7
FIEN e 7
BT e 7
FIlE.0 e 7
flE.S o 8
FIlE.S e 8
-finline-funNCLioNSc..eeeveiiiie e 25, 28, 32
-finline-lmit=n .. 32
-finstrument-functions............ccoovii e, 40
-fkeep-inline-functionscccccvvinieeinic e 32
-fkeep-StatiC-CONSEScceveriiierieic e 32
Flags, Positive and Negative............cccceeeeeriee 32,39
FlOAL. ... 8,40, 61
FlOAL N 8
Floating-Point Format
dOUDIE ... 8
FlO@t . 8
loNg double..........ovoiiei 8
-fmove-all-movablesccccvviiiiiiie 30
SN0 e 32,39
SfNO-8SM .o 19
SFNO-DUIIN. .. 19
-fNO-defer-pop......covvviiiie 30
-FNO-fUNCLION-CSE...ccoiiii e 32
AfNO-IAENT ..o 40
SfNO-ININE...coii 33
-fno-keep-static-CoNStSceeveieeiiiiieeiie e 32
-fno-peephole ... 30
-fno-peephole2 ... 30
-fno-short-double ... 40
-fNO-ShOW-COIUMN ... 33
-fno-signed-bitfields ... 19
-fno-unsigned-bitfieldscccoeeiiieiiii 19
-fNO-verbose-asmccccoiiiiiiiii e 40
-fomit-frame-pointer..........ccccvveiiiee e 28,33
-foptimize-register-move..........ccccovvee e, 30
-foptimize-sibling-callsccccooiiieeinie e, 33
format (type, format_index, first_to_check).............. 13
format_arg (iNdeX)ccveveeeiiiiiiiiie s 13
L]« PSRN a7
-fPACK-SIIUCT. ... 40
-fPCC-SITUCE-TELUIN ... 40
Frame Pointer (W14)......ccccceeeeiiiieee e 33,39
-freduce-all-givs........cccveiie i 30
SfrEOMOVE .o 30
-frename-registerscccoieieiiiiieee 30
-frerun-cse-after-loop.........cccvvvviee e, 30,31
-frerun-looP-0Pt.....cocvviiiiie e 30
-fschedule-iNSNScoociiiiiini 30

DS51686B-page 110

© 2009 Microchip Technology Inc.

-fschedule-inSNS2.........cccciviiiiiie e 30
-fShOrt-enuUMSooiiii e, 40, 96
-fsigned-bitfields ... 19
-fsigned-char ... 19
-fstrength-reduce.........cccoceiviiiiiiei e, 30,31
-fstrict-aliasingccovvveeiiiiiiiei e, 28,31
SfSYNtaX-0NlY......ooviiiiiiiiie e 20
-fthread-jumps ..., 28,31
Full Mode

ClOSE oo 43

ISEEK ... 43

(o] 1T o F PP PP PPPPPPRN 43

=T To P PP URPURPPPR 43

1L L= PRSP PR 43
Function

Call ConventionS.........ccceeeeeeiiiiieee e 61
Function Attributes. See Attributes, Function
-funroll-all-loopscovvveeeiiiiiie e, 28,31
-FUNroll-I00PSvvveeiie e, 28,31
-funsigned-bitfieldsccccoeiieiiiiiii 19,95
-funsigned-char ... 8,19
-fVerboSe-asm ... 40
SVOIALIIE e 40
-fvolatile-global............cccooiiiiiiii e 40
-fvolatile-StatiCcceviiieeeiiee 40
-fwritable-Strings........cocvvviiiiie e 19
G
S0 e 27
SGNUM e 16
General EXCEPLONccvvvviiieiiie e 52
Generic Processor Header File..........ccccccoiiiinins 53
[0 <1010 1V PRSP 44
SGN s 65, 66
[0 PP TP PPPUPPPPPPN 47, 64, 65
H
SH 33
Hardware Enable Register..........ccoovviiiiiiieeinieeene 68
Header Files........ccccoeoiiiiinieiie 7,33, 34, 35,36
HEAP oo 63
Heap USAgec.cvvieeieiiiieee e 61
“NEID 18
HEX FIlE e 41
Nl s 47
High-Priority INterruptscocoovvveiiireniieeee e a7
HWRENGoiiiiii e seee e 68
|
OSSR 34, 36
o 34, 36
SIAIFAFLET e 34
SIMACTOS weeiiiiiieeiec e 34, 36
INCIUE ... 41
SINCIUAE e 34, 36
INclude Files.........ueiiiiiee e 38
INNIbIt Warningsccovvveeeiiiiiiiie e 20
INNNE Lo 25, 28, 32
INHNE .. 33,40
INPUT oo e e 77
1 PPN 8,61

