N

MICROCHIP

32-Bit Language Tools
Libraries

88888888

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= ISO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQl, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip
Technology Germany Il GmbH & Co. & KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2007-2012, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.
ISBN: ISBN: 978-1-62076-498-5

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51685E-page 2

© 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Table of Contents
=Y - 1 5
Chapter 1. Library Overview
1.1 INtrodUCHION ... e 11
1.2 Start-up COdEe ..o 11
1.3 32-Bit Peripheral Librariesccooooiiiiiiii e 11
1.4 Standard C Libraries (with Math Functions)ccccoooiiiiiiiiiiiiiiiccins 11
Chapter 2. Standard C Libraries with Math Functions
P20 B 10 oY [T 4o) o PP 13
2.2 Using the Standard C Librariescccccueeeviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee e, 14
2.3 <assert.n> DiagnoStiCSuuiiiiiiiiiiiiie e 14
2.4 <ctype.h> Character Handlingooueriiiiiiiiiiiiieiieeeeeeeeeeeeeeeeee e 15
P IR =4 4 aTo T o bl = (o = PP 19
2.6 <float.h> Floating-Point Characteristicsccccvviiviiriiiiiiiiieieeeieeeeeeeeeee, 21
2.7 <limits.h> Implementation-Defined Limitsccccocmiiiiiiiiiiiiiiiiiiiiiierieeeee, 25
2.8 <locale.h> LoCaliZationeuueiiiiiiiiiiiiiiieiieeee ettt 27
2.9 <setimp.h> Non-Local JUMPSuuiiiiiiiiiiiiiiiiiiieiiieiieeeieeeeeee e 28
2.10 <signal.h> Signal Handlingeueiiiiiiiiiiiiiiieieeeeeeeeeee e 29
2.11 <stdarg.h> Variable Argument LiStScccoiiiiiiiiiiiiiiii e 32
2.12 <stddef.n> Common Definitionscccceeiiiiiiiie e 33
2.13 <stdio.h> Input and OUIPULeemiiiiiiiiiieeee e 34
2.14 <stdlib.h> Utility FUNCHONS ...ooiiieiiee e 56
2.15 <string.h> String FUNCHIONSoooiiii e 68
2.16 <time.h> Date and Time FUNCtiONS ... 76
2.17 <math.h> Mathematical FUNCtIONScccccviiiiiiiiiiiiieeeee e 82
2.18 <unistd.h> Miscellaneous FUNCIONS ... 96
Chapter 3. PIC32 DSP Library
K 20t I [Vi o Yo [1 T 1o] o TSP 99
3.2 Vector Math FUNCLIONSuuiiiiiiiiiiiiiiiiiiie e 102
3.3 Filtering FUNCLIONS ..o e e e 111
3.4 Frequency Domain Transform Functionsccccoiniiiiiiiiiiiiiieeeen, 116
3.5 Video Processing FUNCLIONScooviiiiiiiiiiii e 120
Chapter 4. PIC32 Debug-Support Library
A1 OVEIVIEW e e 125
4.2 Configuring Debug Input/Output for the target and toolcccccuvvvnnnnns 125
4.3 <sys/appio.h> PIC32 Debugging SUPPOItcoooiiimiiiiieiiiiiiiiiiieeee e 126

© 2007-2012 Microchip Technology Inc. DS51685E-page 3

32-Bit Language Tools Libraries

Appendix A. ASCIlI Character Set..........cccoiimmmmire s 129
Appendix B. Types, Constants, Functions and Macrosccccemrrmreemeenncnccninnnnn, 131
Appendix C. 16-Bit DSP Wrapper Functions ... 135
L@t I Vo) 1o o [1o i o [N 135
C.2 PIC32 DSP Wrapper Functions Listcccooeiiiii 135
C.3 Differences Between Wrapper Functions and dsPIC® DSP Library 136
g o = 137
Worldwide Sales and Service ... 150

DS51685E-page 4 © 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS

MICROCHIP LIBRARIES

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

document.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

For the most up-to-date information on development tools, see the MPLAB® IDE online help.
Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
32-bit libraries. Items discussed include:

Document Layout

Conventions Used in this Guide

Recommended Reading

The Microchip Web Site

Development Systems Customer Change Notification Service
Customer Support

DOCUMENT LAYOUT

This document describes how to use language tools to write code for 32-bit
applications. The document layout is as follows:

Chapter 1. Library Overview — gives an overview of libraries. Some are
described further in this document, while others are described in other documents
or online Help files.

Chapter 2. Standard C Libraries with Math Functions — lists the library
functions and macros for standard C operation.

Chapter 3. PIC32 DSP Library - lists the PIC32 DSP library functions, such as
vector operations, filters and transforms.

Appendix A. ASCII Character Set — ASCII Character Set.

Appendix B. Types, Constants, Functions and Macros — an alphabetical list of
types, constants, functions and macros.

Appendix C. 16-Bit DSP Wrapper Functions — discusses the PIC32 DSP
wrapper functions.

© 2007-2012 Microchip Technology Inc. DS51685E-page 5

www.microchip.com

32-Bit Language Tools Libraries

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

dialog

Description Represents Examples
Arial font:
Italic Referenced books MPLAB® IDE User’s Guide
Emphasized text ...Is the only compiler...
Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic with right A menu path File>Save
angle bracket
Bold A dialog button Click OK

A tab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Sample source code #define START
Filenames autoexec.bat
File paths c:\mccl18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants 0xFF, 'A’
Italic A variable argument file.o, where file can be

any valid filename

Square brackets []

Optional arguments

mpasmwin [options]
file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {01}

Ellipses...

Replaces repeated text

var name [,
var name...]

Represents code supplied by
user

void main (void)

{
}

DS51685E-page 6

© 2007-2012 Microchip Technology Inc.

Preface

RECOMMENDED READING

This documentation describes how to use the 32-bit language tools libraries. Other
useful documents are listed below. The following Microchip documents are available
and recommended as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

Device-Specific Documentation

The Microchip web site contains many documents that describe 16-bit device functions
and features. Among these are:

* Individual and family data sheets

» Family reference manuals

» Programmer’s reference manuals

MPLAB® XC32 C/C++ Compiler User’s Guide (DS51686)

Comprehensive guide that describes the operation and features of the Microchip 32-bit
C/C++ compiler for PIC32MX devices.

PIC32MX Configuration Settings

Lists the Configuration Bit Settings for the Microchip PIC32MX devices supported by
the MPLAB XC32 C/C++ compiler’s #pragma config directive.

C Standards Information

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. lts purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fifth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, Second Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

© 2007-2012 Microchip Technology Inc. DS51685E-page 7

32-Bit Language Tools Libraries

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

» Compilers — The latest information on Microchip C compilers and other language
tools. These include all MPLAB® C compilers; all MPLAB assemblers (including
MPASM™ assembler); all MPLAB linkers (including MPLINK™ object linker); and
all MPLAB librarians (including MPLIB™ object librarian).

* Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

* In-Circuit Debuggers — The latest information on the Microchip in-circuit
debuggers. These include MPLAB ICD 2 in-circuit debugger and PICkit™ 2 debug
express.

- MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 device programmer and the PICSTART® Plus, PICkit™ 1 and
PICkit™ 2 development programmers.

DS51685E-page 8 © 2007-2012 Microchip Technology Inc.

www.microchip.com
www.microchip.com

Preface

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

+ Field Application Engineer (FAE)

 Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.

REVISION HISTORY

Revision A (October 2007)

+ Initial release of this document.

Revision B (October 2008)

» Added Appendix C. PIC32 DSP Library

Revision C (February 2009)

* Incorporated name changes from MPLAB 32 C Compiler to 32-bit C Compiler.
» Add MIPS and review updates.

Revision D (July 2009)

» Moved PIC32 DSP Library from Appendix C to Chapter 3.
» Added Chapter 4. PIC32 Debug-Support Library.

Revision E (October 2012)

* Removed values from the function tables in Chapter 2. “Standard C Libraries
with Math Functions”.

© 2007-2012 Microchip Technology Inc. DS51685E-page 9

http://support.microchip.com

32-Bit Language Tools Libraries

NOTES:

DS51685E-page 10 © 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 1. Library Overview

1.1 INTRODUCTION

A library is a collection of functions grouped for reference and ease of linking.

111 C Code Applications

The 32-bit language tool libraries are included in the pic32mx\1ib subdirectory of the
MPLAB® XC32 C/C++ compiler for PIC32MX MCUs (formerly MPLAB C32) install
directory, which is by default:

C:\Program Files\Microchip\xc32\<version>\pic32mx\1lib

These libraries can be linked directly into an application with the 32-bit linker.

1.1.2 Chapter Organization

This chapter is organized as follows:

+ Start-up Code
» 32-Bit Peripheral Libraries
+ Standard C Libraries (with Math Functions)

1.2 START-UP CODE

In order to initialize variables in data memory, the linker creates a data initialization
image. This image must be copied into RAM at start-up, before the application proper
takes control. Initialization of the runtime environment is performed by start-up code in
crt0.o. Details of the initialization process are described in Section 5.7 Start-up and
Initialization in the MPLAB® XC32 C/C++ Compiler User’s Guide (DS51686).

1.3 32-BIT PERIPHERAL LIBRARIES

The 32-bit software and hardware peripheral libraries provide functions and macros for
setting up and controlling the 32-bit peripherals. These libraries are processor-specific
and of the form 1ibmchp peripheral Device.a, Where Device is the 32-bit device
number.

1.4 STANDARD C LIBRARIES (WITH MATH FUNCTIONS)

A complete set of ANSI-89 conforming libraries are provided. The standard C library
fles are 1ibc.a, libe.a, and libm.a.

A typical C application will require all three libraries, these are linked in by default and
do not need to be specified by the user.

© 2007-2012 Microchip Technology Inc. DS51685E-page 11

32-Bit Language Tools Libraries

NOTES:

DS51685E-page 12 © 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 2. Standard C Libraries with Math Functions

21 INTRODUCTION

Standard ANSI C library functions are contained in the libraries 1ibc.a and 1ibgcc. a.
Multiple versions of these libraries exist, each compiled with different compilation
options. They are intended to match closely with a subset of the build options used to
compile your application. The compilation environment will select the library that is
most appropriate for the selected build options.

The available libraries have been optimized for: speed, size, integer arithmetic only and
MIPS16® mode.

211 C Code Applications

The 32-bit C compiler directory contains a library and include file subdirectory that is
automatically searched by the tool chain. For a full install of the compiler, the default
install directory is c: \Program Files\Microchip\XC32.

21.2 Chapter Organization

This chapter is organized as follows:

+ Using the Standard C Libraries

+ <assert.h> Diagnostics

» <ctype.h> Character Handling

» <errno.h> Errors

» <float.h> Floating-Point Characteristics
* <limits.h> Implementation-Defined Limits
+ <locale.h> Localization

+ <math.h> Mathematical Functions

+ <setjmp.h> Non-Local Jumps

+ <signal.h> Signal Handling
 <stdarg.h> Variable Argument Lists

+ <stddef.h> Common Definitions

+ <stdio.h> Input and Output

+ <stdlib.h> Utility Functions

* <string.h> String Functions

+ <time.h> Date and Time Functions

+ <unistd.h> Miscellaneous Functions

© 2007-2012 Microchip Technology Inc. DS51685E-page 13

32-Bit Language Tools Libraries

2.2

2.3

USING THE STANDARD C LIBRARIES

Building an application that utilizes the standard C libraries requires two types of files,
header files and library files.

2.21 Header Files

All standard C library entities are declared or defined in one or more standard headers
(See list in Section 2.1.2 “Chapter Organization”.) To make use of a library entity in
a program, write an include directive that names the relevant standard header.

The contents of a standard header is included by naming it in an include directive, as in:
#include <stdio.h> /* include I/0O facilities */

The standard headers can be included in any order. Do not include a standard header
within a declaration. Do not define macros that have the same names as keywords
before including a standard header.

2.2.2 Library Files

The archived library files contain all the individual object files for each library function.

When linking an application, the library file must be provided as an input to the linker
(using the --1ibrary or -1 linker option or by specifying them on the command line)
such that the functions used by the application may be linked into the application.
Library linking is order dependent. A library must be required at the inclusion point for
it to be used.

A typical C application will require three library files: 1ibc.a, 1ibm.a, and libe.a.
These libraries will be included automatically if linking is performed using the 32-bit
compiler.

Note: Some standard library functions require a heap. These include the standard
I/0O functions that open files and the memory allocation functions. Refer to
Section 7.7 of the MPLAB® XC32 C/C++ Compiler User’s Guide
(DS51686).

<ASSERT.H> DIAGNOSTICS

The header file assert.h consists of a single macro that is useful for debugging logic
errors in programs. By using the assert statement in critical locations where certain
conditions should be true, the logic of the program may be tested.

Assertion testing may be turned off without removing the code by defining NDEBUG
before including <assert.h>. If the macro NDEBUG is defined, assert () is ignored and
no code is generated.

assert

Description: If the expression is false, an assertion message is printed to stderr and the
program is aborted.

Include: <assert.h>

Prototype: void assert (int expression);

Argument: expression The expression to test.

Remarks: The expression evaluates to zero or non-zero. If zero, the assertion fails a

message is printed to stderr and abort () is called which will terminate
execution. The message includes the source file name (_ FILE), the
source line number (__LINE), the expression being evaluated and the
message.

If the macro NDEBUG is defined assert () will do nothing.

assert () is defined as a C macro.

DS51685E-page 14

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

<CTYPE.H> CHARACTER HANDLING

The header file ctype.h consists of functions that are useful for classifying and
mapping characters. Characters are interpreted according to the Standard C locale.

Use of any one of these functions will import 257 bytes worth of data.

isalnum

Description: Tests for an alphanumeric character.
Include: <ctype.h>

Prototype: int isalnum(int c);
Argument: c The character to test.

Return Value:

Returns a non-zero integer value if the character is alphanumeric, otherwise,
returns a zero.

Remarks: Alphanumeric characters are included within the ranges A-Z, a-z or 0-9.
isalpha

Description: Tests for an alphabetic character.

Include: <ctype.h>

Prototype: int isalpha(int c¢);

Argument: c The character to test.

Return Value:

Returns a non-zero integer value if the character is alphabetic, otherwise,
returns zero.

Remarks: Alphabetic characters are included within the ranges A-Z or a-z.
isascii

Description: Tests for an ascii character.

Include: <ctype.h>

Prototype: int isascii(int c);

Argument: c The character to test.

Return Value:

Returns a non-zero integer value if the character is a member of the ascii
character set, 0x00 to 0x7F inclusive.

iscntrl

Description: Tests for a control character.
Include: <ctype.h>

Prototype: int iscntrl (int c);
Argument: c character to test.

Return Value:

Remarks:

Returns a non-zero integer value if the character is a control character,
otherwise, returns zero.

A character is considered to be a control character if its ASCII value is in the
range 0x00 to 0x1F inclusive, or 0x7F.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 15

32-Bit Language Tools Libraries

isdigit

Description: Tests for a decimal digit.
Include: <ctype.h>

Prototype: int isdigit(int c);
Argument: c character to test.

Return Value:

Returns a non-zero integer value if the character is a digit, otherwise, returns
zero.

Remarks: A character is considered to be a digit character if it is in the range of 0-9.
isgraph

Description: Tests for a graphical character.

Include: <ctype.h>

Prototype: int isgraph (int ¢);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is a graphical character,
otherwise, returns zero.

Remarks: A character is considered to be a graphical character if it is any printable
character except a space.

islower

Description: Tests for a lowercase alphabetic character.

Include: <ctype.h>

Prototype: int islower (int c);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is a lowercase alphabetic
character, otherwise, returns zero.

Remarks: A character is considered to be a lowercase alphabetic character if it is in the
range of a-z.

isprint

Description: Tests for a printable character (includes a space).

Include: <ctype.h>

Prototype: int isprint (int ¢);

Argument: c character to test

Return Value:

Remarks:

Returns a non-zero integer value if the character is printable, otherwise,
returns zero.

A character is considered to be a printable character if it is in the range 0x20
to 0x7e inclusive.

DS51685E-page 16

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

ispunct

Description: Tests for a punctuation character.
Include: <ctype.h>

Prototype: int ispunct (int ¢);
Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is a punctuation character,
otherwise, returns zero.

Remarks: A character is considered to be a punctuation character if it is a printable
character which is neither a space nor an alphanumeric character.
Punctuation characters consist of the following:

I"#$%&'();<=>2@[\]*+,-./:*_{|}~

isspace

Description: Tests for a white-space character.

Include: <ctype.h>

Prototype: int isspace (int ¢);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is a white-space character,
otherwise, returns zero.

Remarks: A character is considered to be a white-space character if it is one of the
following:
space (), form feed (\f), newline (\n), carriage return (\r), horizontal tab (\t), or
vertical tab (\v).

isupper

Description: Tests for an uppercase letter.

Include: <ctype.h>

Prototype: int isupper (int ¢);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is an uppercase alphabetic
character, otherwise, returns zero.

Remarks: A character is considered to be an uppercase alphabetic character if it is in
the range of A-Z.

isxdigit

Description: Tests for a hexadecimal digit.

Include: <ctype.h>

Prototype: int isxdigit (int c¢);

Argument: c character to test

Return Value:

Remarks:

Returns a non-zero integer value if the character is a hexadecimal digit,
otherwise, returns zero.

A character is considered to be a hexadecimal digit character if it is in the
range of 0-9, A-F, or a-f.

Note: The list does not include the leading 0x because 0x is the prefix for a
hexadecimal number but is not an actual hexadecimal digit.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 17

32-Bit Language Tools Libraries

tolower

Description: Converts a character to a lowercase alphabetical character.
Include: <ctype.h>

Prototype: int tolower (int c¢);

Argument: c The character to convert to lowercase.

Return Value:

Returns the corresponding lowercase alphabetical character if the argument
was originally uppercase, otherwise, returns the original character.

Remarks: Only uppercase alphabetical characters may be converted to lowercase.
tolower

Description: Converts a character to a lowercase alphabetical character.

Include: <ctype.h>

Prototype: int tolower (int c¢);

Argument: c The character to convert to lowercase.

Return Value:

Returns the corresponding lowercase alphabetical character if the argument
was originally uppercase, otherwise, returns the original character.

Remarks: Only uppercase alphabetical characters may be converted to lowercase.
toupper

Description: Converts a character to an uppercase alphabetical character.

Include: <ctype.h>

Prototype: int toupper (int ¢);

Argument: c The character to convert to uppercase.

Return Value:

Remarks:

Returns the corresponding uppercase alphabetical character if the argument
was originally lowercase, otherwise, returns the original character.

Only lowercase alphabetical characters may be converted to uppercase.

DS51685E-page 18

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

<ERRNO.H> ERRORS

The header file errno.h consists of macros that provide error codes that are reported
by certain library functions (see individual functions). The variable errno may evaluate
to any value greater than zero. To test if a library function encounters an error, the pro-
gram should store the value zero in errno immediately before calling the library func-
tion. The value should be checked before another function call which may change the
value. At program start-up, errno is zero. Library functions will never set errno to zero.