INT_MAX ottt 9
INT_MIN oot 9
INECH e 70
Integer Values
CRAN e 8
TN e 8
JONG et 8
[ONG 1ONG .eeiiiiiiee e 8
SNOMt .. 8
SIGNEA ChAr ... 8
SIGNEA INT...eeiiiiiie e 8
SIGNEA 1ONQG...iiiiiiiiiiieee e 8
signed 1oNg IoNg.......covviiiiiiii e 8
SIGNEd SOt ... 8
UNSIGNEd Charocevvieiiiecieee e 8
UNSIGNEA Nt 8
UNSIGNEA 10NG...cciiiiieiiiieiieeee e 8
unsigned 1oNg loNg........ccovveeiiiiiiiie e 8
uNSigNed Shortceeeiiiiiiiiee e 8
INternet AdAreSS........oovveieeriiiiciee e 4
Interrupt
High Priorityocoviiiiiecc e a7
LOWET PTIOFILY ..eeeiveeeeciiiecieeeeie e a7
101 T U] o] APPSR 12
Interrupt Attribute ..o, 48
Interrupt Control REgISter.......coccovvvvieeviiieeiieee e, 70
Interrupt Handler ... a7
Interrupt Handler FUNCLionccoocoeeiiineiiececnee. a7
interrupt handler functioncccccooveeiiieiiin e, a7
INterrupt Pragmacoooviiiiiieiiiiiieiee e 48
Interrupt Pragma Clausecccoceeviieeiieennieee e, 49
SIPPEFIX weeeiie e 34
SIQUOLE e 97
SISYSEEM . 34, 38
SIWIENPFEFiX oo 34
-iwithprefixbefore ... 34
K
KO e 47
KL e 47
KSEGO ..ottt 81
kseg0_boot_Mem........cccceeeeviiiiiii e 81
ksegO_program_memccccooveenne 81, 82, 83, 84, 85
KSEG1 Data Memory........ccceveeeiviiieeeeeeeiieeee e 63, 64
ksegl boot MeM......cccceeiiiiiiiiei e 80
ksegl data_ mem.......ccccceeivcivinieeseennen, 82,83, 84, 85
L
L 37,38, 77
T T PO PSS TSP PP OV UPPTPPRRTRTN 37
LANGUAGE_ASSEMBLYooiiiiiiieniie e 10
LANGUAGE_C....ooitiiiiieiieiieie e 10
LIDFary ..oeeeieeece e 37,41
BMIES.N e 9
CHAR_BIT ..ottt 9
CHAR_MAX ..ottt 9
CHAR_MIN ..ot 9
INT_MAX it 9
INT_MIN oo 9
LLONG_MAX ..ottt 9
LLONG_MIN .ooiiiiiiiieniiieeeee e 9

© 2009 Microchip Technology Inc.