The following section identifies error values that are returned by the libraries. The
header file defines errors that are not generated by the libraries.

251 Constants
EBADF
Description: Represents a bad file number.
Include: <errno.h>
Remarks: EBADF represents a bad file descriptor number. File descriptors are used by
low-level IO library functions such as write (), which are not provided by
default. For more information on library 1/0 functions, see
Section 2.13.2 “Customizing STDIO”.
EDOM
Description: Represents a domain error.
Include: <errno.h>
Remarks: EDOM represents a domain error, which occurs when an input argument is
outside the domain for which the function is defined.
EINVAL
Description: Represents an invalid argument.
Include: <errno.h>
Remarks: EINVAL represents an invalid argument to fopen (), which is not provided
by default. For more information on library 1/O functions, see
Section 2.13.2 “Customizing STDIO”.
ENOMEM
Description: An error indicating that there is no more memory available.
Include: <errno.h>
Remarks: ENOMEM is returned from the low-level function when there is no more
memory. Typically this in response to a heap allocation request.
ERANGE
Description: Represents an overflow or underflow error.
Include: <errno.h>
Remarks: ERANGE represents an overflow or underflow error, which occurs when a

result is too large or too small to be stored.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 19

32-Bit Language Tools Libraries

2.5.2 Functions and Macros

errno

Description: Contains the value of an error when an error occurs in a function.
Include: <errno.h>

Remarks: The variable errno is set to a non-zero integer value by a library function

when an error occurs. At program start-up, errno is set to zero. Errno
should be reset to zero prior to calling a function that sets it.

DS51685E-page 20 © 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.6 <FLOAT.H> FLOATING-POINT CHARACTERISTICS

The header file f1oat.h consists of macros that specify various properties of
floating-point types. These properties include the number of significant figures, digits,
size limits and what rounding mode is used. For values, refer to the header file.

DBL_DIG

Description: Number of decimal digits of precision in a double precision floating-point
value

Include: <float.h>

DBL_EPSILON

Description: The difference between 1.0 and the next larger representable double
precision floating-point value

Include: <float.h>

DBL_MANT _DIG

Description: Number of base-FLT RADIX digits in a double precision floating-point
significand

Include: <float.h>

DBL_MAX

Description: Maximum finite double precision floating-point value

Include: <float.h>

DBL_MAX_10_EXP

Description: Maximum integer value for a double precision floating-point exponent in base

10

Include: <float.h>

DBL_MAX_EXP

Description: Maximum integer value for a double precision floating-point exponent in base
FLT RADIX

Include: <float.h>

DBL_MIN

Description: Minimum double precision floating-point value

Include: <float.h>

DBL_MIN_10_EXP

Description: Minimum negative integer value for a double precision floating-point exponent
in base 10

Include: <float.h>

© 2007-2012 Microchip Technology Inc. DS51685E-page 21

32-Bit Language Tools Libraries

DBL_MIN_EXP

Description: Minimum negative integer value for a double precision floating-point exponent
in base FLT RADIX

Include: <float.h>

FLT DIG

Description: Number of decimal digits of precision in a single precision floating-point value
Include: <float.h>

FLT_EPSILON

Description: The difference between 1.0 and the next larger representable single precision
floating-point value

Include: <float.h>

FLT_MANT_DIG

Description: Number of base-FLT RADIX digits in a single precision floating-point
significand
Include: <float.h>

FLT_MAX

Description: Maximum finite single precision floating-point value
Include: <float.h>

FLT_MAX_10_EXP

Description: Maximum integer value for a single precision floating-point exponent in base

10

Include: <float.h>

FLT_MAX_EXP

Description: Maximum integer value for a single precision floating-point exponent in base
FLT RADIX

Include: <float.h>

FLT_MIN

Description: Minimum single precision floating-point value
Include: <float.h>

FLT_MIN_10_EXP

Description: Minimum negative integer value for a single precision floating-point exponent
in base 10

Include: <float.h>

DS51685E-page 22

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

FLT_MIN_EXP

Description: Minimum negative integer value for a single precision floating-point exponent
in base FLT RADIX

Include: <float.h>

FLT_RADIX

Description: Radix of exponent representation

Include: <float.h>

Remarks: The base representation of the exponent is base-2 or binary.

FLT_ROUNDS

Description: Represents the rounding mode for floating-point operations

Include: <float.h>

Remarks: Rounds to the nearest representable value

LDBL_DIG

Description: Number of decimal digits of precision in a long double precision floating-point
value

Include: <float.h>

LDBL_EPSILON

Description: The difference between 1.0 and the next larger representable long double
precision floating-point value

Include: <float.h>

LDBL_MANT _DIG

Description: Number of base-FLT RADIX digits in a long double precision floating-point

significand
Include: <float.h>
LDBL_MAX

Description: Maximum finite long double precision floating-point value
Include: <float.h>

LDBL_MAX_10_EXP

Description: Maximum integer value for a long double precision floating-point exponent in
base 10

Include: <float.h>

© 2007-2012 Microchip Technology Inc. DS51685E-page 23

32-Bit Language Tools Libraries

LDBL_MAX_EXP

Description: Maximum integer value for a long double precision floating-point exponent in
base FLT RADIX

Include: <float.h>

LDBL_MIN

Description: Minimum long double precision floating-point value

Include: <float.h>

LDBL_MIN_10_EXP

Description: Minimum negative integer value for a long double precision floating-point
exponent in base 10

Include: <float.h>

LDBL_MIN_EXP

Description: Minimum negative integer value for a long double precision floating-point
exponent in base FLT RADIX

Include: <float.h>

DS51685E-page 24 © 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.7 <LIMITS.H> IMPLEMENTATION-DEFINED LIMITS

The header file 1imits.h consists of macros that define the minimum and maximum
values of integer types. Each of these macros can be used in #1if preprocessing
directives. For values, refer to the header file.

CHAR_BIT

Description: Number of bits to represent type char

Include: <limits.h>

CHAR_MAX

Description: Maximum value of a char
Include: <limits.h>

CHAR_MIN

Description: Minimum value of a char
Include: <limits.h>

INT_MAX

Description: Maximum value of an int
Include: <limits.h>

INT_MIN

Description: Minimum value of an int
Include: <limits.h>
LLONG_MAX

Description: Maximum value of a 1ong long int
Include: <limits.h>
LLONG_MIN

Description: Minimum value of a long long int
Include: <limits.h>

LONG_MAX

Description: Maximum value of a long int
Include: <limits.h>

LONG_MIN

Description: Minimum value of a long int
Include: <limits.h>

© 2007-2012 Microchip Technology Inc. DS51685E-page 25

32-Bit Language Tools Libraries

MB_LEN_MAX
Description: Maximum number of bytes in a multibyte character
Include: <limits.h>

SCHAR_MAX

Description: Maximum value of a signed char

Include: <limits.h>

SCHAR_MIN

Description: Minimum value of a signed char

Include: <limits.h>

SHRT_MAX

Description: Maximum value of a short int

Include: <limits.h>

SHRT_MIN

Description: Minimum value of a short int

Include: <limits.h>

UCHAR_MAX

Description: Maximum value of an unsigned char

Include: <limits.h>

UINT_MAX

Description: Maximum value of an unsigned int

Include: <limits.h>

ULLONG_MAX

Description: Maximum value of a long long unsigned int
Include: <limits.h>

ULONG_MAX

Description: Maximum value of a long unsigned int
Include: <limits.h>

USHRT_MAX

Description: Maximum value of an unsigned short int
Include: <limits.h>

DS51685E-page 26 © 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.8 <LOCALE.H>LOCALIZATION

This compiler defaults to the C locale and does not support any other locales, therefore
it does not support the header file 1ocale.h. The following would normally be found in
this file:

* struct lconv
« LC_ALL

+ LC_COLLATE

« LC_CTYPE

¢ LC_MONETARY
¢ LC_NUMERIC

« LC_TIME

e localeconv

* setlocale

© 2007-2012 Microchip Technology Inc. DS51685E-page 27

32-Bit Language Tools Libraries

29 <SETJMP.H> NON-LOCAL JUMPS

The header file setjmp.h consists of a type and two functions that allow control trans-
fers to occur that bypass the normal function call and return process.

291 Types

jmp_buf

Description: A type thatis an array used by setjmp and longjmp to save and restore the
program environment.

Include: <setjmp.h>
Prototype: typedef int jmp buf[JB LEN];
Remarks: _JB_LEN is defined as 24.

29.2 Functions

longjmp

Description: A function that restores the environment saved by setjmp.
Include: <setjmp.h>
Prototype: void longjmp (jmp buf env, int wval);
Arguments: env variable where environment is stored
val value to be substituted for the result of the original setjmp call.

Remarks: The value parameter val should be non-zero, a val of zero will cause 1 to
be substituted. If 1ongjmp is invoked from a nested signal handler (that is,
invoked as a result of a signal raised during the handling of another signal), the
behavior is undefined.

setjmp

Description: A function that saves the current state of the program for later use by
longjmp.

Include: <setjmp.h>

Prototype: int setjmp (jmp buf env)

Argument: env variable where environment is stored

Return Value: If the return is from a direct call, set jmp returns zero. If the return is from a
call to 1ongjmp, setjmp returns a non-zero value.
Note: If the argument val from longjmp is 0, setjmp returns 1.

DS51685E-page 28 © 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

210 <SIGNAL.H> SIGNAL HANDLING

The header file signal.h consists of a type, several macros and two functions that
specify how the program handles signals while it is executing. A signal is a condition
that may be reported during the program execution. Signals are synchronous, occur-
ring under software control via the raise function. In a hosted environment, a signal
may be raised in response to various events (control-C being pressed or resizing an
X11 window). In the embedded world, signals are not tied to any specific hardware
feature.

By default the 32-bit C compiler does not constitute a hosted environment, and as such
there are no signal handling facilities provided. An OS or RTOS may provide these fea-
tures. Cursory documentation is provided here for information purposes only.

A signal may be handled by:

+ Default handling (s1G_DrL). The signal is treated as a fatal error and execution
stops.

+ Ignoring the signal (s1¢_16N). The signal is ignored and control is returned to the
user application.

» Handling the signal with a function designated via signal.
By default all signals are handled by the default handler, which is identified by s1G_DFL.

The type sig_atomic_t is an integer type that the program access atomically. When
this type is used with the keyword volatile, the signal handler can share the data
objects with the rest of the program.

2101 Types

sig_atomic_t

Description: A type used by a signal handler
Include: <signal.h>
Prototype: typedef int sig atomic_t;

2.10.2 Constants
SIG_DFL

Description: Used as the second argument and/or the return value for signal to specify
that the default handler should be used for a specific signal.

Include: <signal.h>

SIG_ERR

Description: Used as the return value for signal when it cannot complete a request due to
an error.

Include: <signal.h>

SIG_IGN

Description: Used as the second argument and/or the return value for signal to specify
that the signal should be ignored.

Include: <signal.h>

© 2007-2012 Microchip Technology Inc. DS51685E-page 29

32-Bit Language Tools Libraries

SIGABRT

Description: Name for the abnormal termination signal.

Include: <signal.h>

Prototype: #define SIGABRT

Remarks: SIGABRT represents an abnormal termination signal and is used in conjunction
with raise or signal.

SIGFPE

Description: Signals floating-point error such as for division by zero or result out of range.

Include: <signal.h>

Prototype: #define SIGFPE

Remarks: SIGFPE is used as an argument for raise and/or signal.

SIGILL

Description: Signals illegal instruction.

Include: <signal.h>

Prototype: #define SIGILL

Remarks: SIGILL is used as an argument for raise and/or signal.

SIGINT

Description: Interrupt signal.

Include: <signal.h>

Prototype: #define SIGINT

Remarks: SIGINT is used as an argument for raise and/or signal.

SIGSEGV

Description: Signals invalid access to storage.

Include: <signal.h>

Prototype: i#define SIGSEGV

Remarks: SIGSEGV is used as an argument for raise and/or signal.

SIGTERM

Description: Signals a termination request

Include: <signal.h>

Prototype: i#define SIGTERM

Remarks: SIGTERM is used as an argument for raise and/or signal.

DS51685E-page 30

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.10.3 Functions and Macros

raise

Description: Reports a synchronous signal.
Include: <signal.h>

Prototype: int raise(int sig);
Argument: sig signal name

Return Value: Returns a 0 if successful, otherwise, returns a non-zero value.

Remarks: raise should send the signal identified by sig to the executing program,
however the default implementation always returns SIG_ERR.

signal

Description: Controls interrupt signal handling.

Include: <signal.h>

Prototype: void (*signal (int sig, void(*func) (int))) (int);

Arguments: sig signal name
func function to be executed
Return Value: Returns the previous value of func Or SIG_ERR.

Remarks: signal should set the signal handler identified by sig to the func
specified, however the default implementation always returns SIG_ERR.

© 2007-2012 Microchip Technology Inc. DS51685E-page 31

32-Bit Language Tools Libraries

<STDARG.H> VARIABLE ARGUMENT LISTS

The header file stdarg.h supports functions with variable argument lists. This allows
functions to have arguments without corresponding parameter declarations. There
must be at least one named argument. The variable arguments are represented by
ellipses (...). An object of type va_1ist must be declared inside the function to hold the
arguments. va_start will initialize the variable to an argument list, va_arg will access
the argument list, and va_end will end the use of the argument.

va_arg

Description: Gets the current argument.

Include: <stdarg.h>

Prototype: #define va_arg(va_list ap, T)
Argument: ap pointer to list of arguments

Return Value:

T type of argument to be retrieved
Returns the current argument as type T

Remarks: va_start must be called before va_arg.

va_end

Description: Ends the use of ap.

Include: <stdarg.h>

Prototype: #define va end(va_list ap)

Argument: ap pointer to list of arguments

Remarks: After a call to va_end, the argument list pointer ap is considered to be invalid.
Further calls to va_arg should not be made until the next va_start.

va_list

Description: The type va_1ist declares a variable that will refer to each argument in a
variable-length argument list.

Include: <stdarg.h>

va_start

Description: Sets the argument pointer ap to first optional argument in the variable-length
argument list.

Include: <stdarg.h>

Prototype: i#define va start(va list ap, last arg)

Argument: ap pointer to list of arguments
last_arg last named argument before the optional (ellipsis) arguments

DS51685E-page 32

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

212 <STDDEF.H> COMMON DEFINITIONS

The header file stddef . h consists of several types and macros that are of general use
in programs.

2121 Constants
NULL

Description: The value of a Null Pointer constant.
Include: <stddef.h>

2.12.2 Functions and Macros

offsetof

Description: Gives the offset of a structure member from the beginning of the structure.
Include: <stddef.h>

Prototype: #define offsetof (T, mbr)

Arguments: T name of structure
mbr name of member in structure T

Return Value: Returns the offset in bytes of the specified member (mbr) from the beginning
of the structure.

Remarks: The macro of fsetof is undefined for bit fields. An error message will occur if
bit fields are used.

ptrdiff_t

Description: The type of the result of subtracting two pointers.
Include: <stddef.h>

size_t

Description: The type of the result of the sizeof operator.
Include: <stddef.h>

wchar_t

Description: A type that holds a wide character value.
Include: <stddef.h>

© 2007-2012 Microchip Technology Inc. DS51685E-page 33

32-Bit Language Tools Libraries

2.13 <STDIO.H> INPUT AND OUTPUT

The header file stdio.h consists of types, macros and functions that provide support
to perform input and output operations on files and streams. When a file is opened it is
associated with a stream. A stream is a pipeline for the flow of data into and out of files.
Because different systems use different properties, the stream provides more uniform
properties to allow reading and writing of the files.

Streams can be text streams or binary streams. Text streams consist of a sequence of
characters divided into lines. Each line is terminated with a newline (\n) character. The
characters may be altered in their internal representation, particularly in regards to line
endings. Binary streams consist of sequences of bytes of information. The bytes trans-
mitted to the binary stream are not altered. There is no concept of lines. The file is just
a stream of bytes.

At start-up three streams are automatically opened: stdin, stdout, and stderr. stdin
provides a stream for standard input, stdout is standard output and stderr is the stan-
dard error. Additional streams may be created with the fopen function. See fopen for
the different types of file access that are permitted. These access types are used by
fopen and freopen.

The type FILE is used to store information about each opened file stream. It includes
such things as error indicators, end-of-file indicators, file position indicators, and other
internal status information needed to control a stream. Many functions in the stdio use
FILE as an argument.

There are three types of buffering: unbuffered, line buffered and fully buffered. Unbuf-
fered means a character or byte is transferred one at a time. Line buffered collects and
transfers an entire line at a time (i.e., the newline character indicates the end of a line).
Fully buffered allows blocks of an arbitrary size to be transmitted. The functions setbuf
and setvbuf control file buffering.

The stdio.h file also contains functions that use input and output formats. The input
formats, or scan formats, are used for reading data. Their descriptions can be found
under scanf, but they are also used by fscanf and sscanf. The output formats, or print
formats, are used for writing data. Their descriptions can be found under printf.
These print formats are also used by fprintf, sprintf, vfprintf, vprintf and
vsprintf.

2.13.1 Compiler Options

Certain compiler options may affect how standard 1/O performs. In an effort to provide
a more tailored version of the formatted I/O routines, the tool chain may convert a call
to a printf or scanf style function to a different call. The options are summarized
below:

* The -mno-float option, when enabled, will force linking of standard C libraries
that do not support floating-point operations. The functionality is the same as that
of the C standard forms, minus the support for floating-point output. Should a
floating-point format specifier be used, the floating-point limited versions of the
function will consume the value and output the text : (f1oat) to the output stream.

* —-msingle-float Will cause the compiler to generate calls to formatted 1/0
routines that support double as if it were a float type.

Mixing modules compiled with these options may result in incorrect execution if large
and small double-sized data is shared across modules.

DS51685E-page 34

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

213.2 Customizing STDIO

The standard 1/O relies on helper functions. There are two modes of operation, Simple
mode and Full mode. Simple mode supports one character at a time 1/O through the
standard streams: stdout, stdin, and stderr. Full mode supports the complete set of
standard I/O operations, such as files opened via the fopen () function.

Simple mode uses four helper functions for I/O. These are: mon puts (),
_mon_write(), mon putc(),and mon getc (). Default operation for these functions
are defined in Section 2.13.3 “STDIO Functions”. The default operation may be
over-ridden by defining custom versions of these functions.

Full mode uses additional helper functions. These are: close (), 1ink (), 1seek (),
open (), read (), unlink () and write (). Default versions of these functions are not
provided, however the required prototypes and operation are discussed in

Section 2.13.3 “STDIO Functions”.

2.13.3 STDIO Functions

Most of the following prototypes require inclusion of stdio.h, however some require
unistd.h (see Section 2.18 “<unistd.h> Miscellaneous Functions”) or fcnt1.h,
particularly those concerned with the low-level implementation of the full STDIO mode.
For values, refer to the header file.

213.4 Types

FILE

Description: Stores information for a file stream.