DS51686B-page 111

MPLAB® C Compiler for PIC32 MCUs User’s Guide

LONG_MAX ...ttt 9
LONG_MIN oot e 9
MB_LEN_MAX ..ottt 9
SCHAR_MAX ..iiiiiiiteie et 9
SCHAR_MIN ..ottt 9
SHRT_MAX .oeiiiiiiieiiie et 9
SHRT_MIN ..ot 9
UCHAR _MAX ..ottt 9
UINT_MAX ottt 9
ULLONG_MAX ..ottt 9
ULONG_MAX ..t 9
USHRT_MAX ..ot 9
HIMIES. N Lo 8
BNK e 101
LINKET .o 37
LINKEr SCPL ..veiiiiieeiececieeee e 41
LINKING OPLIONS ...ooovviiiiiieieiiiee e 37
L 37,38
e 37
-nodefaultlibs..........cocvviiii 37
SNOSEAND e 37
TP SPPRRPPPTN 37
LU R SPURRPPTN 37
SWE s 37
SXINKET . 37
little-endian ..o 8
LLONG_MAX ..ottt 9
LLONG_MIN L.ttt 9
o RSP EPPTTP a7
[0CAIECONV ... 44
JONG i s 8,61
Long doublecoeiiiiiiiiiiecce e 61
long double........cooviiiiii 8,40
[ONG 1ONG .. 8, 25,61
LONG_MAX .ttt 9
LONG_MIN ..ottt 9
[[oTaTo (o= || PP 12
longcall Attribute...........cooveeeiiiiie e, 87
LOOP OPLMIZET ...eeeieeiiiieieeeeee e 30
LOOP UNrollingcoovvviiiiiiiiiiiee e 31
Lower-Priority INterruptscccovcvveinieeeneee e 47
ISEEK ...ttt 43
M
SV s 35
MACTO 1.ttt 33,34, 36
Macros
__C32_VERSION_ ..ottt 11
_ LANGUAGE_ASSEMBLYccoceiiiieiieniienne. 10
_ LANGUAGE_ASSEMBLY__...cceeviiiierieeenn. 10
_ LANGUAGE_C ...cooviiiiiiiiiiieeeic e 10
_ LANGUAGE_C__ oot 10
_ NO_FLOAT ..ottt 10
_PIC 10
PG e 10
__PIC32_FEATURE_SET__ ..coceiiiiiieiieiieenn 10
_ PIC32MX i 10
_ PIC32MX__ i 10
 PrOCESSON__ eeiiiiiieiieee ittt 10
_ SOFT_FLOAT ..ttt 10
_ VERSION__ ..ottt 10

_LANGUAGE_ASSEMBLYcoocceeiiieeeniieene 10
_LANGUAGE_C...coovvveeiiieeeee e 10
_mchp_no_float..........cccveeviiiniiie 10
_MCHP_SZINT ..otiiiiieecie e eee et 10
_MCHP_SZLONG.......coeiiieiiee e 10
_MCHP_SZPTR...oiitiieiiiie et 10
LANGUAGE_ASSEMBLYcooiiiiiriiieeniieenieenn 10
LANGUAGE_C...oooviiiiiiiiieiie e 10
PIC32MX ...ttt 10
MAllOC .. 14,61
-MappPio-debugcccovveiii 17
MB_LEN_MAX ..ttt 9
-mcheck-zero-divisionccocviiniieenniie e 16
SMID s 35
~MAEDUGUET ..o 80, 81, 82
-mdouble-float ... 16
-membedded-data.........c.cccoeiiiiiiiii 16
SMIF s 35
SMG s 35
Microchip Internet Web Siteccccoovieiiiiiieniniinee 4
SMIPSLO .o 12,16, 45
MIPSLO ..o 12
-MipS16 -mNo-floatccoeovvvieiiiii 45
MIPSEL ...ttt 11
SMIONG32 oo 16
SMIONGBS oo 16
-MIONG-CallS ... 12,17
MM L s 35
SMMD ... 35
SMMEIMCPY vt ieeee et e ettee et e st ee s snbee e e e e neeas 17
-mno-check-zero-divisioncccccoveeiiiieesiecenneen. 16
-mno-embedded-data............cceeviiiiiiiiiiie 16
-MNO-FloAt ..vvviiiiieeee s 16, 45
-MNO-10NG-CallS ..o 17
“MNO-MEMCPY .oovviiiiiiiiiiiiiiei 17
SMNO-MIPSLB ..o 16, 45
-mno-peripheral-libs ... 17
-mno-uninit-const-in-rodatac.cccceevvveevineenneen. 16
SMIP s 35
“MPFOCESSON .evviiiiiiiiiiiiiee e 16,53, 77
TMQ s 35
-msingle-float..........coooiiiieiie e 16
-MSOfE-TlOAL ...oeeivieieiiie 45
VT s 35
MTCO INSLIUCHIONvviviiiiiiieieieie e 70
-muninit-const-in-rodataccccceciieeie e 16
N
NAKE.....ciiiiiiiiieiee e 12
[0S | U RP PRSPPI 12
no_instrument_function Attribute..............cc..coo 40
-nodefaultlibDs ..o 37
NOININE ..ot 13
NOLOAD ...ootiiiieeeeiee e eree e stee e e sneeeseaee s 81,82
NOMIPSLEoviiiiiieiirii e 12,63, 74
NONNUIL (INAEX, ...) weveeeeii e 13
NOP ..ot 81
NOFETUIM ..ttt 13
noreturn Atribute.........cccoviiiiie e, 25
SNOSEAINC v 34, 36
SNOSEAND ..o 37