Include: <stdio.h>

fpos_t

Description: Type of a variable used to store a file position.
Include: <stdio.h>

size_t

Description: The result type of the sizeof operator.
Include: <stdio.h>

2.13.5 Constants
_IOFBF

Description: Indicates full buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.
_IOLBF

Description: Indicates line buffering.
Include: <stdio.h>

Remarks: Used by the function setvbuf.

© 2007-2012 Microchip Technology Inc. DS51685E-page 35

32-Bit Language Tools Libraries

_IONBF
Description: Indicates no buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.

BUFSIZ

Description: Defines the size of the buffer used by the function setbuf.
Include: <stdio.h>

EOF

Description: A negative number indicating the end-of-file has been reached or to report an
error condition.

Include: <stdio.h>

Remarks: If an end-of-file is encountered, the end-of-file indicator is set. If an error condi-
tion is encountered, the error indicator is set. Error conditions include write
errors and input or read errors.

FILENAME_MAX

Description: Maximum number of characters in a filename including the null terminator.

Include: <stdio.h>

FOPEN_MAX

Description: Defines the maximum number of files that can be simultaneously open
Include: <stdio.h>

Remarks: stderr, stdin and stdout are included in the FOPEN_ MAX count.
L_tmpnam

Description: Defines the number of characters for the longest temporary filename created
by the function tmpnam.

Include: <stdio.h>

Remarks: L tmpnam is used to define the size of the array used by tmpnam.
NULL

Description: The value of a Null Pointer constant

Include: <stdio.h>

SEEK_CUR

Description: Indicates that fseek should seek from the current position of the file pointer
Include: <stdio.h>

DS51685E-page 36 © 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

Return Value:

Remarks:

SEEK_END

Description: Indicates that £seek should seek from the end of the file.
Include: <stdio.h>

SEEK_SET

Description: Indicates that £seek should seek from the beginning of the file.
Include: <stdio.h>

stderr

Description: File pointer to the standard error stream.

Include: <stdio.h>

stdin

Description: File pointer to the standard input stream.

Include: <stdio.h>

stdout

Description: File pointer to the standard output stream.

Include: <stdio.h>

TMP_MAX

Description: The maximum number of unique filenames the function tmpnam can generate.
Include: <stdio.h>

213.6 Functions and Macros

_mon_getc

Description: Reads the next character from stdin.

Include: None.

Prototype: int mon getc(int canblock);

Argument: canblock non-zero to indicate that the function should block

Returns the next character from the FILE associated with stdin. -1 is
returned to indicate end-of-file.

This function as provided always returns -1. This function can be replaced
with one that reads from a UART or other input device.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 37

32-Bit Language Tools Libraries

_mon_putc

Description: Writes a character to stdout.

Include: None.

Prototype: void mon putc(char c);

Argument: c character to be written

Return Value: Writes a character to the FILE associated with stdout.

Remarks: This function as provided always writes to UART 2 and assumes that the

UART has already been initialized. This function can be replaced with one
that writes to another UART or other output device.

asprintf
Description: Prints formatted text to an allocated string.
Prototype: int asprintf (char **sp, const char *format, ...);
Arguments: sp pointer to the allocated string
format format control string

optional arguments

Return Value: Returns the number of characters stored in s excluding the terminating null
character. A pointer to the allocated string is written to the first argument. If the
memory allocation fails, -1 is returned by the function, and null is written to the
String Pointer.

Remarks: The String Pointer should be passed to free to release the allocated memory
when it is no longer needed.

clearerr

Description: Defined as a function-like macro in the header file.
Resets the error indictor for the stream.

Include: <stdio.h>
Prototype: void clearerr (FILE *stream);
Argument: stream stream to reset error indicators

Remarks: The function clears the end-of-file and error indicators for the given stream (i.e.,
feof and ferror will return false after the function clearerr is called).

fclose

Description: Close a stream.

Include: <stdio.h>

Prototype: int fclose(FILE *stream) ;
Argument: stream pointer to the stream to close

Return Value: Returns 0 if successful, otherwise, returns EOF if any errors were detected.

Remarks: fclose writes any buffered output to the file. fclose calls close, which is
not provided by default.

DS51685E-page 38

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

feof

Description: Defined as a function-like macro in the header file.
Tests for end-of-file.

Include: <stdio.h>

Prototype: int feof (FILE *stream);

Argument: stream stream to check for end-of-file

Return Value:

Returns non-zero if stream is at the end-of-file, otherwise, returns zero.

ferror

Description: Defined as a function-like macro in the header file.
Tests if error indicator is set.

Include: <stdio.h>

Prototype: int ferror (FILE *stream) ;

Argument: stream stream to check for error indicator
stream pointer to FILE structure

Return Value:

Returns a non-zero value if error indicator is set, otherwise, returns a zero.

fflush

Description: Flushes the buffer in the specified stream causing all buffer 10 to be
transferred.

Include: <stdio.h>

Prototype: int fflush(FILE *stream) ;

Argument: stream stream to flush

Return Value:

Returns EOF if a write error occurs, otherwise, returns zero for success.

Remarks: If stream is a Null Pointer, all output buffers are written to files. ££1ush has no
effect on an unbuffered stream. This function requires 1seek in full mode,
which is not provided by default.

fgetc

Description: Get a character from a stream

Include: <stdio.h>

Prototype: int fgetc(FILE *stream) ;

Argument: stream pointer to the open stream

Return Value:

Remarks:

Returns the character read or EOF if a read error occurs or end-of-file is
reached.

The function reads the next character from the input stream, advances the
file-position indicator and returns the character as an unsigned char
converted to an int.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 39

32-Bit Language Tools Libraries

fgetpos
Description: Gets the stream'’s file position.
Include: <stdio.h>
Prototype: int fgetpos (FILE *stream, fpos_t *pos);
Arguments: stream target stream
pos position-indicator storage

Return Value:

Returns 0 if successful, otherwise, returns a non-zero value.

Remarks: The function stores the file-position indicator for the given stream in *pos if
successful, otherwise, fgetpos sets errno.

fgets

Description: Get a string from a stream

Include: <stdio.h>

Prototype: char *fgets(char *s, int n, FILE *stream);

Arguments: s pointer to the storage string
n maximum number of characters to read

Return Value:

Remarks:

stream pointer to the open stream.

Returns a pointer to the string s if successful, otherwise, returns a Null
Pointer.

The function reads characters from the input stream and stores them into the
string pointed to by s until it has read n-1 characters, stores a newline charac-
ter or sets the end-of-file or error indicators. If any characters were stored, a
null character is stored immediately after the last read character in the next
element of the array. If fgets sets the error indicator, the array contents are
indeterminate.

DS51685E-page 40

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

fopen
Description: Opens a file.
Include: <stdio.h>
Prototype: FILE *fopen (const char *filename, const char *mode);
Arguments: filename name of the file
mode access mode permitted

Return Value:

Returns a pointer to the open stream. If the function fails a Null Pointer is
returned.

Remarks: Following are the modes of file access:
r opens an existing text file for reading
W opens an empty text file for writing. (An existing file will be
overwritten.)
a opens a text file for appending. (A file is created if it does not
exist.)
rb opens an existing binary file for reading.
wb opens an empty binary file for writing. (An existing file will be
overwritten.)
ab opens a binary file for appending. (A file is created if it does not
exist.)
r+ opens an existing text file for reading and writing.
W+ opens an empty text file for reading and writing. (An existing
file will be overwritten.)
a+ opens a text file for reading and appending. (A file is created if
it does not exist.)
r+b or rb+ opens an existing binary file for reading and writing.
w+b or wb+ opens an empty binary file for reading and writing. (An existing
file will be overwritten.)
a+b or ab+ opens a binary file for reading and appending. (A file is created
if it does not exist.)
fprintf
Description: Prints formatted data to a stream.
Include: <stdio.h>
Prototype: int fprintf (FILE *stream, const char *format, ...);
Arguments: stream pointer to the stream in which to output data
format format control string

Return Value:

Remarks:

optional arguments, usually one per format specifier

Returns number of characters generated or a negative number if an error
occurs.

The format argument has the same syntax and use that it has in print.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 41

32-Bit Language Tools Libraries

fputc

Description: Puts a character to the stream.

Include: <stdio.h>

Prototype: int fputc(int ¢, FILE *stream);

Arguments: ¢ character to be written
stream pointer to the open stream

Return Value:

Returns the character written or EOF if a write error occurs.

Remarks: The function writes the character to the output stream, advances the
file-position indicator and returns the character as an unsigned char
converted to an int.

fputs

Description: Puts a string to the stream.

Include: <stdio.h>

Prototype: int fputs(const char *s, FILE *stream);

Arguments: s string to be written
stream pointer to the open stream

Return Value:

Returns a non-negative value if successful, otherwise, returns EOF.

Remarks: The function writes characters to the output stream up to but not including the
null character.

fread

Description: Reads data from the stream.

Include: <stdio.h>

Prototype: size t fread(void *ptr, size t size, size t nelem, FILE
*stream) ;

Arguments: ptr pointer to the storage buffer
size size of item
nelem maximum number of items to be read
stream pointer to the stream

Return Value:

Remarks:

Returns the number of complete elements read up to nelem whose size is
specified by size.

The function reads characters from a given stream into the buffer pointed to
by ptr until the function stores size * nelem characters or sets the
end-of-file or error indicator. fread returns n/size where n is the number of
characters it read. If n is not a multiple of size, the value of the last element is
indeterminate. If the function sets the error indicator, the file-position indicator
is indeterminate.

DS51685E-page 42

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

freopen

Description: Reassigns an existing stream to a new file.

Include: <stdio.h>

Prototype: FILE *freopen (const char *filename, const char *mode,

FILE *stream);
Arguments: filename name of the new file

mode type of access permitted
stream pointer to the currently open stream

Return Value: Returns a pointer to the new open file. If the function fails a Null Pointer is
returned.

Remarks: The function closes the file associated with the stream as though fclose was

called. Then it opens the new file as though fopen was called. freopen will
fail if the specified stream is not open. See fopen for the possible types of file
access.

fscanf

Description: Scans formatted text from a stream.

Include: <stdio.h>

Prototype: int fscanf (FILE *stream, const char *format, ...);

Arguments: stream pointer to the open stream from which to read data
format format control string

optional arguments

Return Value: Returns the number of items successfully converted and assigned. If no items
are assigned, a 0 is returned. EOF is returned if end-of-file is encountered
before the first conversion or if an error occurs.

Remarks: The format argument has the same syntax and use that it has in scanf.
fseek
Description: Moves file pointer to a specific location.
Include: <stdio.h>
Prototype: int fseek (FILE *stream, long offset, int mode);
Arguments: stream stream in which to move the file pointer.

offset value to add to the current position

mode type of seek to perform

Return Value: Returns 0 if successful, otherwise, returns a non-zero value and sets errno.
Remarks: mode can be one of the following:

SEEK_SET — seeks from the beginning of the file

SEEK_CUR — seeks from the current position of the file pointer

SEEK_END — seeks from the end of the file

This function requires 1seek, which is not provided by default.

© 2007-2012 Microchip Technology Inc. DS51685E-page 43

32-Bit Language Tools Libraries

fsetpos
Description: Sets the stream’s file position.
Include: <stdio.h>
Prototype: int fsetpos (FILE *stream, const fpos_t *pos);
Arguments: stream target stream
pos position-indicator storage as returned by an earlier call to
fgetpos

Return Value:

Returns 0 if successful, otherwise, returns a non-zero value.

Remarks: The function sets the file-position indicator for the given stream in *pos if
successful, otherwise, fsetpos sets errno.

ftell

Description: Gets the current position of a file pointer.

Include: <stdio.h>

Prototype: long ftell (FILE *stream) ;

Argument: stream stream in which to get the current file position

Return Value:

Returns the position of the file pointer if successful, otherwise, returns -1.

Remarks: This function requires 1seek, which is not provided by default.
fwrite
Description: Writes data to the stream.
Include: <stdio.h>
Prototype: size t fwrite(const void *ptr, size t size,
size t nelem, FILE *stream);
Arguments: ptr pointer to the storage buffer
size size of item
nelem maximum number of items to be read
stream pointer to the open stream

Return Value:

Returns the number of complete elements successfully written, which will be
less than nelem only if a write error is encountered.

Remarks: The function writes characters to a given stream from a buffer pointed to by
ptrup to nelemelements whose size is specified by size. The file position
indicator is advanced by the number of characters successfully written. If the
function sets the error indicator, the file-position indicator is indeterminate.

getc

Description: Defined as a function-like macro in the header file.

Get a character from the stream.

Include: <stdio.h>

Prototype: int getc (FILE *stream);

Argument: stream pointer to the open stream

Return Value:

Remarks:

Returns the character read or EOF if a read error occurs or end-of-file is
reached.

getc is the same as the function fgetc.

DS51685E-page 44

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

getchar

Description: Defined as a function-like macro in the header file.
Get a character from stdin.

Include: <stdio.h>

Prototype: int getchar (void) ;

Return Value:

Returns the character read or EOF if a read error occurs or end-of-file is
reached.

Remarks: Same effect as fgetc with the argument stdin.
gets

Description: Get a string from stdin.

Include: <stdio.h>

Prototype: char *gets (char *s);

Argument: s pointer to the storage string

Return Value:

Returns a pointer to the string s if successful, otherwise, returns a Null pointer

Remarks: The function reads characters from the stream stdin and stores them into
the string pointed to by s until it reads a newline character (which is not
stored) or sets the end-of-file or error indicators. If any characters were read,
a null character is stored immediately after the last read character in the next
element of the array. If gets sets the error indicator, the array contents are
indeterminate.

open

Description: Open a file for access, returning a file descriptor

Include: <fentl.h>

Prototype: int open(const char *name, int access, int mode);

Argument: name filename to open
access access method used to open file
mode access mode to use when creating a file

Return Value:

Remarks:

open returns the file descriptor for the newly opened file or -1 to signal an
error. If an error occurs errno is set. Appropriate values might be ENFILE or
EACCESS.

This function is not provided by default. This function is required to support
fopen and ffreopen.

The following values for access must be supported at a minimum (others are
available, but not documented here):
* O _APPEND append mode, the file pointer should initially start at the end
of the file
* O_BINARY binary mode, characters are not translated
* O_CREAT create mode, a new file is created if necessary
* O_RDONLY read only mode, file output is not permitted
* O_RDWR read/ write mode
* O_WRONLY write only mode, file input is not permitted

© 2007-2012 Microchip Technology Inc.

DS51685E-page 45

32-Bit Language Tools Libraries

perror

Description: Prints an error message to stderr.
Include: <stdio.h>

Prototype: void perror (const char *s);
Argument: s string to print

Return Value: None.

Remarks: The string s is printed followed by a colon and a space. Then an error
message based on errno is printed followed by an newline

printf

Description: Prints formatted text to stdout. See also Section 2.13.2 “Customizing
STDIO”.

Include: <stdio.h>

Prototype: int printf (const char *format, ...);

Arguments: format format control string

Return Value:

Remarks:

optional arguments

Returns number of characters generated, or a negative number if an error
occurs.

There must be exactly the same number of arguments as there are format
specifiers. If there are less arguments than match the format specifiers, the
output is undefined. If there are more arguments than match the format speci-
fiers, the remaining arguments are discarded. Each format specifier begins
with a percent sign followed by optional fields and a required type as shown
here:

$[flags] [width] [.precision] [size]type

flags

- left justify the value within a given field width

0 Use 0 for the pad character instead of space (which is the default)

+ generate a plus sign for positive signed values

space generate a space or signed values that have neither a plus nor a
minus sign

to prefix 0 on an octal conversion, to prefix 0x or 0X on a hexadec-
imal conversion, or to generate a decimal point and fraction digits
that are otherwise suppressed on a floating-point conversion

width

specify the number of characters to generate for the conversion. If the asterisk
(*) is used instead of a decimal number, the next argument (which must be of
type int) will be used for the field width. If the result is less than the field
width, pad characters will be used on the left to fill the field. If the result is
greater than the field width, the field is expanded to accommodate the value
without padding.

precision

The field width can be followed with dot (.) and a decimal integer representing
the precision that specifies one of the following:

- minimum number of digits to generate on an integer conversion

- number of fraction digits to generate on an e, E, or f conversion

- maximum number of significant digits to generate on a g or G conversion

- maximum number of characters to generate from a C stringon an s
conversion

If the period appears without the integer the integer is assumed to be zero. If
the asterisk (*) is used instead of a decimal number, the next argument (which
must be of type int) will be used for the precision.

DS51685E-page 46

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

printf (Continued)

size

h modifier— used with type d, i, 0, u, x, X; converts the value to a short
int orunsigned short int

h modifier — used with n; specifies that the pointer points to a short int

I modifier — used with type d, i, 0, u, x, X; converts the value to a 1ong
int orunsigned long int

| modifier — used with n; specifies that the pointer points to a 1ong int

| modifier — used with c; specifies a wide character

| modifier — used with type e, E, f, F, g, G; converts the value to a double

Il modifier— used with type d, i, 0, u, x, X; converts the value to a 1ong
long int orunsigned long long int

Il modifier — used with n; specifies that the pointer points to a 1ong long
int

L modifier— used with e, E, f, g, G; converts the value to a 1ong double

type

d,i signed int

o] unsigned int in octal

u unsigned int in decimal

X unsigned int inlowercase hexadecimal

X unsigned int in uppercase hexadecimal

e E double in scientific notation

f double decimal notation

g,G double (takes the form of e, E or f as appropriate)

c char - a single character

S string

p value of a pointer

n the associated argument shall be an integer pointer into which
is placed the number of characters written so far. No charac-
ters are printed.

% A % character is printed

putc

Description: Defined as a function-like macro in the header file.
Puts a character to the stream.

Include: <stdio.h>

Prototype: int putc(int ¢, FILE *stream);

Arguments: ¢ character to be written
stream pointer to FILE structure

Return Value: Returns the character or EOF if an error occurs or end-of-file is reached.
Remarks: putc is the same as the function fputc.

© 2007-2012 Microchip Technology Inc. DS51685E-page 47

32-Bit Language Tools Libraries

putchar

Description: Defined as a function-like macro in the header file.
Put a character to stdout.

Include: <stdio.h>

Prototype: int putchar(int c¢);

Argument: c character to be written

Return Value:

Returns the character or EOF if an error occurs or end-of-file is reached.

Remarks: Same effect as fputc with stdout as an argument.
puts

Description: Put a string to stdout.

Include: <stdio.h>

Prototype: int puts(const char *s);

Argument: s string to be written

Return Value:

Returns a non-negative value if successful, otherwise, returns EOF.

Remarks: The function writes characters to the stream stdout. A newline character is
appended. The terminating null character is not written to the stream.

remove

Description: Deletes the specified file.

Include: <stdio.h>

Prototype: int remove (const char *filename);

Argument: filename name of file to be deleted.

Return Value:

Returns 0 if successful, -1 if not.

Remarks: This function requires a definition of un1ink. If filename does not exist or is
open, remove will fail.

rename

Description: Renames the specified file.

Include: <stdio.h>

Prototype: int rename (const char *old, const char *new);

Arguments: olId pointer to the old name
new pointer to the new name.

Return Value:

Remarks:

Return 0 if successful, non-zero if not.

This function requires definitions of 1ink and unlink. The new name must
not already exist in the current working directory, the old name must exist in
the current working directory.

DS51685E-page 48

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

rewind

Description: Resets the file pointer to the beginning of the file.
Include: <stdio.h>

Prototype: void rewind (FILE *stream);

Argument: stream stream to reset the file pointer

Remarks: The function calls fseek (stream, 0L, SEEK SET) and then clears the
error indicator for the given stream.

scanf

Description: Scans formatted text from stdin.

Include: <stdio.h>

Prototype: int scanf (const char *format, ...);
Argument: format format control string

.. optional arguments

Return Value: Returns the number of items successfully converted and assigned. If no items
are assigned, a 0 is returned. EOF is returned if an input failure is
encountered before the first assignment.

Remarks: Each format specifier begins with a percent sign followed by optional fields
and a required type as shown here:

%[*] [width] [modifier]type

*
indicates assignment suppression. This will cause the input field to be skipped
and no assignment made.
width
specify the maximum number of input characters to match for the conversion
not including white space that can be skipped.

modifier

h modifier— used with type d, i, 0, u, x, X; converts the value to a short
int orunsigned short int.

h modifier — used with n; specifies that the pointer points to a short int

I modifier — used with type d, i, 0, u, x, X; converts the value to a 1ong
int orunsigned long int

I modifier — used with n; specifies that the pointer points to a 1ong int

| modifier — used with c; specifies a wide character

| modifier — used with type e, E, f, F, g, G; converts the value to a double

Il modifier— used with type d, i, 0, u, x, X; converts the value to a 1ong
long int orunsigned long long int

Il modifier— used with n; specifies that the pointer points to a 1ong long
int

L modifier— used with e, E, f, g, G; converts the value to a 1ong double

© 2007-2012 Microchip Technology Inc. DS51685E-page 49

32-Bit Language Tools Libraries

scanf (Continued)

type
d,i

o

u

X

X

%

signed int

unsigned int in octal

unsigned int in decimal

unsigned int inlowercase hexadecimal

unsigned int in uppercase hexadecimal

double in scientific notation

double decimal notation

double (takes the form of e, E or f as appropriate)

char - a single character

string

value of a pointer

the associated argument shall be an integer pointer into, which
is placed the number of characters read so far. No characters
are scanned.

character array. Allows a search of a set of characters. A caret
(™) immediately after the left bracket ([) inverts the scanset
and allows any ASCII character except those specified
between the brackets. A dash character (-) may be used to
specify a range beginning with the character before the dash
and ending the character after the dash. A null character can
not be part of the scanset.

A % character is scanned

setbuf

Description: Defines how a stream is buffered.

Include: <stdio.h>

Prototype: void setbuf (FILE *stream, char *buf);

Arguments: stream
buf

pointer to the open stream
user allocated buffer

Remarks: setbuf must be called after fopen but before any other function calls that
operate on the stream. If buf is a Null Pointer, setbuf calls the function set-
vbuf (stream, 0, IONBF, BUFSIZ) for no buffering, otherwise setbuf
calls setvbuf (stream, buf, IOFBF, BUFSIZ) for full buffering with a
buffer of size BUFS17Z. See setvbuf.

setvbuf

Description: Defines the stream to be buffered and the buffer size.

Include: <stdio.h>

Prototype: int setvbuf (FILE *stream, char *buf, int mode, size t
size);

Arguments: stream
buf
mode

size

pointer to the open stream
user allocated buffer

type of buffering

size of buffer

Return Value: Returns 0 if successful

Remarks: setvbuf must be called after fopen but before any other function calls that
operate on the stream. For mode use one of the following:
_I0FBF — for full buffering
_IOLBF — for line buffering
_IONBF - for no buffering

DS51685E-page 50

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

snprintf
Description: Prints formatted text to a string with maximum length.
Prototype: int snprintf(char *s, size t n, const char *format, ...);
Arguments: s storage string for input
n number of characters to print
format format control string

Return Value:

optional arguments

Returns the number of characters stored in s excluding the terminating null
character.

Remarks: The format argument has the same syntax and use that it has in printf.
sprintf

Description: Prints formatted text to a string

Include: <stdio.h>

Prototype: int sprintf(char *s, const char *format, ...);
Arguments: s storage string for output

Return Value:

format format control string
optional arguments

Returns the number of characters stored in s excluding the terminating null
character.

Remarks: The format argument has the same syntax and use that it has in printf.
sscanf

Description: Scans formatted text from a string

Include: <stdio.h>

Prototype: int sscanf (const char *s, const char *format, ...);
Arguments: s storage string for input

Return Value:

format format control string

optional arguments

Returns the number of items successfully converted and assigned. If no items
are assigned, a 0 is returned. EOF is returned if an input error is encountered
before the first conversion.

Remarks: The format argument has the same syntax and use that it has in scanf.
tmpfile

Description: Creates a temporary file

Include: <stdio.h>

Prototype: FILE *tmpfile (void)

Return Value:

Remarks:

Returns a Stream Pointer if successful, otherwise, returns a Null Pointer.

tmpfile creates a file with a unique filename. The temporary file is opened
in w+b (binary read/write) mode. It will automatically be removed when exit
is called, otherwise the file will remain in the directory.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 51

32-Bit Language Tools Libraries

tmpnam

Description: Creates a unique temporary filename
Include: <stdio.h>

Prototype: char *tmpnam (char *s);

Argument: s pointer to the temporary name

Return Value: Returns a pointer to the filename generated and stores the filename in s. If it
can not generate a filename, the Null Pointer is returned.

Remarks: The created filename will not conflict with an existing file name. Use
L_tmpnam to define the size of array the argument of tmpnam points to.

ungetc

Description: Pushes character back onto stream.

Include: <stdio.h>

Prototype: int ungetc(int ¢, FILE *stream);

Argument: c character to be pushed back
stream pointer to the open stream

Return Value: Returns the pushed character if successful, otherwise, returns EOF

Remarks: The pushed back character will be returned by a subsequent read on the
stream. If more than one character is pushed back, they will be returned in the
reverse order of their pushing. A successful call to a file positioning function
(fseek, fsetpos or rewind) cancels any pushed back characters. Only one
character of pushback is guaranteed. Multiple calls to ungetc without an
intervening read or file positioning operation may cause a failure.

viprintf

Description: Prints formatted data to a stream using a variable length argument list.

Include: <stdio.h>
<stdarg.h>

Prototype: int vfprintf (FILE *stream, const char *format, va list
ap) ;

Arguments: stream pointer to the open stream
format format control string
ap pointer to a list of arguments

Return Value: Returns number of characters generated or a negative number if an error
occurs.

Remarks: The format argument has the same syntax and use that it has in printf.

To access the variable length argument list, the ap variable must be initialized
by the macro va_start and may be reinitialized by additional calls to
va_arg. This must be done before the vfprintf function is called. Invoke
va_end after the function returns. For more details see

Section 2.11 “<stdarg.h> Variable Argument Lists”.

DS51685E-page 52 © 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

vfscanf

Description: Scans formatted text using variable length argument list.

Prototype: int vfscanf (FILE *stream, const char *format, va list
ap) ;

Arguments: stream pointer to the open stream
format format control string
ap pointer to a list of arguments

Return Value:

Returns the number of items successfully converted and assigned. If no items
are assigned, a 0 is returned. EOF is returned if an input failure is encoun-
tered before the first assignment.

Remarks: The format argument has the same syntax and use that it has in scanf.
To access the variable length argument list, the ap variable must be initialized
by the macro va_start and may be reinitialized by additional calls to
va_arg. This must be done before the vfscanf function is called. Invoke
va_end after the function returns. For more details see
Section 2.11 “<stdarg.h> Variable Argument Lists” .

vprintf

Description: Prints formatted text to stdout using a variable length argument list

Include: <stdio.h>
<stdarg.h>

Prototype: int vprintf (const char *format, va list ap);

Arguments: format format control string
ap pointer to a list of arguments

Return Value:

Returns number of characters generated or a negative number if an error
occurs.

Remarks: The format argument has the same syntax and use that it has in printf.
To access the variable length argument list, the ap variable must be initialized
by the macro va_start and may be reinitialized by additional calls to
va_arg. This must be done before the vprintf function is called. Invoke
va_end after the function returns. For more details see
Section 2.11 “<stdarg.h> Variable Argument Lists” .

vscanf

Description: Scans formatted text from stdin using variable length argument list.

Prototype: int vscanf (const char *format, va list ap);

Arguments: format format control string
ap pointer to a list of arguments

Return Value:

Remarks:

Returns the number of items successfully converted and assigned. If no items
are assigned, a 0 is returned. EOF is returned if an input failure is encoun-
tered before the first assignment.

The format argument has the same syntax and use that it has in scanf.

To access the variable length argument list, the ap variable must be initialized
by the macro va_start and may be reinitialized by additional calls to
va_arg. This must be done before the vscanf function is called. Invoke
va_end after the function returns. For more details see

Section 2.11 “<stdarg.h> Variable Argument Lists” .

© 2007-2012 Microchip Technology Inc.

DS51685E-page 53

32-Bit Language Tools Libraries

vsnprintf

Description: Prints formatted text to a string with maximum length using variable length
argument list.

Prototype: int vsnprintf (char *s, size t n, const char *format,
va_ list ap);

Arguments: s storage string for input
n number of characters to print
format format control string
ap pointer to a list of arguments

Return Value:

Returns the number of characters stored in s excluding the terminating null
character

Remarks: The format argument has the same syntax and use that it has in printf.
To access the variable length argument list, the ap variable must be initialized
by the macro va_start and may be reinitialized by additional calls to
va_arg. This must be done before the vsnprintf function is called. Invoke
va_end after the function returns. For more details see
Section 2.11 “<stdarg.h> Variable Argument Lists”
vsprintf
Description: Prints formatted text to a string using a variable length argument list
Include: <stdio.h>
<stdarg.h>
Prototype: int vsprintf (char *s, const char *format, va list ap);
Arguments: s storage string for output
format format control string
ap pointer to a list of arguments

Return Value:

Remarks:

Returns number of characters stored in s excluding the terminating null
character.

The format argument has the same syntax and use that it has in printf.

To access the variable length argument list, the ap variable must be initialized
by the macro va_start and may be reinitialized by additional calls to
va_arg. This must be done before the vsprint£ function is called. Invoke
va_end after the function returns. For more details see

Section 2.11 “<stdarg.h> Variable Argument Lists” .

DS51685E-page 54

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

vsscanf

Description:
Prototype:

Arguments:

Return Value:

Remarks:

Scans formatted text from a string using variable length argument list.

int sscanf (const char *s, const char *format, va list
ap) ;

s storage string for input
format format control string
ap pointer to a list of arguments

Returns the number of items successfully converted and assigned. If no items
are assigned, a 0 is returned. EOF is returned if an input failure is encoun-
tered before the first assignment.

The format argument has the same syntax and use that it has in scanf.

To access the variable length argument list, the ap variable must be initialized
by the macro va_start and may be reinitialized by additional calls to
va_arg. This must be done before the vsscanf function is called. Invoke
va_end after the function returns. For more details see

Section 2.11 “<stdarg.h> Variable Argument Lists” .

© 2007-2012 Microchip Technology Inc.

DS51685E-page 55

32-Bit Language Tools Libraries

214 <STDLIB.H> UTILITY FUNCTIONS

The header file std1ib.h consists of types, macros and functions that provide text
conversions, memory management, searching and sorting abilities, and other general
utilities. For values, refer to the header file.

2141 Types

div_t

Description: A type that holds a quotient and remainder of a signed integer division with
operands of type int.

Include: <stdlib.h>

Prototype: typedef struct { int quot, rem; } div_t;
Remarks: This is the structure type returned by the function div.
Idiv_t

Description: A type that holds a quotient and remainder of a signed integer division with
operands of type 1ong.

Include: <stdlib.h>
Prototype: typedef struct { long quot, rem; } 1ldiv_t;
Remarks: This is the structure type returned by the function 1div.

lidiv_t

Description: A type that holds a quotient and remainder of a signed integer division with
operands of type 1ong.

Include: <stdlib.h>
Prototype: typedef struct { long long quot, rem; } 11ldiv_t;
Remarks: This is the structure type returned by the function 11div.

2.14.2 Constants

EXIT_FAILURE

Description: Reports unsuccessful termination.
Include: <stdlib.h>

Remarks: EXIT FAILURE is a value for the exit function to return an unsuccessful
termination status

EXIT_SUCCESS

Description: Reports successful termination
Include: <stdlib.h>

Remarks: EXIT_SUCCESS is a value for the exit function to return a successful
termination status.

MB_CUR_MAX

Description: Maximum number of characters in a multibyte character
Include: <stdlib.h>

DS51685E-page 56

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

RAND_MAX

Description: Maximum value capable of being returned by the rand function
Include: <stdlib.h>

214.3 Functions and Macros

abort

Description: Aborts the current process.

Include: <stdlib.h>

Prototype: void abort (void);

Remarks: abort will cause the processor to reset.
abs

Description: Calculates the absolute value.
Include: <stdlib.h>

Prototype: int abs (int 1);

Argument: 1 integer value

Return Value:

Returns the absolute value of i.

Remarks: A negative number is returned as positive. A positive number is unchanged.

atexit

Description: Registers the specified function to be called when the program terminates
normally.

Include: <stdlib.h>

Prototype: int atexit (void (* func) (void));

Argument: func function to be called

Return Value:

Returns a zero if successful, otherwise, returns a non-zero value.

Remarks: For the registered functions to be called, the program must terminate with the
exit function call.

atof

Description: Converts a string to a double precision floating-point value.

Include: <stdlib.h>

Prototype: double atof (const char *s);

Argument: s pointer to the string to be converted

Return Value:

Remarks:

Returns the converted value if successful, otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits [.digits]

[{ e | E }[signldigits]

optional whitespace, followed by an optional sign then a sequence of one
or more digits with an optional decimal point, followed by one or more
optional digits and an optional e or E followed by an optional signed expo-
nent. The conversion stops when the first unrecognized character is reached.
The conversion is the same as strtod (s, NULL).

© 2007-2012 Microchip Technology Inc.

DS51685E-page 57

32-Bit Language Tools Libraries

atoi

Description: Converts a string to an integer.
Include: <stdlib.h>

Prototype: int atoi (const char *s);
Argument: s string to be converted

Return Value:

Returns the converted integer if successful, otherwise, returns 0.

Remarks: The number may consist of the following:
[whitespace] [sign] digits
optional whitespace, followed by an optional sign then a sequence of one
or more digits. The conversion stops when the first unrecognized character
is reached. The conversion is equivalent to (int) strtol (s,NULL,10).
atol
Description: Converts a string to a long integer.
Include: <stdlib.h>
Prototype: long atol (const char *s);
Argument: s string to be converted

Return Value:

Returns the converted long integer if successful, otherwise, returns 0

Remarks: The number may consist of the following:
[whitespace] [sign] digits

optional whitespace, followed by an optional sign then a sequence of one
or more digits. The conversion stops when the first unrecognized character
is reached. The conversion is equivalentto strtol (s,NULL, 10).

atoll

Description: Converts a string to a long long integer.

Include: <stdlib.h>

Prototype: long long atoll (const char *s);

Argument: s string to be converted

Return Value:

Remarks:

Returns the converted long long integer if successful, otherwise, returns 0

The number may consist of the following:

[whitespace] [sign] digits
optional whitespace, followed by an optional sign then a sequence of one
or more digits. The conversion stops when the first unrecognized character
is reached. The conversion is equivalentto strtoll (s,NULL, 10).

DS51685E-page 58

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

bsearch
Description: Performs a binary search
Include: <stdlib.h>
Prototype: void *bsearch (const void *key, const void *base,
size t nelem, size t size,
int (*cmp) (const void *ck, const void *ce));
Arguments: key object to search for
base pointer to the start of the search data
nelem number of elements
size size of elements
cmp pointer to the comparison function
ck pointer to the key for the search
ce pointer to the element being compared with the key.

Return Value:

Returns a pointer to the object being searched for if found, otherwise, returns
null.

Remarks: The value returned by the compare function is <0 if ck is less than ce, 0if ck
is equal to ce, or >0 if ck is greater than ce.
bsearch requires the list to be sorted in increasing order according to the
compare function pointed to by cmp.

calloc

Description: Allocates an array in memory and initializes the elements to 0.

Include: <stdlib.h>

Prototype: void *calloc(size t nelem, size t size);

Arguments: nelem number of elements
size length of each element

Return Value:

Returns a pointer to the allocated space if successful, otherwise, returns a
Null Pointer.

Remarks: Memory returned by calloc is aligned correctly for any size data element
and is initialized to zero. In order to allocate memory using calloc, a heap
must be created by specifying a linker command option. See Section 7.7 in
the MPLAB® XC32 C/C++ Compiler User’s Guide for more information.

div

Description: Calculates the quotient and remainder of two numbers

Include: <stdlib.h>

Prototype: div_t div(int numer, int denom);

Arguments: numer numerator
denom denominator

Return Value:

Remarks:

Returns the quotient and the remainder.

The returned quotient will have the same sign as the numerator divided by the
denominator. The sign for the remainder will be such that the quotient times
the denominator plus the remainder will equal the numerator (quot * denom +
rem = numer). Division by zero will invoke the math exception error, which by
default, will cause an infinite loop. Write a math error handler to take another
application-specific action.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 59

32-Bit Language Tools Libraries

exit

Description: Terminates program after clean up.
Include: <stdlib.h>

Prototype: void exit(int status);
Argument: status exit status

Remarks: exit calls any functions registered by atexit in reverse order of registration,
flushes buffers, closes stream, closes any temporary files created with
tmpfile, and enters an infinite loop.

free

Description: Frees memory.

Include: <stdlib.h>

Prototype: void free(void *ptr);

Argument: ptr points to memory to be freed

Remarks: Frees memory previously allocated with calloc, malloc, or realloc. If

free is used on space that has already been deallocated (by a previous call to
free or by realloc) or on space not allocated with calloc, malloc, or
realloc, the behavior is undefined.

getenv

Description: Get a value for an environment variable.
Include: <stdlib.h>

Prototype: char *getenv (const char *name);
Argument: name name of environment variable

Return Value: Returns a pointer to the value of the environment variable if successful, other-
wise, returns a Null Pointer.

Remarks: In a hosted environment, this function can be used to access environment vari-
ables defined by the host operating system. By default the 32-bit C compiler
does not constitute a hosted environment, and as such this function always
returns NULL.

labs

Description: Calculates the absolute value of a long integer.
Include: <stdlib.h>

Prototype: long labs(long 1);

Argument: i long integer value

Return Value: Returns the absolute value of i.
Remarks: A negative number is returned as positive. A positive number is unchanged.

DS51685E-page 60 © 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

Idiv
Description: Calculates the quotient and remainder of two long integers.
Include: <stdlib.h>
Prototype: ldiv_t 1ldiv(long numer, long denom);
Arguments: numer numerator

denom denominator

Return Value:

Returns the quotient and the remainder.