DS51686B-page 112

© 2009 Microchip Technology Inc.

0]
20 s 27,28
0 e 18,41
S0 EXLL0UL .. 41
SO0 s 28,45
SO s 28
SO2 s 28, 32
SO s 28,45
SO -MIPSLB .o 45
-O3 -mips16 -mno-floatcoeevveiiieieiiieeeeceee, 45
-O3 -MNO-float......ccviiiiiiiici e 45
ObjeCt File ... 29, 35,37
(] 01CT o PO 43
Optimization Control OPtioNScoceevierernnerennne. 28
-falign-funNCtionsccccceeieviiiee e 29
-falign-labelsccccooiiiiiiiii 29
-falign-loopsccovviiiiii 29
-fealler-saves ... 29
-fese-folloW-JUMPSccevviiiiieee e 29
-fcse-skip-blockScevveiie 29
-fdata-Sectionscoeveeiiiciii 29
-fexpensive-optimizationsc..ccccevveeeeiinennn 29
-fforce-mem ... 32
-ffuNCioN-SECtioNS........evviiiiii e 29
FOCSE i 29
SPCSE-IM e 30
SFOCSE-SM it 30
-finline-functions............ccoooeiiiie, 32
-finline-lmit=n........cccoooiii e, 32
-fkeep-inline-functions..........ccccocevvee e, 32
-fkeep-Static-CoONSES.......ccocveeiiiiee e 32
-fmove-all-movablescccovviiiiiiiie e 30
-fNO-defer-popocvvvvrieiiiece e 30
-fno-fuNCtion-CSecoevviiiic 32
-fFNO-INKINE Lo 33
-fno-peephole.........ooiiiii 30
-fno-peephole2..........ccoeeiiiii 30
-fomit-frame-pointerccccvvvereeniiee e 33
-foptimize-register-movecccoceeviee e 30
-foptimize-sibling-calls.........cc.cccceviiiiiiiiieninenn. 33
-freduce-all-givscccceeviieiiiiiine e 30
SfrEgMOVE. ... 30
-frename-registersccooveviiinne e 30
-frerun-cse-after-loopcccovvvviiiiiee e 30
-frerun-l00P-0pt......coovviiiiiiieie e 30
-fschedule-iNSNS.........cccccovvieiiiiccie e 30
-fschedule-iNSNS2..........cccocveeiiiiiiieci e, 30
-fstrength-reducecccoeeiiiiiiiii e 30
-fStrict-aliasSing.....cvveeveeeeerieeece e 31
-fthread-jumps......c.oooiii 31
-funroll-all-loopsccceveiiiiiiiiie e 31
-FUNroll-I00PS ...ooovvviie 31
SO 28
SO0 s 28
SO s 28
SO2 s 28
SO 28
SO 28
Optimization, LOOPocuveeiriieeiiiee e 30
Optimization, Peephole............ccocovreeiinieniiece, 30

Options
ASSEMDBIING ..eeviiiiieiiiee e
C Dialect Control
Code Generation Conventions...........c.cceeenveee. 39
DebUgING......veeirii e 27
Directory Searchcccooveeiiiiiiniie e 38
LINKING .ttt 37
Optimization Controlccccovieeeiiieevieee e 28
OULPUL CONIOL.....oeieiiiiie e 18
Preprocessor CoNntrolcocvvvereeeeniineesnineenne 33
Warnings and Errors Controlcccceecveennee 20
SO s 28,45
“OS “MIPSLB....eviieiiiieeiiiie e 45
-Os -mips16 -MNo-floatccceeevviiiiiiiiiiiiee e 45
-OS -MNO-floatooviiiiiii e 45
Output Control OPLIONScccvvvrerririreiieee e 18
G ettt aeeeen 18
S 18
=heIPD 18
S0 s 18
S e 18
SV e e e e eens 18
X et eeeeen 18
OUTPUT_ARCHooiiiiiiciicnicee e 76
OUTPUT_FORMAT ...oooiiiiiiiiiiiie e 76
P
P e 36
PACKED.eiiiiiiiiiiieie e 14
PATH ..ot 41
SPEAANTIC ..ot 20, 25
-PEAANTIC-EITOISeeee et 20
Peephole Optimizationccocceeviieeiniieee e, 30
8162 o o] oSSR 7
PIC32MX ..ottt e 10
PIC32MX Device-Specific Options
SG NUM e 16
-MappPio-debug.......ccccevveviiiiii 17
-mcheck-zero-divisioncccccevviniiciieenees 16
-mdouble-float............ccoviiriiiiiiii 16
-membedded-data.............ccooer i 16
SMIPSLO o 16
SMIONG32 . 16
SMIONGBA ... 16
-mlong-callS.........cooviiiiiiiii e, 17
SMMEMCPY vttt 17
-mno-check-zero-division...........ccccvvvieieennees 16
-mno-embedded-datacoceee i, 16
-MNO-float.......eeieiii 16
-MNO-10Ng-CallSvvveiiiiii e 17
SMNO-MEMCPY .vvienriiierienree st 17
SMNO-MIPSL6 ...t 16
-mno-peripheral-libsccccoooiiiiiiiiiee, 17
-mno-uninit-const-in-rodata............cccccocevee e 16
“MPFOCESSON ..ccoviiiiiiiiiii e 16
-msingle-floatcccooveviiiii 16
-muninit-const-in-rodata..............cccceeeveieennneen 16
PIC32MX Start-up Codecoovveriirieeiiee e 63
POINEETS ..ot 8,25
Frame.......cooi e 33,39
SEACK .o 39

© 2009 Microchip Technology Inc.

DS51686B-page 113

MPLAB® C Compiler for PIC32 MCUs User’s Guide

Pragmas........uuuuieieiiiiiiiieeee e 12
#pragma configoeevvveerieeiiiieeeniiees 15, 56, 57
#pragma iNterrupt........c.ooceeeiiirenneee e 15
HPragma VECTONcceeririieee e 15

Predefined Macroscoocciiieiiiiiiiee e 10

PrEFiX wevieiiiie i 34,38

Preprocessor Control OptionsS..........cccceevveeeriieeennee. 33
A 33
S e 33
D 33
20D e 33
SAM 33
SAN L 33
-fno-show-columnccccooiiiiiiicice 33
SH 33
TPV O PP UPTOPRRPRTI 34
Lo 34
SIAIFAFET oo 34
SIMACTOS .o 34
SINCIUAE Lo 34
SIPPEFIX e 34
SISYSEEM i 34
SIWIENPPEfiX .o 34
-iwithprefixbefore...........cccoviiii i, 34
SV 35
SMD 35
SV e 35
MG 35
SMM e 35
SMIMD L 35
SMQ 35
ST 35
SNOSEAING eeiiiiiei e 36
P 36
SIAGraPNS .. 36
U 36
SUNAET L 36