Remarks: The returned quotient will have the same sign as the numerator divided by the
denominator. The sign for the remainder will be such that the quotient times
the denominator plus the remainder will equal the numerator (quot * denom +
rem = numer). If the denominator is zero, the behavior is undefined.

llabs

Description: Calculates the absolute value of a long long integer.

Include: <stdlib.h>

Prototype: long long labs (long long 1i);

Arguments: i long long integer value

Return Value:

Returns the absolute value of i.

Remarks: A negative number is returned as positive. A positive number is unchanged.
lidiv
Description: Calculates the quotient and remainder of two long long integers.
Include: <stdlib.h>
Prototype: 1ldiv_t 1lldiv(long long num, long long denom);
Arguments: numer numerator
denom denominator

Return Value:

Returns the quotient and remainder.

Remarks: The returned quotient will have the same sign as the numerator divided by the
denominator. The sign for the remainder will be such that the quotient times
the denominator plus the remainder will equal the numerator (quot * denom +
rem = numer). If the denominator is zero, the behavior is undefined.

malloc

Description: Allocates memory.

Include: <stdlib.h>

Prototype: void *malloc(size t size);

Argument: size number of characters to allocate

Return Value:

Remarks:

Returns a pointer to the allocated space if successful, otherwise, returns a
Null Pointer.

malloc does not initialize memory it returns. In order to allocate memory
using malloc, a heap must be created by specifying a linker command
option. See Section 7.7 in the MPLAB® XC32 C/C++ Compiler User’s Guide
for more information.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 61

32-Bit Language Tools Libraries

mblen
Description: Gets the length of a multibyte character. (See Remarks below.)
Include: <stdlib.h>
Prototype: int mblen(const char *s, size t n);
Arguments: s points to the multibyte character
n number of bytes to check

Return Value:

Returns zero if s points to a null character, otherwise, returns 1.

Remarks: The 32-bit C compiler does not support multibyte characters with length
greater than 1 byte.
mbstowcs
Description: Converts a multibyte string to a wide character string. (See Remarks below.)
Include: <stdlib.h>
Prototype: size t mbstowcs(wchar t *wcs, const char *s,
size t n);
Arguments: wcs points to the wide character string
s points to the multibyte string
n the number of wide characters to convert.

Return Value:

Returns the number of wide characters stored excluding the null character.

Remarks: mbstowcs converts n number of wide characters unless it encounters a null
wide character first. The 32-bit C compiler does not support multibyte
characters with length greater than 1 byte.

mbtowc

Description: Converts a multibyte character to a wide character. (See Remarks below.)

Include: <stdlib.h>

Prototype: int mbtowc (wchar t *pwc, const char *s, size t n);

Arguments: pwc points to the wide character
s points to the multibyte character
n number of bytes to check

Return Value:
Remarks:

Returns zero if s points to a null character, otherwise, returns 1

The resulting wide character will be stored at pwc. The 32-bit C compiler does
not support multibyte characters with length greater than 1 byte.

DS51685E-page 62

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

qsort

Description:
Include:
Prototype:

Arguments:

Remarks:

Performs a quick sort.
<stdlib.h>

void gsort (void *base, size t nelem, size t size,
int (*cmp) (const void *el, const void *e2));

base pointer to the start of the array

nelem number of elements

size size of the elements

cmp pointer to the comparison function

el pointer to the key for the search

ez pointer to the element being compared with the key

gsort overwrites the array with the sorted array. The comparison function is
supplied by the user. gsort sorts the buffer in ascending order. The compari-
son function should return negative if the first argument is less than the second,
zero if they are equal, and positive if the first argument is greater than the
second.

rand

Description:
Include:
Prototype:
Return Value:
Remarks:

Generates a pseudo-random integer.
<stdlib.h>

int rand(void);

Returns an integer between 0 and RAND MAX.

Calls to this function return pseudo-random integer values in the range
[0,RaND_MAX]. To use this function effectively, you must seed the random
number generator using the srand function. This function will always return
the same sequence of integers when no seeds are used or when identical
seed values are used.

realloc

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Reallocates memory to allow a size change.
<stdlib.h>

void *realloc(void *ptr, size t size);
ptr points to previously allocated memory
size new size to allocate to

Returns a pointer to the allocated space if successful, otherwise, returns a
Null Pointer.

If the existing object is smaller than the new object, the entire existing object is
copied to the new object and the remainder of the new object is indetermi-
nate. If the existing object is larger than the new object, the function copies as
much of the existing object as will fit in the new object. If realloc succeeds
in allocating a new object, the existing object will be deallocated, otherwise,
the existing object is left unchanged. Keep a temporary pointer to the existing
object since realloc will return a Null Pointer on failure.

In order to allocate memory using mrealloc, a heap must be created by
specifying a linker command option. See Section 7.7 in the MPLAB® XC32
C/C++ Compiler User’s Guide for more information

© 2007-2012 Microchip Technology Inc.

DS51685E-page 63

32-Bit Language Tools Libraries

srand

Description: Set the starting seed for the pseudo-random number sequence.
Include: <stdlib.h>

Prototype: void srand(unsigned int seed);

Argument: seed starting value for the pseudo-random number sequence
Return Value: None

Remarks: This function sets the starting seed for the pseudo-random number sequence
generated by the rand function. The rand function will always return the
same sequence of integers when identical seed values are used. If rand is
called with a seed value of 1, the sequence of numbers generated will be the
same as if rand had been called without srand having been called first.

strtod

Description: Converts a partial string to a floating-point number of type long double.

Include: <stdlib.h>

Prototype: long double strtod(const char *s, char **endptr);

Arguments: s string to be converted
endptr pointer to the character at which the conversion stopped

Return Value:

Returns the converted number if successful, otherwise, returns 0.

Remarks: The number may consist of the following:
[whitespace] [sign] digits [.digits]
[{ e | E }[sign]digits]

optional whitespace, followed by an optional sign, then a sequence of one
or more digits with an optional decimal point, followed by one or more
optional digits and an optional e or E followed by an optional signed
exponent.
strtod converts the string until it reaches a character that cannot be con-
verted to a number. endptr will point to the remainder of the string starting
with the first unconverted character.
If a range error occurs, errno will be set.

strtof

Description: Converts a partial string to a floating-point number of type float.

Include: <stdlib.h>

Prototype: float strtof (const char *s, char **endptr);

Arguments: s string to be converted
endptr pointer to the character at which the conversion stopped

Return Value:

Remarks:

Returns the converted number if successful, otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits [.digits]

[{ e | E }[signldigits]

optional whitespace, followed by an optional sign, then a sequence of one
or more digits with an optional decimal point, followed by one or more
optional digits and an optional e or E followed by an optional signed
exponent.
strtol converts the string until it reaches a character that cannot be con-
verted to a number. endptr will point to the remainder of the string starting
with the first unconverted character.
If a range error occurs, errno will be set.

DS51685E-page 64

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

strtol
Description: Converts a partial string to a long integer.
Include: <stdlib.h>
Prototype: long strtol (const char *s, char **endptr, int base);
Arguments: s string to be converted
endptr pointer to the character at which the conversion stopped

Return Value:

Remarks:

base number base to use in conversion

Returns the converted number if successful, otherwise, returns 0.

If baseis zero, strtol attempts to determine the base automatically. It can
be octal, determined by a leading zero, hexadecimal, determined by a leading
0x or 0X, or decimal in any other case. If base is specified strtol converts a
sequence of digits and letters a-z (case insensitive), where a-z represents the
numbers 10-36. Conversion stops when an out-of-base number is encoun-
tered. endptr will point to the remainder of the string starting with the first
unconverted character. If a range error occurs, errno will be set.

strtoll

Description:
Include:
Prototype:

Arguments:

Return Value:

Converts a partial string to a long long integer.
<stdlib.h>

long long strtoll (const char *s, int
base) ;

char **endptr,

s string to be converted
endptr pointer to the character at which the conversion stopped
base number base to use in conversion

Returns the converted number if successful, otherwise, returns 0.

Remarks: If baseis zero, strtoll attempts to determine the base automatically. It can
be octal, determined by a leading zero, hexadecimal, determined by a leading
0x or 0X, or decimal in any other case. If base is specified strtol1 converts
a sequence of digits and letters a-z (case insensitive), where a-z represents
the numbers 10-36. Conversion stops when an out-of-base number is
encountered. endptr will point to the remainder of the string starting with the
first unconverted character. If a range error occurs, errno will be set.

strtoul

Description: Converts a partial string to an unsigned long integer.

Include: <stdlib.h>

Prototype: unsigned long strtoul (const char *s, char **endptr,

int base);

Arguments: s string to be converted

endptr pointer to the character at which the conversion stopped

Return Value:

Remarks:

base number base to use in conversion

Returns the converted number if successful, otherwise, returns 0.

If base is zero, strtoul attempts to determine the base automatically. It can
be octal, determined by a leading zero, hexadecimal, determined by a leading
0x or 0X, or decimal in any other case. If base is specified strtoul converts
a sequence of digits and letters a-z (case insensitive), where a-z represents
the numbers 10-36. Conversion stops when an out-of-base number is
encountered. endptr will point to the remainder of the string starting with the
first unconverted character. If a range error occurs, errno will be set.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 65

32-Bit Language Tools Libraries

strtoull

Description: Converts a partial string to an unsigned long long integer.

Include: <stdlib.h>

Prototype: unsigned long long strtoull (const char *s, char **endptr,
int base);

Arguments: s string to be converted
endptr pointer to the character at which the conversion stopped
base number base to use in conversion

Return Value:

Returns the converted number if successful, otherwise, returns 0.

Remarks: If baseis zero, strtoull attempts to determine the base automatically. It
can be octal, determined by a leading zero, hexadecimal, determined by a
leading 0x or 0X, or decimal in any other case. If base is specified strtoull
converts a sequence of digits and letters a-z (case insensitive), where a-z rep-
resents the numbers 10-36. Conversion stops when an out-of-base number is
encountered. endptr will point to the remainder of the string starting with the
first unconverted character. If a range error occurs, errno will be set.

system

Description: Execute a command.

Include: <stdlib.h>

Prototype: int system(const char *s);

Argument: s command to be executed

Return Value:

Returns zero if a null argument is passed, otherwise, returns -1.

Remarks: In a hosted environment, this function can be used to execute commands on
the host operating system. By default the 32-bit C compiler does not
constitute a hosted environment, and as such this function does nothing.

wcstombs

Description: Converts a wide character string to a multibyte string. (See Remarks below.)

Include: <stdlib.h>

Prototype: size t wcstombs (char *s, const wchar t *wcs,

size t n);

Arguments: s points to the multibyte string
wCs points to the wide character string
n the number of characters to convert

Return Value:
Remarks:

Returns the number of characters stored excluding the null character.

wcstombs converts n number of multibyte characters unless it encounters a
null character first. The 32-bit C compiler does not support multibyte
characters with length greater than 1 character.

DS51685E-page 66

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

wctomb
Description: Converts a wide character to a multibyte character. (See Remarks below.)
Include: <stdlib.h>
Prototype: int wctomb (char *s, wchar t wchar);
Arguments: s points to the multibyte character
wchar the wide character to be converted

Return Value: Returns zero if s points to a null character, otherwise, returns 1.

Remarks: The resulting multibyte character is stored at s. The 32-bit C compiler does
not support multibyte characters with length greater than 1 character.

© 2007-2012 Microchip Technology Inc. DS51685E-page 67

32-Bit Language Tools Libraries

215 <STRING.H> STRING FUNCTIONS

The header file string.h consists of types, macros and functions that provide tools to
manipulate strings.

2.151

Types

size_t

Description: The type of the result of the sizeof operator.

Include: <string.h>

215.2 Functions and Macros

ffs

Description: Find the first bit set.

Include: <string.h>

Prototype: int ffs (int num);
Arguments: num the value to be tested

Return Value:

Returns an integer representing the index of the first bit set in num, starting
from the Least Significant bit, which is numbered one.

Remarks: If no bits are set (i.e., the argument is zero) zero is returned.
ffsl

Description: Find the first bit set long.

Include: <string.h>

Prototype: int ffsl (long num);

Arguments: num the value to be tested

Return Value:

Returns an integer representing the index of the first bit set in num, starting
from the Least Significant bit, which is numbered one.

Remarks: If no bits are set (i.e., the argument is zero) zero is returned.
ffsll

Description: Find the first bit set long long.

Include: <string.h>

Prototype: int ffsl (long long num);

Arguments: num the value to be tested

Return Value:

Remarks:

Returns an integer representing the index of the first bit set in num, starting
from the Least Significant bit, which is numbered one.

If no bits are set (i.e., the argument is zero) zero is returned.

DS51685E-page 68

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

memchr
Description: Locates a character in a buffer.
Include: <string.h>
Prototype: void *memchr (const void *s, int ¢, size t n);
Arguments: s pointer to the buffer
c character to search for
n number of characters to check

Return Value:

Returns a pointer to the location of the match if successful, otherwise, returns
null.

Remarks: memchr stops when it finds the first occurrence of c or after searching n
number of characters.

memcmp

Description: Compare the contents of two buffers.

Include: <string.h>

Prototype: int memcmp (const void *sl, const void *s2, size t n);

Arguments: sI first buffer

Return Value:

s2 second buffer
n number of characters to compare

Returns a positive number if s1 is greater than s2, zero if s1 is equal to s2, or
a negative number if s1 is less than s2.

Remarks: This function compares the first n characters in s1 to the first n characters in
s2 and returns a value indicating whether the buffers are less than, equal to
or greater than each other.

memcpy

Description: Copies characters from one buffer to another.

Include: <string.h>

Prototype: void *memcpy(void *dst , const void *src , size t n);

Arguments: dst buffer to copy characters to
src buffer to copy characters from
n number of characters to copy

Return Value:

Remarks:

Returns dst.

memcpy copies n characters from the source buffer src to the destination
buffer dst. If the buffers overlap, the behavior is undefined.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 69

32-Bit Language Tools Libraries

memmove

Description:

Include:
Prototype:
Arguments:

Return Value:

Copies n characters of the source buffer into the destination buffer, even if the
regions overlap.
<string.h>

void *memmove (void *sl, const void *s2, size t n);

sl buffer to copy characters to (destination)
s2 buffer to copy characters from (source)
n number of characters to copy from s2to s1

Returns a pointer to the destination buffer

Remarks: If the buffers overlap, the effect is as if the characters are read first from s2
then written to s1 so the buffer is not corrupted.

memset

Description: Copies the specified character into the destination buffer.

Include: <string.h>

Prototype: void *memset (void *s, int ¢, size t n);

Arguments: s buffer
c character to put in buffer
n number of times

Return Value:

Returns the buffer with characters written to it.

Remarks: The character c is written to the buffer n times.
strcasecmp
Description: Compares two strings, ignoring case.
Include: <string.h>
Prototype: int strcasecmp (const char *sl, const char *s2);
Arguments: sI first string
s2 second string

Return Value:

Returns a positive number if s1 is greater than s2, zero if s1 is equal to s2, or
a negative number if s1 is less than s2.

Remarks: This function compares successive characters from s1 and s2 until they are
not equal or the null terminator is reached.

strcat

Description: Appends a copy of the source string to the end of the destination string.

Include: <string.h>

Prototype: char *strcat (char *sl, const char *s2);

Arguments: s1I null terminated destination string to copy to
s2 null terminated source string to be copied

Return Value:
Remarks:

Returns a pointer to the destination string.

This function appends the source string (including the terminating null charac-
ter) to the end of the destination string. The initial character of the source
string overwrites the null character at the end of the destination string. If the
buffers overlap, the behavior is undefined.

DS51685E-page 70

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

strchr
Description: Locates the first occurrence of a specified character in a string.
Include: <string.h>
Prototype: char *strchr (const char *s, int c);
Arguments: s pointer to the string
c character to search for

Return Value:

Returns a pointer to the location of the match if successful, otherwise, returns
a Null Pointer.

Remarks: This function searches the string s to find the first occurrence of the character
C.

strcmp

Description: Compares two strings.

Include: <string.h>

Prototype: int strcmp (const char *sl, const char *s2);

Arguments: sI first string
s2 second string

Return Value:

Returns a positive number if s1 is greater than s2, zero if s1 is equal to s2, or
a negative number if s1 is less than s2.

Remarks: This function compares successive characters from s1 and s2 until they are
not equal or the null terminator is reached.

strcoll

Description: Compares one string to another. (See Remarks below.)

Include: <string.h>

Prototype: int strcoll (const char *s7, const char *S82);

Arguments: sI first string
s2 second string

Return Value:

Using the locale-dependent rules, it returns a positive number if s1 is greater
than s2, zero if s1 is equal to s2, or a negative number if s1 is less than s2.

Remarks: Since the 32-bit C compiler does not support alternate locales, this function is
equivalent to strcmp.

strcpy

Description: Copy the source string into the destination string.

Include: <string.h>

Prototype: char *strcpy(char *sl, const char *s2);

Arguments: s1I destination string to copy to
s2 source string to copy from

Return Value:

Remarks:

Returns a pointer to the destination string.

All characters of s2 are copied, including the null terminating character. If the
strings overlap, the behavior is undefined.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 71

32-Bit Language Tools Libraries

strcspn
Description: Calculate the number of consecutive characters at the beginning of a string
that are not contained in a set of characters.
Include: <string.h>
Prototype: size t strcspn(const char *sl, const char *s2);
Arguments: s1I pointer to the string to be searched
s2 pointer to characters to search for

Return Value:

Returns the length of the segment in s1 not containing characters found in
s2.

Remarks: This function will determine the number of consecutive characters from the
beginning of s1 that are not contained in s2.

strerror

Description: Gets an internal error message.

Include: <string.h>

Prototype: char *strerror (int errcode);

Argument: errcode number of the error code

Return Value:

Returns a pointer to an internal error message string corresponding to the
specified error code errcode.

Remarks: The array pointed to by strerror may be overwritten by a subsequent call to
this function.

strlen

Description: Finds the length of a string.

Include: <string.h>

Prototype: size t strlen(const char *s);

Argument: s the string

Return Value:

Returns the length of a string.

Remarks: This function determines the length of the string, not including the terminating
null character.

strncasecmp

Description: Compares two strings, ignoring case, up to a specified number of characters.

Include: <string.h>

Prototype: int strncasecmp (const char *sl, const char *s2, size t
n);

Arguments: sI first string
s2 second string

Return Value:

Remarks:

Returns a positive number if s1 is greater than s2, zero if s1 is equal to s2, or
a negative number if s1 is less than s2.

strncasecnmp returns a value based on the first character that differs
between s1 and s2. Characters that follow a null character are not compared.

DS51685E-page 72

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

strncat
Description: Append a specified number of characters from the source string to the desti-
nation string.
Include: <string.h>
Prototype: char *strncat(char *sl, const char *s2, size t n);
Arguments: s1I destination string to copy to
s2 source string to copy from

Return Value:

n number of characters to append
Returns a pointer to the destination string.

Remarks: This function appends up to n characters (a null character and characters that
follow it are not appended) from the source string to the end of the destination
string. If a null character is not encountered, then a terminating null character
is appended to the result. If the strings overlap, the behavior is undefined.

strncmp

Description: Compare two strings, up to a specified number of characters.

Include: <string.h>

Prototype: int strncmp (const char *sl, const char *s2,

size t n);

Arguments: sI first string

s2 second string

Return Value:

n number of characters to compare

Returns a positive number if s1 is greater than s2, zero if s1 is equal to s2, or
a negative number if s1 is less than s2.

Remarks: strncmp returns a value based on the first character that differs between s1
and s2. Characters that follow a null character are not compared.

strncpy

Description: Copy characters from the source string into the destination string, up to the
specified number of characters.

Include: <string.h>

Prototype: char *strncpy(char *sl, const char *s2, size t n);

Arguments: s1I destination string to copy to
s2 source string to copy from

Return Value:

Remarks:

n number of characters to copy
Returns a pointer to the destination string.

Copies n characters from the source string to the destination string. If the
source string is less than n characters, the destination is filled with null char-
acters to total n characters. If n characters were copied and no null character
was found then the destination string will not be null-terminated. If the strings
overlap, the behavior is undefined.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 73

32-Bit Language Tools Libraries

strpbrk

Description: Search a string for the first occurrence of a character from a specified set of
characters.

Include: <string.h>

Prototype: char *strpbrk(const char *sl, const char *s2);

Arguments: s1I pointer to the string to be searched
s2 pointer to characters to search for

Return Value:

Returns a pointer to the matched character in s1 if found, otherwise, returns a
Null Pointer.

Remarks: This function will search s1 for the first occurrence of a character contained in
s2.

strrchr

Description: Search for the last occurrence of a specified character in a string.

Include: <string.h>

Prototype: char *strrchr (const char *s, int c¢);

Arguments: s pointer to the string to be searched

Return Value:

c character to search for
Returns a pointer to the character if found, otherwise, returns a Null Pointer.

Remarks: The function searches the string s, including the terminating null character, to
find the last occurrence of character c.

strspn

Description: Calculate the number of consecutive characters at the beginning of a string
that are contained in a set of characters.

Include: <string.h>

Prototype: size t strspn(const char *sl, const char *s2);

Arguments: s1I pointer to the string to be searched
s2 pointer to characters to search for

Return Value:

Returns the number of consecutive characters from the beginning of s1 that
are contained in s2.

Remarks: This function stops searching when a character from s1 is not in s2.
strstr
Description: Search for the first occurrence of a string inside another string.
Include: <string.h>
Prototype: char *strstr(const char *sl, const char *s2);
Arguments: sI pointer to the string to be searched

s2 pointer to substring to be searched for

Return Value:

Remarks:

Returns the address of the first element that matches the substring if found,
otherwise, returns a Null Pointer.

This function will find the first occurrence of the string s2 (excluding the null
terminator) within the string s1. If s2 points to a zero length string, s1 is
returned.

DS51685E-page 74

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

strtok

Description: Break a string into substrings, or tokens, by inserting null characters in place
of specified delimiters.

Include: <string.h>

Prototype: char *strtok(char *sl, const char *s2);

Arguments: s1I pointer to the null terminated string to be searched
s2 pointer to characters to be searched for (used as delimiters)

Return Value:

Remarks:

Returns a pointer to the first character of a token (the first character in s1 that
does not appear in the set of characters of s2). If no token is found, the Null
Pointer is returned.

A sequence of calls to this function can be used to split up a string into sub-
strings (or tokens) by replacing specified characters with null characters. The
first time this function is invoked on a particular string, that string should be
passed in s1. After the first time, this function can continue parsing the string
from the last delimiter by invoking it with a null value passed in s1.

It skips all leading characters that appear in the string s2 (delimiters), then
skips all characters not appearing in s2 (this segment of characters is the
token), and then overwrites the next character with a null character, terminat-
ing the current token. The function strtok then saves a pointer to the char-
acter that follows, from which the next search will start. If strtok finds the
end of the string before it finds a delimiter, the current token extends to the
end of the string pointed to by s1. If this is the first call to strtok, it does not
modify the string (no null characters are written to s1). The set of characters
that is passed in s2 need not be the same for each call to strtok.

If strtok is called with a non-null parameter for s1 after the initial call, the
string becomes the new string to search. The old string previously searched
will be lost.

strxfrm

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Transforms a string using the locale-dependent rules. (See Remarks.)
<string.h>

size t strxfrm(char *slI, const char *s2, size t n);
s1 destination string

s2

n number of characters to transform

source string to be transformed

Returns the length of the transformed string not including the terminating null
character. If n is zero, the string is not transformed (s may be a point null in
this case) and the length of s2 is returned.

If the return value is greater than or equal to n, the content of s1 is indetermi-
nate. Since the 32-bit C compiler does not support alternate locales, the trans-
formation is equivalent to strcpy, except that the length of the destination
string is bounded by n-1.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 75

32-Bit Language Tools Libraries

216 <TIME.H> DATE AND TIME FUNCTIONS

The header file time.h consists of types, macros and functions that manipulate time.
For values, refer to the header file.

216.1 Types

clock_t

Description: Stores processor time values.
Include: <time.h>
Prototype: unsigned long clock t

Remarks: This value is established by convention, and does not reflect the actual execu-
tion environment. The actual timing will depend upon the helper function
settimeofday, which is not provided by default.

size_t

Description: The type of the result of the sizeof operator.
Include: <stddef.h>

struct timeval

Description: Structure to hold current processor time.

Include: <sys/time.h>

Prototype: struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

}i

Return Value: Returns the calendar time encoded as a value of time t.

Remarks: Used by helper functions gettimeofday and settimeofday, which are not
provided by default.

DS51685E-page 76

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

struct tm

Description: Structure used to hold the time and date (calendar time).
Include: <time.h>
Prototype: struct tm {

int tm_sec;/*seconds after the minute (0 to 61)*/
/*allows for up to two leap seconds*/

int tm min; /*minutes after the hour (0 to 59)*/

int tm hour;/*hours since midnight (0 to 23)*/

int tm mday;/*day of month (1 to 31)*/

int tm mon; /*month (0 to 11 where January = 0)*/

int tm year;/*years since 1900%*/

int tm wday;/*day of week (0 to 6 where Sunday = 0)y *x/
int tm yday;/*day of year (0 to 365 where January 1 = 0
) */

int tm isdst;/*Daylight Savings Time flag*/

}

Remarks: If tm_isdst is a positive value, Daylight Savings is in effect. If it is zero, Day-
light Saving time is not in effect. If it is a negative value, the status of Daylight
Saving Time is not known.

time_t

Description: Represents calendar time values.
Include: <time.h>

Prototype: typedef long time t

Remarks: Calendar time is reported in seconds.

2.16.2 Constants
CLOCKS_PER_SEC

Description: Number of processor clocks per second.

Include: <time.h>
Prototype: #define CLOCKS PER_SEC

Remarks: This value is established by convention, and may not reflect the actual execu-
tion environment. The actual timing will depend upon helper function
settimeofday, which is not provided by default.

© 2007-2012 Microchip Technology Inc. DS51685E-page 77

32-Bit Language Tools Libraries

2.16.3 Functions and Macros

asctime

Description: Converts the time structure to a character string.
Include: <time.h>

Prototype: char *asctime (const struct tm *tptr);
Argument: tptr time/date structure

Return Value:

Returns a pointer to a character string of the following format:
DDD MMM dd hh:mm:ss YYYY

DDD is day of the week

MMM is month of the year

dd is day of the month

hh is hour

mm is minute

ss is second

YYYY is year

clock

Description: Calculates the processor time.
Include: <time.h>

Prototype: clock_t clock(void);

Return Value:

Returns the number of clock ticks of elapsed processor time.

Remarks: If the target environment cannot measure elapsed processor time, the func-
tion returns -1, cast as a clock _t. (i.e., (clock_t)-1). This value is estab-
lished by convention, and may not reflect the actual execution environment.
The actual timing will depend upon helper function settimeofday, which is
not provided by default.

ctime

Description: Converts calendar time to a string representation of local time.

Include: <time.h>

Prototype: char *ctime (const time t *tod);

Argument: tod pointer to stored time

Return Value:

Returns the address of a string that represents the local time of the parameter
passed.

Remarks: This function is equivalent to asctime (localtime (tod)).
difftime
Description: Find the difference between two times.
Include: <time.h>
Prototype: double difftime (time t tI, time t t0);
Arguments: t1I ending time

to beginning time

Return Value:

Returns the number of seconds between t1 and to0.

DS51685E-page 78

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

gettimeofday (User Provided)

Description:
Include:
Prototype:
Argument:

Return Value:

Gets the current processor time.
<time.h>
int gettimeofday(struct timeval *tv , void *tz);

tv a structure to contain the current time
tz obsolete argument; should be null

Returns 0 if successful, -1 on error.

Remarks: This helper function should interact with the target environment and write the
current processor time in seconds and microseconds to tv.
It is not provided by default, but is required by clock and time.

gmtime

Description: Converts calendar time to time structure expressed as Universal Time Coordi-
nated (UTC) also known as Greenwich Mean Time (GMT).

Include: <time.h>

Prototype: struct tm *gmtime (const time t *tod);

Argument: tod pointer to stored time

Return Value:

Returns the address of the time structure.

Remarks: This function breaks down the tod value into the time structure of type tm.
gmtime and localtime are equivalent except gmtime will return
tm_isdst (Daylight Savings Time flag) as zero to indicate that Daylight
Savings Time is not in effect.

localtime

Description: Converts a value to the local time.

Include: <time.h>

Prototype: struct tm *localtime(const time t *tod);

Argument: tod pointer to stored time

Return Value:

Returns the address of the time structure.

Remarks: localtime and gmtime are equivalent except 1ocaltime will return
tm_isdst (Daylight Savings Time flag) as -1 to indicate that the status of
Daylight Savings Time is not known.

mktime

Description: Converts local time to a calendar value.

Include: <time.h>

Prototype: time t mktime (struct tm *tptr);

Argument: tptr a pointer to the time structure

Return Value:

Remarks:

Returns the calendar time encoded as a value of time t.

If the calendar time cannot be represented, the function returns -1, cast as a
time t (i.e., (time t)-1).

© 2007-2012 Microchip Technology Inc.

DS51685E-page 79

32-Bit Language Tools Libraries

settimeofday (User Provided)

Description:
Include:
Prototype:
Argument:

Return Value:

Sets the current processor time.
<time.h>
int settimeofday(const struct timeval *tv , void *tz);

tv a structure containing the current time
tz obsolete argument; should be null

Returns 0 if successful, -1 on error.

Remarks: This function should interact with the target environment and set the current

time using values specified in tv. It is not required by other functions.
strftime
Description: Formats the time structure to a string based on the format parameter.
Include: <time.h>
Prototype: size t strftime(char *s, size t n,

const char *format, const struct tm *tptr);

Arguments: s output string

n maximum length of string

format format-control string

Return Value:

Remarks:

tptr pointer to tm data structure

Returns the number of characters placed in the array s if the total including
the terminating null is not greater than n. Otherwise, the function returns 0
and the contents of array s are indeterminate.

The format parameters follow:
%a abbreviated weekday name
%A full weekday name

%b abbreviated month name
%B full month name

%c appropriate date and time representation
%d day of the month (01-31)
%H hour of the day (00-23)

%l hour of the day (01-12)

%j day of the year (001-366)
%m month of the year (01-12)
%M minute of the hour (00-59)
%p AM/PM designator

%S second of the minute (00-61)
allowing for up to two leap seconds

%U week number of the year where Sunday is the first day of week 1 (00-53)
%w weekday where Sunday is day 0 (0-6)

%W week number of the year where Monday is the first day of week 1
(00-53)

%x appropriate date representation

%X appropriate time representation

%y year without century (00-99)

%Y year with century

%Z time zone (possibly abbreviated) or no characters if time zone is
unavailable

%% percent character %

DS51685E-page 80

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

time

Description: Calculates the current calendar time.

Include: <time.h>

Prototype: time t time (time t *tod);

Argument: tod pointer to storage location for time

Return Value: Returns the calendar time encoded as a value of time t.

Remarks: If the target environment cannot determine the time, the function returns -1,
castas a time_t. This function requires the helper function gettimeofday,
which is not provided by default. Calendar time will be returned in seconds.

© 2007-2012 Microchip Technology Inc. DS51685E-page 81

32-Bit Language Tools Libraries

217 <MATH.H> MATHEMATICAL FUNCTIONS

The header file math.h consists of a macro and various functions that calculate com-
mon mathematical operations. Error conditions may be handled with a domain error or
range error (see Section 2.5 “<errno.h> Errors”).

A domain error occurs when the input argument is outside the domain over which the
function is defined. The error is reported by storing the value of EpoM in errno and
returning a particular value defined for each function.

A range error occurs when the result is too large or too small to be represented in the
target precision. The error is reported by storing the value of ERANGE in errno and
returning BUGE_VaL if the result overflowed (return value was too large) or a zero if the
result underflowed (return value is too small).

Responses to special values, such as NaNs, zeros, and infinities may vary depending
upon the function. Each function description includes a definition of the function’s
response to such values.

2171 Constants

HUGE_VAL

Description: HUGE VAL is returned by a function on a range error (e.g., the function tries to
return a value too large to be represented in the target precision).

Include: <math.h>

Remarks: -HUGE_VAL is returned if a function result is negative and is too large (in mag-
nitude) to be represented in the target precision. When the printed resultis +/-
HUGE_VAL, it will be represented by +/- inf.

2.17.2 Functions and Macros

acos

Description: Calculates the trigonometric arc cosine function of a double precision float-
ing-point value.

Include: <math.h>

Prototype: double acos (double x);

Argument: X value between -1 and 1 for which to return the arc cosine
Return Value: Returns the arc cosine in radians in the range of 0 to pi (inclusive).
Remarks: A domain error occurs if x is less than -1 or greater than 1.
acosf

Description: Calculates the trigonometric arc cosine function of a single precision float-
ing-point value.

Include: <math.h>
Prototype: float acosf (float x);
Argument: X value between -1 and 1

Return Value: Returns the arc cosine in radians in the range of 0 to pi (inclusive).
Remarks: A domain error occurs if x is less than -1 or greater than 1.

DS51685E-page 82

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

asin

Description: Calculates the trigonometric arc sine function of a double precision
floating-point value.

Include: <math.h>

Prototype: double asin (double x);

Argument: X value between -1 and 1 for which to return the arc sine

Return Value:

Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.

asinf

Description: Calculates the trigonometric arc sine function of a single precision
floating-point value.

Include: <math.h>

Prototype: float asinf (float x);

Argument: X value between -1 and 1

Return Value:

Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.

asinh

Description: Calculates the hyperbolic arc sine function of a double precision floating-point
value.

Include: <math.h>

Prototype: double asinh (double x);

Argument: X floating-point value

Return Value:

Returns the hyperbolic arc sine of x.

atan

Description: Calculates the trigonometric arc tangent function of a double precision
floating-point value.

Include: <math.h>

Prototype: double atan (double x);

Argument: X value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: No domain or range error will occur.

atan2

Description: Calculates the trigonometric arc tangent function of y/x.

Include: <math.h>

Prototype: double atan2 (double y, double x);

Arguments: vy y value for which to return the arc tangent
X x value for which to return the arc tangent

Return Value:

Remarks:

Returns the arc tangent in radians in the range of -pi to pi (inclusive) with the
quadrant determined by the signs of both parameters.

A domain error occurs if both x and y are zero or both x and y are +/- infinity.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 83

32-Bit Language Tools Libraries

atan2f

Description: Calculates the trigonometric arc tangent function of y/x.

Include: <math.h>

Prototype: float atan2f (float y, float x);

Arguments: vy y value for which to return the arc tangent
X x value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi to pi with the quadrant
determined by the signs of both parameters.

Remarks: A domain error occurs if both x and y are zero or both x and y are +/- infinity.

atanf

Description: Calculates the trigonometric arc tangent function of a single precision
floating-point value.

Include: <math.h>

Prototype: float atanf (float x);

Argument: X value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: No domain or range error will occur.

atanh

Description: Calculates the hyperbolic arc tan function of a double precision floating-point
value.

Include: <math.h>

Prototype: double atanh (double x);

Argument: X floating-point value

Return Value:

Returns the hyperbolic arc tangent of x.

cbrt

Description: Calculates the cube root of a double precision floating-point value.
Include: <math.h>

Prototype: double cbrt (double x);

Argument: X a non-negative floating-point value

Return Value:

Returns the cube root of x. If xis +INF, +INF is returned. If x is NaN, NaN is
returned.

ceil

Description: Calculates the ceiling of a value.

Include: <math.h>

Prototype: double ceil (double x);

Argument: X a floating-point value for which to return the ceiling.

Return Value:

Remarks:

Returns the smallest integer value greater than or equal to x.
No domain or range error will occur. See floor.

DS51685E-page 84

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

ceilf

Description: Calculates the ceiling of a value.
Include: <math.h>

Prototype: float ceilf (float x);
Argument: X floating-point value.

Return Value:

Returns the smallest integer value greater than or equal to x.

Remarks: No domain or range error will occur. See floorf.
copysign

Description: Copies the sign of one floating-point number to another.
Include: <math.h>

Prototype: double copysign (double x, double y);
Argument: X floating-point value

Return Value:

y floating-point value
Returns x with its sign changed to match the sign of y.

COSs

Description: Calculates the trigonometric cosine function of a double precision
floating-point value.

Include: <math.h>

Prototype: double cos (double x);

Argument: X value for which to return the cosine

Return Value:

Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if x is a NaN or infinity.

cosf

Description: Calculates the trigonometric cosine function of a single precision floating-point
value.

Include: <math.h>

Prototype: float cosf (float x);

Argument: X value for which to return the cosine

Return Value:

Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if x is a NaN or infinity.

cosh

Description: Calculates the hyperbolic cosine function of a double precision floating-point
value.

Include: <math.h>

Prototype: double cosh (double x);

Argument: x value for which to return the hyperbolic cosine

Return Value:

Remarks:

Returns the hyperbolic cosine of x
A range error will occur if the magnitude of x would cause overflow.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 85

32-Bit Language Tools Libraries

coshf

Description: Calculates the hyperbolic cosine function of a single precision floating-point
value.

Include: <math.h>

Prototype: float coshf (float x);

Argument: X value for which to return the hyperbolic cosine

Return Value:

Returns the hyperbolic cosine of x

Remarks: A range error will occur if the magnitude of x would cause overflow.
drem

Description: Calculates the double precision remainder function.

Include: <math.h>

Prototype: double drem(double x, double y)

Argument: X floating-point value

Return Value:

y floating-point value

Returns x - [x/y] * y, where [x/y] inthe value x divided by y, rounded
to the nearest integer. If [x/y] is equidistant between two integers, round to
the even one.

exp

Description: Calculates the exponential function of x (e raised to the power x where x is a
double precision floating-point value).

Include: <math.h>

Prototype: double exp (double x);

Argument: X value for which to return the exponential

Return Value:

Returns the exponential of x. On an overflow, exp returns inf and on an
underflow exp returns 0.