PRI oo 71

Processor Identification Register.............ccccevcvrennee. 71

Processor Support Header Files...........ccooceeeeenins 53

PrOCESSOI.0 ...ouiiiiiiiiiiiiiiiiiiie e 77

Program Memory Region
ksegO_program_mMemcccocueeeerireennieesnnnenn 78

PROVIDE ...ttt 76

PrOVISIONS ...t 63

PUME ..o 13

Q

S0 e 27

R

RB000.....ce ittt 11

PRSP 47

TAUSE ..veiieeie ittt 44

RAM FUNCHONS......cciiiiiieiieiiceee e 67,87

RAW DEPENUENCYccoiuviiiiiiieiiieeeiieeesiee e 30

RDHWR. ...ttt 68

(172 o PSPPSR 43

Reading, Recommended............ccoccuiiiieiiiiiiieeeeeee, 3

FEAIIOC. ...t 61

Reduce Code SizZecocvvviivieiiiiiii e 28

Register CoNventions...........cccccvveeeeeiiivneeeeseciineeenn 59
Requested Interrupt Priority Level.........ccccccevinennns 70
RELUIMN TYPC. o 21
Run-time Environment............ccccceeieiiiiieie e 59
0 PP PP 78
S
S e 18,37
S s 37
808 e 47
SSAVE-TEIMPS ...ttt 27
SBIK e 63
SCHAR_MAX ...ttt 9
SCHAR_MIN ..ottt 9
Scheduling........vvviiieii e 30
SDE Compatibility Macros.........ccccooevveeiiveenieeenneen. 11
L1010 LT RP PP 11
MPS__ ettt 11
 MIPS_ISA_TEV .eeeeeiiiiiiiieeeeie e 11
__mips_single_floatccccviiieiiiiiiiiniee 11
_ mips_soft_float......cccccocrviiiiiiiiiee e 11
MIPSL6...ueiiiiiiiieeeiiit e 11
L MIPSLBE...eiiiiiee et 11
 MIPSEL ot 11
_ MIPSEL__ it 11
R3000.....cceiiieiieeiie e 11
R3000__.oiiiiiiiiiieeie e 11
IMIPS et e 11
_MIPS_ARCH_PIC32MX.....c0eiitveiiririeneenineen 11
_MIPS_TPr e 11
CMIPS_ISA . 11
_Mips_No_float...........ccovvveriiiiiiie e 11
_MIPS_SZINT ..ttt 11
_MIPS_SZLONG.......ccceeiiitiiiiieiie it 11
_MIPS_SZPTR.....ocoiiiiiiiieiic e 11
_MIPS_TUNE_PIC32MX ...ccuvtiiiiiiriiieneeninene 11
CMIPSEL .o 11
_RB000....ccieiii e 11
MIPSEL ..ottt 11
R3000......ccieiiiiiieeire e 11
Section
Configuration Wordscccocvveriniiiiieeininiens 56
L= Tox 1o] o [PRSPPI 29
SECHION ("NAME”) ..evviiiiieiirie e 12,15
SECTIONS Commandcccooveevienieenirieneennee e 79
SEHOCAIE ... 44
SFR Memory Region
SIS e 78
Shadow Register Control Registerccccoeevvrennee. 70
Shadow Register Map Register.........ccccoovevvivvennnee. 70
SNOTT . 8,61
SHRT_MAX ..ottt 9
SHRT_MIN oottt 9
SLTIMEINt ..o 69
SIGNAL .. 44
SIGNEA ChAT ..o 8
SIGNEA INT.coiiiiie e 8
SIGNEA IONGevviiiieccee e 8
SIgNed 10NG 10NG ..cooivviiiiiiiiiie e 8
SIGNEA SNOMT....coeiiiiiiecc e 8

Simple Mode

DS51686B-page 114

© 2009 Microchip Technology Inc.

_mon_getc
CIMON_PUL it
_mon_putc
_mon_write
Software Stack.........ccccoveeiiiiiini
S ettt s
Special Function Register Access
Special Function Registerscccocceenee.

Stack LOCAtionooooeiiiiiiiiiiieeeee e 86
Stack POINTEr.......eiiiiiiiie e 63
StaCK USAQE....cvvviiiiieiiiie e 60
Start-up and Initializationccccooeveeiiiee v, 63
static

Status Register
StAtUSBEV ...
SHINGS .