Remarks: A range error occurs if the magnitude of x would cause overflow.

expf

Description: Calculates the exponential function of x (e raised to the power x where x is a
single precision floating-point value).

Include: <math.h>

Prototype: float expf (float x);

Argument: X floating-point value for which to return the exponential

Return Value:

Remarks:

Returns the exponential of x. On an overflow, expf returns inf and on an
underflow exp returns 0.

A range error occurs if the magnitude of x would cause overflow.

DS51685E-page 86

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

expm1

Description: Calculates the exponential function X - 1.0.
Include: <math.h>

Prototype: double expml (double x);
Argument: X floating-point value

Return Value: Returns e* - 1.0, unless that value is too large to represent in a double, in
which case HUGE_VAL is returned.

Remarks: If a range error occurs, errno will be set.

fabs

Description: Calculates the absolute value of a double precision floating-point value.
Include: <math.h>

Prototype: double fabs (double x);

Argument: X floating-point value for which to return the absolute value

Return Value: Returns the absolute value of x. (A negative number is returned as positive, a
positive number is unchanged.)

Remarks: No domain or range error will occur.

fabsf

Description: Calculates the absolute value of a single precision floating-point value.
Include: <math.h>

Prototype: float fabsf (float x);

Argument: X floating-point value for which to return the absolute value

Return Value: Returns the absolute value of x. (A negative number is returned as positive, a
positive number is unchanged.)

Remarks: No domain or range error will occur.
finite

Description: Tests for the value “finite”.

Include: <math.h>

Prototype: int finite (double x);
Argument: X floating-point value

Return Value: Returns a non-zero value if x is neither infinite or “Not a Number” (NaN),
otherwise zero is returned.

floor

Description: Calculates the floor of a double precision floating-point value.
Include: <math.h>

Prototype: double floor (double x);

Argument: x floating-point value for which to return the floor.

Return Value: Returns the largest integer value less than or equal to x.
Remarks: No domain or range error will occur. See ceil.

© 2007-2012 Microchip Technology Inc. DS51685E-page 87

32-Bit Language Tools Libraries

floorf

Description: Calculates the floor of a single precision floating-point value.
Include: <math.h>

Prototype: float floorf(float x);

Argument: X floating-point value.

Return Value:

Returns the largest integer value less than or equal to x.

Remarks: No domain or range error will occur. See ceilf.
fmod
Description: Calculates the remainder of x/y as a double precision value.
Include: <math.h>
Prototype: double fmod(double x, double y);
Arguments: x a double precision floating-point value.
v a double precision floating-point value.

Return Value:

Returns the remainder of x divided by y.

Remarks: If y =0, a domain error occurs. If y is non-zero, the result will have the same
sign as x and the magnitude of the result will be less than the magnitude of y.

fmodf

Description: Calculates the remainder of x/y as a single precision value.

Include: <math.h>

Prototype: float fmodf (float x, float y);

Arguments: x a single precision floating-point value

Return Value:

v a single precision floating-point value
Returns the remainder of x divided by y.

Remarks: If y =0, a domain error occurs. If y is non-zero, the result will have the same
sign as x and the magnitude of the result will be less than the magnitude of y.

frexp

Description: Gets the fraction and the exponent of a double precision floating-point
number.

Include: <math.h>

Prototype: double frexp (double x, int *exp);

Arguments: x floating-point value for which to return the fraction and exponent

Return Value:

Remarks:

exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function returns
0 for both the fraction and exponent.

The absolute value of the fraction is in the range of 1/2 (inclusive) to 1
(exclusive). No domain or range error will occur.

DS51685E-page 88

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

frexpf

Description: Gets the fraction and the exponent of a single precision floating-point number.
Include: <math.h>

Prototype: float frexpf (float x, int *exp);

Arguments: x floating-point value for which to return the fraction and exponent

Return Value:

exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function returns
0 for both the fraction and exponent.

Remarks: The absolute value of the fraction is in the range of 1/2 (inclusive) to 1 (exclu-
sive). No domain or range error will occur.

hypot

Description: Calculates the Euclidean distance function.

Include: <math.h>

Prototype: double hypot (double x, double y);

Argument: x floating-point value

Return Value:

y floating-point value

Returns sqrt(x? + y2), unless that value is too large to represent in a double,
in which case HUGE_VAL is returned. If x or y is +INF or -INF, INF is returned.
If x or y is Nan, NaN is returned.

Remarks: If a range error occurs, errno will be set.
isinf

Description: Tests for the value “infinity.”

Include: <math.h>

Prototype: int isinf (double x);

Argument: X floating-point value

Return Value:

Returns -1 if x represents negative infinity, 1 if x represents positive infinity,
otherwise 0 is returned.

isnan

Description: Tests for the value “Not a Number” (NaN).
Include: <math.h>

Prototype: int isnan (double x);

Argument: X floating-point value

Return Value:

Returns a non-zero value if x represents “Not a Number” (NaN), otherwise 0
is returned.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 89

32-Bit Language Tools Libraries

Idexp

Description: Calculates the result of a double precision floating-point number multiplied by
an exponent of 2.

Include: <math.h>

Prototype: double ldexp (double x, int ex);

Arguments: x floating-point value

Return Value:

ex integer exponent

Returns x * 2%ex. On an overflow, 1dexp returns inf and on an underflow,
ldexp returns 0.

Remarks: A range error will occur on overflow or underflow.

Idexpf

Description: Calculates the result of a single precision floating-point number multiplied by
an exponent of 2.

Include: <math.h>

Prototype: float ldexpf (float x, int ex);

Arguments: x floating-point value

Return Value:

ex integer exponent

Returns x » 2%, On an overflow, 1dexp returns inf and on an underflow,
ldexp returns 0.

Remarks: A range error will occur on overflow or underflow.

log

Description: Calculates the natural logarithm of a double precision floating-point value.
Include: <math.h>

Prototype: double log(double x);

Argument: X any positive value for which to return the log

Return Value:

Returns the natural logarithm of x. -inf is returned if x is 0 and NaN is
returned if x is a negative number.

Remarks: A domain error occurs if x < 0.

log10

Description: Calculates the base-10 logarithm of a double precision floating-point value.
Include: <math.h>

Prototype: double 1logl0 (double x);

Argument: X any double precision floating-point positive number

Return Value:

Remarks:

Returns the base-10 logarithm of x. -inf is returned if x is 0 and NaN is
returned if x is a negative number.

A domain error occurs if x <0.

DS51685E-page 90

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

log10f

Description: Calculates the base-10 logarithm of a single precision floating-point value.
Include: <math.h>

Prototype: float loglOf (float x);

Argument: X any single precision floating-point positive number

Return Value:

Returns the base-10 logarithm of x. -inf is returned if x is 0 and NaN is
returned if x is a negative number.

Remarks: A domain error occurs if x <0.

log1p

Description: Calculates the natural logarithm of (1.0 + x).
Include: <math.h>

Prototype: double loglp (double x);
Argument: X floating-point value

Return Value:

Returns the natural logarithm of (1.0 + x).

Remarks: If x=-1, a domain error occurs and -INF is returned. If x < -1, a domain error
occurs and NaN is returned. If x is NaN, NaN is returned. If x is INF, +INF is
returned.

logb

Description: Calculates the unbiased exponent of a floating-point number.

Include: <math.h>

Prototype: double logb (x);

Argument: X floating-point value

Return Value:

Returns a signed integral value (in floating-point format) that represents the
unbiased exponent of x. If x is 0., -INF is returned. If x is INF, +INF is
returned. If x is NaN, NaN is returned.

logf

Description: Calculates the natural logarithm of a single precision floating-point value.
Include: <math.h>

Prototype: float logf (float x);

Argument: X any positive value for which to return the log

Return Value:

Remarks:

Returns the natural logarithm of x. -inf is returned if x is 0 and NaN is
returned if x is a negative number.

A domain error occurs if x <0.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 91

32-Bit Language Tools Libraries

modf
Description: Splits a double precision floating-point value into fractional and integer parts.
Include: <math.h>
Prototype: double modf (double x, double *pint);
Arguments: x double precision floating-point value
pint pointer to the stored integer part

Return Value:

Returns the signed fractional part and pint points to the integer part.

Remarks: The absolute value of the fractional part is in the range of 0 (inclusive) to 1
(exclusive). No domain or range error will occur.

modff

Description: Splits a single precision floating-point value into fractional and integer parts.

Include: <math.h>

Prototype: float modff (float x, float *pint);

Arguments: x single precision floating-point value
pint pointer to the stored integer part

Return Value:

Returns the signed fractional part and pint points to the integer part.

Remarks: The absolute value of the fractional part is in the range of 0 (inclusive) to 1
(exclusive). No domain or range error will occur.

pow

Description: Calculates x raised to the power y.

Include: <math.h>

Prototype: double pow (double x, double y);

Arguments: x the base

Return Value:

v the exponent
Returns x raised to the power y (x"y).

Remarks: If yis 0, pow returns 1. If xis 0.0 and y is less than 0 pow returns inf and a
domain error occurs. If the result overflows or underflows, a range error
occurs.

powf

Description: Calculates x raised to the power vy.

Include: <math.h>

Prototype: float powf (float x, float y);

Arguments: x base

Return Value:

Remarks:

v exponent
Returns x raised to the power y (x"y).

If yis 0, powf returns 1. If xis 0.0 and y is less than 0 powf returns inf and
a domain error occurs. If the result overflows or underflows, a range error
occurs.

DS51685E-page 92

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

rint

Description: Calculates the integral value nearest to x, in floating-point format.
Include: <math.h>

Prototype: double rint (double x);

Argument: X floating-point value

Return Value:

Returns the integral value nearest to x, represented in floating-point format.

Remarks: If xis +INF or -INF, x is returned. If xis Nan, NaN is returned.

sin

Description: Calculates the trigonometric sine function of a double precision floating-point
value.

Include: <math.h>

Prototype: double sin (double x);

Argument: X value for which to return the sine

Return Value:

Returns the sine of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if t x is a NaN or infinity.

sinf

Description: Calculates the trigonometric sine function of a single precision floating-point
value.

Include: <math.h>

Prototype: float sinf (float x);

Argument: X value for which to return the sine

Return Value:

Returns the sin of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if x is a NaN or infinity.

sinh

Description: Calculates the hyperbolic sine function of a double precision floating-point
value.

Include: <math.h>

Prototype: double sinh (double x);

Argument: X value for which to return the hyperbolic sine

Return Value:

Returns the hyperbolic sine of x

Remarks: A range error will occur if the magnitude of x is too large.

sinhf

Description: Calculates the hyperbolic sine function of a single precision floating-point
value.

Include: <math.h>

Prototype: float sinhf (float x);

Argument: X value for which to return the hyperbolic sine

Return Value:

Remarks:

Returns the hyperbolic sine of x
A range error will occur if the magnitude of x is too large.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 93

32-Bit Language Tools Libraries

sqrt

Description: Calculates the square root of a double precision floating-point value.
Include: <math.h>

Prototype: double sqgrt (double x);

Argument: X a non-negative floating-point value

Return Value:

Returns the non-negative square root of x.

Remarks: If x is negative, a domain error occurs.

sqrtf

Description: Calculates the square root of a single precision floating-point value.
Include: <math.h>

Prototype: float sqrtf (float x);

Argument: X non-negative floating-point value

Return Value:

Returns the non-negative square root of x.

Remarks: If x is negative, a domain error occurs.

tan

Description: Calculates the trigonometric tangent function of a double precision
floating-point value.

Include: <math.h>

Prototype: double tan (double x);

Argument: X value for which to return the tangent

Return Value:

Returns the tangent of x in radians.

Remarks: A domain error will occur if x is a NaN or infinity.

tanf

Description: Calculates the trigonometric tangent function of a single precision
floating-point value.

Include: <math.h>

Prototype: float tanf (float x);

Argument: X value for which to return the tangent

Return Value:

Returns the tangent of x

Remarks: A domain error will occur if x is a NaN or infinity.

tanh

Description: Calculates the hyperbolic tangent function of a double precision floating-point
value.

Include: <math.h>

Prototype: double tanh (double x);

Argument: X value for which to return the hyperbolic tangent

Return Value:

Remarks:

Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.
No domain or range error will occur.

DS51685E-page 94

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

tanhf

Description: Calculates the hyperbolic tangent function of a single precision floating-point
value.

Include: <math.h>

Prototype: float tanhf (float x);

Argument: X value for which to return the hyperbolic tangent

Return Value: Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.
Remarks: No domain or range error will occur.

© 2007-2012 Microchip Technology Inc. DS51685E-page 95

32-Bit Language Tools Libraries

2.18 <UNISTD.H> MISCELLANEOUS FUNCTIONS

The header file unistd.hincludes prototypes for helper functions that are not provided
by default. These functions must be customized for the target environment.

close

Description: Closes the file associated with fd.

Include: <unistd.h>

Prototype: int close(int f£d);

Argument: fd file descriptor of previously opened file.

Return Value:

This function returns 0 if successful and -1 to indicate an error.

Remarks: This function is not provided by the default libraries and is required to be pro-
vided if fclose () is used. This function should close a file. A file need not
necessarily be associated with a storage device. This function should return
-1 to signal an error and a strict implementation will set errno to some appro-
priate value such as EBADF or EIO.

link

Description: Create a new file.

Include: <unistd.h>

Prototype: int link(const char *from, const char *to);

Argument: from filename from which to link
to destination filename of link

Return Value:

Zero is returned to indicate success and -1 indicates an error condition.

Remarks: This function is not provided by default. Its purpose, in a file system, is to cre-
ate a new filename, to, which contains the same data as the file named
from. errno should also be set on error. This function is used by rename.

Iseek

Description: Modify the current read or write position within a file.

Include: <unistd.h>

Prototype: __off t lseek(int fd, _ off t offset, int whence);

Argument: fd file descriptor (returned by open) for file to seek
offset amount by which to seek
whence describes how to apply of fset to the current file position

Return Value:

Remarks:

1seek returns the resulting offset from the start of the file, measured in bytes.
The function returns -1 to indicate an error and sets errno. Appropriate val-
ues might be EBADF or EINVAL.

This function is not provided by default. This function is required to support
fflush, fseek, and ftell.

DS51685E-page 96

© 2007-2012 Microchip Technology Inc.

Standard C Libraries with Math Functions

read

Description: Read bytes from an already opened file

Include: <unistd.h>

Prototype: int read(int fd, void *buffer, size t length);
Argument: fd file from which to read

Return Value:

buffer
length

Returns the number of bytes read and stores those bytes into memory pointed
to by buffer. The value -1 is returned to signal an error and errno is set to
indicate the kind of error. Appropriate values may be EBADF or EINVAL,
among others.

storage buffer for at least 1ength bytes
maximum number of bytes to read

Remarks: This function is not provided by default. It is required to support reading files in
full mode, such as via fgetc, fgets, fread, and gets.

unlink

Description: Low level command to remove a file link.

Include: <unistd.h>

Prototype: int unlink (const char *name) ;

Argument: name file to be removed

Return Value:

Returns zero if successful and -1 to signify an error.

Remarks: This function is not provided by default and is required for remove and
rename. This function deletes a link between a filename and the file contents.
The contents are also deleted when the last link is destroyed. A file may have
multiple links to it if the 1ink function has been used.

write

Description: Low-level support function for writing data to an already opened file.

Include: <unistd.h>

Prototype: int write(int fd, void *buffer, size t length);

Arguments: fd file descriptor indicating which file should be written
buffer data to be written
length length, in bytes, of data to write

Return Value:

Remarks:

Returns number of characters written with -1 indicating an error condition.

This function is not provided by default. In the event that an error occurs,
errno should be set to indicate the type of error. Suitable values may be
EBADF or EINVAL, among others.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 97

32-Bit Language Tools Libraries

NOTES:

DS51685E-page 98 © 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 3. PIC32 DSP Library

3.1 INTRODUCTION

3.1.1 Overview

The PIC32 DSP library consists of a set of functions that are applicable to many multi-
media application areas. Most of the functions, like vector operations, filters, and
transforms, are commonly used in many DSP and multimedia applications.

Some functions are designed to be used in specific applications such as video decod-
ing or voice compression. It is beyond the scope of this manual to describe the
operation of such applications.

Functions whose performance is considered critical are implemented in assembly and
tuned where appropriate for a particular processor pipeline implementation and instruc-
tion set features. When a function is typically not considered to be performance critical,
or the benefit from an assembly implementation is not significant, it is implemented in
C. Often such functions perform initialization of data structures and are used only once
during the lifetime of an application.

Table 3-1 lists all the functions currently available in the DSP Library, arranged by cat-
egory, with the available implementation versions. All general purpose functions work
with data in 16-bit fractional format, also known as Q15. Some of the functions also
have a version that operates on 32-bit data in Q31 fractional format.

© 2007-2012 Microchip Technology Inc. DS51685E-page 99

32-Bit Language Tools Libraries

TABLE 3-1: GENERAL PURPOSE DSP LIBRARY FUNCTIONS BY CATEGORY
Category Function Name Description
mips_vec_abs16/32 Compute the absolute value of each Q15/Q31
vector element.
mips_vec_add16/32 Add the corresponding elements of two
0 Q15/Q31 vectors.
2 mips_vec_addc16/32 Add a constant to all elements of a vector.
(5]
5 mips_vec_dotp16/32 Compute dot product of two Q15/Q31 vectors.
"_c" mips_vec_mul16/32 Multiply the corresponding elements of two
® Q15/Q31 vectors. Can be used for applying
% windows.
-3 mips_vec_mulc16/32 Multiply all elements of a vector by a constant.
S mips_vec_sub16/32 Subtract the corresponding elements of two
Q15/Q31 vectors.
mips_vec_sum_squares16/32 | Calculate the sum of squares of elements of a
vector in Q15/Q31 format.
mips_fir16 Applies a block FIR filter to a Q15 vector.
mips_fir16_setup Prepare the filter coefficients for the mips_fir16
® function.
2 mips_iir16 Single-sample IIR filter.
L mips_iir16_setup Prepare the filter coefficients for the mips_iir16
function.
mips_Ims16 Single-sample LMS filter
mips_fft16 Compute the complex FFT of a vector contain-
ing Q15 complex samples, i.e., 16-bit fractional
real and imaginary parts.
g mips_fft16_setup Create a vector of twiddle factors used by the
§ (deprecated) mips_fft16 function.
2 mips_fft32 Compute the complex FFT of a vector contain-
©
= ing Q31 complex samples, i.e., 32-bit fractional
real and imaginary parts.
mips_fft32_setup Create a vector of twiddle factors used by the
(deprecated) mips_fft32 function.
mips_h264_iqt Inverse quantization and transform for H.264
decoding.
b mips_h264_iqt_setup Create inverse quantization matrix used by the
E mips_h264_iqt function.
mips_h264_mc_luma 1/4-pixel motion compensation for luma pixels
in H.264 video decoding.
3.1.2 Fixed-Point Types

Input and output data for most functions is represented in 16-bit fractional numbers, in
Q15 format. This is the most commonly used data format for signal processing. Some
function may use other data formats internally for increased precision of the intermedi-
ate results. The Q15 data type used by the DSP functions is specified as int16in the C
header files supplied with the library. This data type is defined in the common
dsplib_def.h header file.