Structure

sys/attribs.h.......ccccovveiiiiiinnn.
sys/lkmem.h...............
System Function
BNK e 101
UNKINK e 101
System Header Files.........c.ococeeviieiniii i, 22,35

T

Trace Control REQISLErccovvveiiiiieiei e 72
TraceBPC ReQiSter.......c.vveeeiviiiiiee e 72
-traditional
Traditional C......cccovvivieriieiiiee e
transparent_UNIoNccoceeieeeieeiiceee e
THOraphs.....ccocvcvviiieee e

-trigraphs...............
Type Conversion...
EYPEAET ...

UCHAR_MAX ..covovveerernreenenn
UINT_MAX et eese e
ULLONG._MAX oo
ULONG_MAX

UNIQUE_SECLION ..ttt
UNTINK e
UNFOI LOOP it
unsigned char
UNSIGNEA INt...uiiieiicciiee e
UNSIGNEA IONG ...

unsigned 1ong [oNgccooiiiiiiiiieiiiieee e 8
UNSIGNEd SNOM.....coiiiiiiiieecc e

unused Attribute .
Unused Function Parameterccccceeviiiineeennns 22
Unused Variable
used Attributec........
User Trace Data Register
USHRT_MAX ..ttt

Variable Attributes. See Attributes, Variable

(=Tt (o] ST
Vector Attribute
vector Attribute
Vector Pragma
(V0] F= L {1 [T

SWall .
warn_unused_result
Warnings and Errors Control Options 20
-fSyntax-0nly.........coocveriiiiii e,
-pedanticcccevuveenne
-pedantic-errors

SWeast-align ...
SWCEASE-QUAL ...
-Wehar-SUbSCIIPLSeeeiiieeeii e 20
-Wcomment
-Wconversion
-Wdiv-by-zero
SWEBITOT ittt
-Werror-implicit-function-declaration.................. 20
SWEOrMAL .
SWIMPHCIE v
-Wimplicit-function-declaration
“WImplicit-intoovvveeiiiieiiieen
-Winlineccoeveeiinnnenn.

-Wmissing-braces
-Wmissing-declarations............cccccoeveevneeeenineen.
-Wmissing-format-attribute..............ccccoeeeeennneen.
-WMISSING-NOFEtUIM......cveiiiiieie e
-WmMISSING-Prototypesccccvvvceeeiieeeeninerenine
-Wmultichar
-WnesSted-eXternS.......c.vevveriieneeniecec e
“WNOo-10NG-10Ng ..ot

© 2009 Microchip Technology Inc.

DS51686B-page 115

MPLAB® C Compiler for PIC32 MCUs User’s Guide

-Wno-multichar ..o 21
-WNO-SIgN-COMPAT€........veveiiieeiiiee e eaeee e 26
-Wpadded

SWpPAarentheSes......ccvvviiieeeiii e
-Wpointer-arithccoocvevviinie e
-Wredundant-decls...................
-Wreturn-typeccoccveevrveeennne
-Wsequence-point....................
SWShadOow ...
SWSIgN-COMPAIE......ovvviiieiiiiiierieee e
-Wstrict-prototypes...................
“WSWItCh .
-Wsystem-headers..................
SWiraditionalcoocveiiiiiiiiiie e
SWRGraphS oo
-Wundef
-Wuninitialized..........ccocoeiiii
-WUNKNOWN-Pragmasccueeerueeeiniieeeneeeeneens
-Wunreachable-code...........ccccoviiiiieeiniiennen.
SWUNUSEA. ...
-Wunused-function
-Wunused-label ..o,
-Wunused-parameterccccovceeeinieeenieee e
-Wunused-value............cccoe......
-Wunused-variable
-WWrite-stringsccoeevvveeenne.
Warnings, Inhibitccooii e
Warranty Registration...........ccccocvveeiiveeinieeenieee e
-Wbad-function-cast.....
-Wecast-align
-Weast-qual
-WChar-SUDSCIIPLS ...oooviviiiiiiie it
SWCOMMENT ...
-Wconversion
SWAIV-DY-ZEI0 ...
WDTCON ..ttt

SWEBITOT Lttt
-Werror-implicit-function-declaration
SWEOrMAL .

SWIMPHICTE ..
-Wimplicit-function-declaration
-Wimplicit-int
-Winlineoccoovceeiinenne

-Wmissing-braces..........ccccceeeeeeunnnn.

-Wmissing-declarations...........ccccoooveviiiniiniiee i
-Wmissing-format-attributecccoociiniee .
-Wmissing-noreturn
-WMISSING-ProtOtYPeS. ...ccovvveeireee et
SWMUIIChAT .

-Wno-deprecated-declarations
-WNO-diV-DY-ZEr0......cooiiiiiiii e
SWNO-10NG-10NG i
SWNO-MUIICNAT ...

SWNONNUI e
-Wno-sign-compare
-Wpadded
SWPArentheSEScocvvviiiieee e
-Wpointer-arith...........ccooeeeriieen e
-Wredundant-decls......................

-WSEQUENCE-POINTeoiiiieiiiiieiiece e
B TAT £ 1 = Lo [0
-Wsign-compareccccevennnee

-Wstrict-prototypes
SWSWItCh ..
-Wsystem-headers
SWHraditionaleeeeeeeeeeceeee
-Witrigraphs
SWUNET ..
“Wuninitialized ...
~WUNKNOWN-Pragmascccveeererieruieesnireesnieessneens 22
-Wunreachable-code
-Wunused .
-WUNUSed-fuNCLioNooouieiiieiiiie e
-Wunused-label ...
-Wunused-parameter
-Wunused-valuecccccceuneen.

-Wunused-variable

SWWHE-SEINGS .vveeeiiieeiereeerie e
WWW AAAIESSvvviiiiiiiiieiieieieee e eeee s

-Xlinker

DS51686B-page 116

© 2009 Microchip Technology Inc.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

NOTES:

© 2009 Microchip Technology Inc. DS51686B-page 117

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA

Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

03/26/09

DS51686B-page 118

© 2009 Microchip Technology Inc.

	Preface
	Chapter 1. Language Specifics
	1.1 Introduction
	1.2 Highlights
	1.3 Overview
	1.4 File Naming Conventions
	1.5 Data Storage
	1.6 Predefined Macros
	1.7 Attributes and Pragmas
	1.8 Command Line Options
	1.9 Compiling a Single File on the Command Line
	1.10 Compiling Multiple Files on the Command Line
	1.11 Binary Constants

	Chapter 2. Library Environment
	2.1 Introduction
	2.2 Highlights
	2.3 Standard I/O
	2.4 Weak Functions
	2.5 “Helper” Header Files
	2.6 Multilibs

	Chapter 3. Interrupts
	3.1 Introduction
	3.2 Highlights
	3.3 Specifying an Interrupt Handler Function
	3.4 Associating a Handler Function with an Exception Vector
	3.5 Exception Handlers

	Chapter 4. Low-Level Processor Control
	4.1 Introduction
	4.2 Highlights
	4.3 Generic Processor Header File
	4.4 Processor Support Header Files
	4.5 Peripheral Library Functions
	4.6 Special Function Register Access
	4.7 CP0 Register Access
	4.8 Configuration Bit Access

	Chapter 5. Compiler Run-time Environment
	5.1 Introduction
	5.2 Highlights
	5.3 Register Conventions
	5.4 Stack Usage
	5.5 Heap Usage
	5.6 Function Calling Convention
	5.7 Start-up and Initialization
	5.8 Contents of the Default Linker Script
	5.9 RAM Functions

	Appendix A. Implementation Defined Behavior
	A.1 Introduction
	A.2 Highlights
	A.3 Overview
	A.4 Translation
	A.5 Environment
	A.6 Identifiers
	A.7 Characters
	A.8 Integers
	A.9 Floating-Point
	A.10 Arrays and Pointers
	A.11 Hints
	A.12 Structures, Unions, Enumerations, and Bit fields
	A.13 Qualifiers
	A.14 Declarators
	A.15 Statements
	A.16 Pre-Processing Directives
	A.17 Library Functions
	A.18 Architecture

	Appendix B. Open Source Licensing
	B.1 Introduction
	B.2 General Public License
	B.3 BSD License
	B.4 Sun Microsystems

	Index
	Worldwide Sales and Service