Note that within C code care must be taken not to confuse fixed-point values with inte-
gers. To the C compiler, objects declared with int16 type are integers, not fixed-point,
and any arithmetic performed on those objects in C will be done as integers.
Fixed-point values have been declared as int16 only because the standard C language
does not include intrinsic support for fixed-point data types.

DS51685E-page 100

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

3.1.3 Saturation, Scaling, and Overflow

In the majority of DSP applications, overflow or underflow during computation is not
desirable. It is best to design for appropriate scaling of the data path and avoid the pos-
sibility of overflow and underflow. However, such scaling can significantly limit the
usable data range. Hence, many algorithm implementations relax the scaling and intro-
duce saturation operations that clip the values that would otherwise overflow to the
maximum or minimum limit of the data range.

Some of the general purpose DSP library module functions accumulate a series of val-
ues before producing the final result. Examples of these accumulations could include
the vector dot product calculation, the FIR filter, the sum of squared values and even
the FFT transform. All of these functions, with the exception of the FFT, include a
parameter that controls the output scaling, i.e., additional amount of right shift applied
when the result is converted to a Q15 value. The FFT results are automatically scaled
down by 2/092(N).

3.1.4 Array Alignment and Length Restrictions

For the sake of efficiency, most functions require that array pointer arguments are
aligned on 4-byte boundaries. Arrays of the int16 data type declared in C will be cor-
rectly aligned. Furthermore, there are often restrictions on the number of elements that
a function can operate on. Typically the number of elements must be a multiple of a
small integer (e.g., four or eight), and must be larger than, or equal to, a specified min-
imum. Note that to improve performance, the functions do not verify the validity of their
input parameters. Supplying incorrect parameters may lead to unpredictable results.

© 2007-2012 Microchip Technology Inc. DS51685E-page 101

32-Bit Language Tools Libraries

3.2

VECTOR MATH FUNCTIONS

mips_vec_abs16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Computes the absolute value of each element of indata and stores it to
outdata. The number of samples to be processed is given by the parameter
N.
Mathematically,

outdata[n] = abs(indata[N])

dsplib_dsp.h

void

mips vec_abslé

(
intl6 *outdata,
intl6 *indata,

int N
);
outdata: Output array of 16-bit fixed-point elements in Q15 format.
indata: Input array with 16-bit fixed-point elements in Q15 format.
N: Number of samples.

None.

» The pointers outdata and indata must be aligned on 4-byte boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_abs32

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Computes the absolute value of each element of indata and stores it to
outdata. The number of samples to be processed is given by the parameter
N.
Mathematically,

outdata[n] = abs(indata[N])

dsplib_dsp.h

void

mips vec abs32

(
int32 *outdata,
int32 *indata,

int N
)i
outdata: Output array of 32-bit fixed-point elements in Q31 format.
indata: Input array with 32-bit fixed-point elements in Q31 format.
N: Number of samples.

None.

« The pointers outdata and indata must be aligned on 4-byte boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

DS51685E-page 102

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_add16

Description: Adds each element of indata to the corresponding element of indata2. The
number of samples to be processed is given by the parameter N.
Mathematically,

outdata[n] = indata1[n]+indata2[n]

Include: dsplib_dsp.h

Prototype: void
mips vec_addlé
(
intl6 *outdata,
intl6 *indatal,
intl6 *indata2z,

int N
)

Argument: outdata: Output array of 16-bit fixed-point elements in Q15 format.
indatat: First input array with 16-bit fixed-point elements in Q15 format.
indata2: Second input array with 16-bit fixed-point elements in Q15 for-

mat.
N: Number of samples.

Return Value: None.

Remarks: * The pointers outdata, indata1, and indata2 must be aligned on 4-byte

boundaries.

» N must be larger than or equal to 4 and a multiple of 4.

mips_vec_add32

Description: Adds each element of indata to the corresponding element of indata2. The
number of samples to be processed is given by the parameter N.
Mathematically,
outdata[n] = indata1[n]+indata2[n]

Include: dsplib_dsp.h

Prototype: void
mips vec add32
(
int32 *outdata,
int32 *indatal,
int32 *indata2z,

int N
);

Argument: outdata: Output array of 32-bit fixed-point elements in Q31 format.
indatat: First input array with 32-bit fixed-point elements in Q31 format.
indata2: Second input array with 32-bit fixed-point elements in Q31 for-

mat.
N: Number of samples.

Return Value: None.

Remarks: « The pointers outdata, indata1, and indata2 must be aligned on 4-byte

boundaries.

« N must be larger than, or equal to, 4, and a multiple of 4.

© 2007-2012 Microchip Technology Inc. DS51685E-page 103

32-Bit Language Tools Libraries

mips_vec_addc16

Description: Adds the Q15 constant c to all elements of indata. The number of samples to
be processed is given by the parameter N.
Mathematically,
outdata[n] = indata[n]+c

Include: dsplib_dsp.h

Prototype: void
mips vec_ addclé6
(
intl6 *outdata,
intl6 *indata,

intl6é c,
int N
)i
Argument: outdata: Output array of 16-bit fixed-point elements in Q15 format.
indata: Input array with 16-bit fixed-point elements in Q15 format.
c: Constant added to all elements of the vector.
N: Number of samples.
Return Value: None.
Remarks: » The pointers outdata and indata must be aligned on 4-byte boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_addc32

Description: Adds the Q31 constant c to all elements of indata. The number of samples to
be processed is given by the parameter N.
Mathematically,
outdataln] = indata[n]+c

Include: dsplib_dsp.h
Prototype: void
mips vec addc32

(
int32 *outdata,
int32 *indata,

int32 c,
int N
)i
Argument: outdata: Output array of 32-bit fixed-point elements in Q31 format.
indata: Input array with 32-bit fixed-point elements in Q31 format.
c: Constant added to all elements of the vector.
N: Number of samples.

Return Value: None.

Remarks: » The pointers outdata and indata must be aligned on 4-byte boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

DS51685E-page 104 © 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_dotp16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Computes the dot product of the Q15 vectors indata1 and indata2. The num-
ber of samples to be processed is given by the parameter N. The scale
parameter specifies the amount of right shift applied to the final result.
Mathematically,

N-1

z indata1[n] xindata2[n]
n=20

result =
Zscale

dsplib_dsp.h

intle

mips vec dotpl6

(
intl6 *indatal,
intl6 *indata2,
int N,
int scale

)

indatat: First input array with 16-bit fixed point elements in Q15 format.
indata2: Second input array.

N: Number of samples.

scale: Scaling factor: divide the result by 25¢@€.

Scaled result of the calculation in fractional Q15 format.

» The pointers outdata and indata must be aligned on 4-byte boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 105

32-Bit Language Tools Libraries

mips_vec_dotp32

Description:

Include:
Prototype:

Argument:

Return Value:

Remarks:

Computes the dot product of the Q31 vectors indata1 and indata2. The num-
ber of samples to be processed is given by the parameter N. The scale
parameter specifies the amount of right shift applied to the final result.

Mathematically,
N-1

z indata1[n] xindata2[n]
n=20

result =

1
Zscale

dsplib_dsp.h

int32

mips vec dotp32

(
int32 *indatal,
int32 *indata2,
int N,
int scale

)

indatat: First input array with 32-bit fixed point elements in Q31 format.
indata2: Second input array.

N: Number of samples.

scale: Scaling factor: divide the result by 25¢@€,

Scaled result of the calculation in fractional Q31 format.

» The pointers outdata and indata must be aligned on 4-byte boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_mul16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Multiplies each Q15 element of indata1 by the corresponding element of
indata2 and stores the results to outdata. The number of samples to be pro-
cessed is given by the parameter N.
Mathematically,

outdata[n] = indata[n] x indata2[n]

dsplib_dsp.h

void

mips vec mullé

(
intl6 *outdata,
intl6 *indatal,
intl6 *indata2,

int N
);
outdata: Output array of 16-bit fixed-point elements in Q15 format.
indatat: First input array with 16-bit fixed-point elements in Q15 format.
indata2: Second input array.
N: Number of samples.

None.

» The pointers outdata, indata1, and indata2 must be aligned on 4-byte
boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

DS51685E-page 106

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_mul32

Description:

Include:
Prototype:

Argument:

Return Value:

Remarks:

Multiplies each Q31 element of indata1 by the corresponding element of
indata2 and stores the results to outdata. The number of samples to be pro-
cessed is given by the parameter N.
Mathematically,

outdata[n] = indata1[n] x indata2[n]

dsplib_dsp.h

void

mips vec mul32

(
int32 *outdata,
int32 *indatal,
int32 *indata2,

int N
);
outdata: Output array of 32-bit fixed-point elements in Q31 format.
indatat: First input array with 32-bit fixed-point elements in Q31 format.
indata2: Second input array.
N: Number of samples.

None.

» The pointers outdata, indata1, and indata2 must be aligned on 4-byte
boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_mulc16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Multiplies each Q15 element of indata by the Q15 constant ¢ and stores
the results to outdata. The number of samples to be processed is given
by the parameter N.
Mathematically,

outdata[n] = indata1[n] x ¢

dsplib_dsp.h

void

mips vec mulclé6

(
intl6 *outdata,
intl6 *indata,

intl6é c,
int N
);
outdata: Output array of 16-bit fixed-point elements in Q15
format.
indata: Input array with 16-bit fixed-point elements in Q15
format.
c: 16-bit fixed-point constant.
N: Number of samples.

None.

» The pointers outdata and indata must be aligned on 4-byte
boundaries.

» N must be larger than or equal to 4 and a multiple of 4.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 107

32-Bit Language Tools Libraries

mips_vec_mulc32

Description:

Include:
Prototype:

Argument:

Return Value:

Remarks:

Multiplies each Q31 element of indata by the Q31 constant ¢ and stores the
results to outdata. The number of samples to be processed is given by the
parameter N.
Mathematically,

outdata[n] = indata1[n] x ¢

dsplib_dsp.h

void

mips vec mulc32

(
int32 *outdata,
int32 *indata,

int32 ¢,

int N
);
outdata: Output array of 32-bit fixed-point elements in Q31 format.
indata: Input array with 32-bit fixed-point elements in Q31 format.
c: 32-bit fixed-point constant.
N: Number of samples.

None.

» The pointers outdata and indata must be aligned on 4-byte boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_sub16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Subtracts each element of indata2 from the corresponding element of
indata1. The number of samples to be processed is given by the parameter N.
Mathematically,

outdata[n] = indata1[n] — indata2[n]

dsplib_dsp.h

void

mips vec sublé6

(
intl6 *outdata,
intl6 *indatal,
intl6e *indata2z,

int N
)i
outdata: Output array of 16-bit fixed-point elements in Q15 format.
indatat: First input array with 16-bit fixed-point elements in Q15 format.
indata2: Second input array with 16-bit fixed-point elements in Q15 for-
mat.
N: Number of samples.

None.

« The pointers outdata, indata1, and indata2 must be aligned on 4-byte
boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

DS51685E-page 108

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_sub32

Description:

Include:
Prototype:

Argument:

Return Value:

Remarks:

Subtracts each element of indata2 from the corresponding element of
indata1. The number of samples to be processed is given by the parameter N.
Mathematically,

outdata[n] = indata1[n] — indata2[n]

dsplib_dsp.h

void

mips vec sub32

(
int32 *outdata,
int32 *indatal,
int32 *indata2z,

int N
);
outdata: Output array of 32-bit fixed-point elements in Q31 format.
indatat: First input array with 32-bit fixed-point elements in Q31 format.
indata2: Second input array with 32-bit fixed-point elements in Q31 for-
mat.
N: Number of samples.

None.

» The pointers outdata, indata1, and indata2 must be aligned on 4-byte
boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_sum_squares16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Computes the sum of squared values of all elements of indata. The number of
samples to be processed is given by the parameter N. The scale parameter
specifies the amount of right shift applied to the final result.

Mathematically,

N-1
result = Es—ZEE > indata[n]?

n=0

dsplib_dsp.h
intlé
mips vec sum squaresl6
(

intl6 *indata,

int N,

int scale
) i
indata Input array with 16-bit fixed-point elements in Q15 format
N Number of samples
scale Scaling factor: divide the result by 25¢@€,

Scaled result of the calculation in fractional Q15 format.

* The pointer indata must be aligned on a 4-byte boundary.
» N must be larger than or equal to 4 and a multiple of 4.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 109

32-Bit Language Tools Libraries

mips_vec_sum_squares32

Description: Computes the sum of squared values of all elements of indata. The number of
samples to be processed is given by the parameter N. The scale parameter

specifies the amount of right shift applied to the final result.
Mathematically,

N-1
= [2
result Zecale Z indata[n]
n=0
Include: dsplib_dsp.h
Prototype: int32
mips vec_ sum squares32
(
int32 *indata,
int N,
int scale
)i
Argument: indata: Input array with 32-bit fixed-point elements in Q31 format.
N: Number of samples.
scale: Scaling factor: divide the result by 25¢@€.

Return Value:
Remarks:

Scaled result of the calculation in fractional Q31 format.

* The pointer indata must be aligned on a 4-byte boundary.
» N must be larger than or equal to 4 and a multiple of 4.

DS51685E-page 110

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

3.3 FILTERING FUNCTIONS

mips_fir16

Description: Computes a finite impulse response (FIR) filter with coefficients specified in
coeffs2x over the input data samples in indata. The function updates the
delayline, which is used to initialize the filter the next time mips_fir16() is
called. The number of samples to be processed is given by the parameter N
and the number of filter coefficients is given by K. The scale parameter
specifies the amount of right shift applied to the final result.

Mathematically,

K-1
1 .
output[n] = Sscale Z indata[n - k] x coeffs[k]
k=0
Include: dsplib_dsp.h
Prototype: void
mips firlé

(
intl6 *outdata,
intl6 *indata,
intl6 *coeffs2x,
intl6 *delayline,
int N,
int K,
int scale

)

Argument: outdata: Output array with 16-bit fixed-point elements in Q15 format.
indata: Input array with 16-bit fixed-point elements in Q15 format.
coeffs2x: Array of 2K 16-bit fixed-point coefficients prepared by

mips_fir16_setup().
delayline: Delay line array holding the last K input samples.
N: Number of samples.
K: Number of coefficients (filter taps).
scale: Scaling factor: divide the result by 25¢@€.

Return Value: None.

Remarks: * The pointers outdata, indata, coeffs2x, and delayline must be aligned on
a 4-byte boundary.
* K must be larger than or equal to 4 and a multiple of 4.

Notes: The coeffs2x array is twice the size of the original coefficient array, coeffs.
The function mips_fir16_setup() takes the original coefficient array coeffs and
rearranges the coefficients into the coeffs2x array to enable more efficient
processing. All elements of the delayline array must be initialized to zero
before the first call to mips_fir16(). Both delayline and coeffs2x have formats
that are implementation-dependent and their contents should not be changed
directly.

© 2007-2012 Microchip Technology Inc. DS51685E-page 111

32-Bit Language Tools Libraries

mips_fir16 (Continued)

Example:

int 1i;
int K = 8;
int N = 32;

intl6 coeffs[K];
intl6 coeffs2x[2*K];
intl6 delayline[K];

intl6 indata([N];
intl6 outdatal[N];

for (1 = 0; 1 < K; 1i++)
delayline[i] = O;

// load coefficients into coeffs here

mips firl6 setup(coeffs2x, coeffs, K);
while (true)

{
// load input data into indata

mips firlé6 (outdata, indata, coeffs2x, delayline, N,
K, 3);

// do something with outdata

mips_fir16_setup

Description:

Include:
Prototype:

Argument:

Rearranges the coefficients from the input array, coeffs, into the output array
coeffs2x, which is used by the mips_fir16() function. The number of
coefficients to process is given by the parameter K.
dsplib_dsp.h
void
mips firl6 setup
(
intl6 *coeffs2x,
intl6 *coeffs,

int K
)i
coeffs2x: Output array holding 2K coefficients rearranged for
mips_fir16().
coeffs: Input array holding K 16-bit fixed-point coefficients in Q15
format.
K: Number of coefficients.

Return Value: None.

Remarks:
Note:

None.
This function is implemented in C.

DS51685E-page 112

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_iir16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Notes:

Computes a single-sample infinite impulse response (lIR) filter with coeffi-
cients specified in coeffs. The number of biquad sections composing the filter
is given by the parameter B. The scale parameter specifies the amount of
right shift applied to the input value of each biquad. Each biquad section is
specified by four coefficients — Aq, A,, B4, and B, — and has two state vari-
ables stored inside delayline.°+ The output of each biquad section becomes
input to the next one. The output of the final section is returned as result of the
mips_iir16() function.

The operations performed for each biquad section are illustrated below:

input 5 output‘
dsplib_dsp.h
intlé
mips iirlé
(
intl6 in,
intl6 *coeffs,
intl6 *delayline,
int B,
int scale
);
in: Input value in Q15 format.
coeffs: Array of 4B 16-bit fixed-point coefficients prepared by
mips_iir16_setup().
delayline: Delay line array holding 2B state 16-bit state variables.
B: Number of biquad sections.
scale: Scaling factor: divide the input to each biquad by 25¢@€.

IIR filter output value in fractional Q15 format.
» The pointers coeffs and delayline must be aligned on a 4-byte boundary.
* B must be larger than or equal to 2 and a multiple of 2.

The coeffs array contains four coefficients for each biquad. The coefficients
are conveniently specified in an array of biquad16 structures, which is con-
verted to the appropriate internal representation by the mips_iir16_setup()
function. All elements of the delayline array must be initialized to zero before
the first call to mips_iir16(). Both delayline and coeffs have formats that are
implementation-dependent and their contents should not be changed directly.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 113

32-Bit Language Tools Libraries

mips_iir16 (Continued)

Example: int i;
int B = 4;

biquadl6 bg[B];
intl6 coeffs[4*B];
intl6 delayline[2*B];

intl6 indata, outdata;

for (i = 0; 1 < 2*B; i++)
delayline[i] = 0;

// load coefficients into bqg here

mips iirl6é setup(coeffs, bg, B);
while (true)

{
// get input data value into indata

outdata = mips iirlé6(indata, coeffs, delayline, B,
2);

// do something with outdata

mips_iir16_setup

Description: Rearranges the coefficients from the input array, bq, into the output array
coeffs, which is used by the mips_iir16() function. The number of biquad
sections to process is given by the parameter B.
Include: dsplib_dsp.h
Prototype: void
mips iirl6 setup
(
intl6 *coeffs,
biquadl6 *bqg,

int B
)i
Argument: coeffs: Output array holding 4B coefficients rearranged for
mips_iir16().
bq: Input array holding Q15 coefficients for B biquad sections.
B: Number of biquad sections.
Return Value: None.
Remarks: None.
Notes: This function is implemented in C.

DS51685E-page 114

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_Ims16

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Notes:

Computes a Least Mean Squares (LMS) adaptive filter and updates its coeffi-
cients. The new coefficients are computed using the error between the last fil-
ter output and the reference signal ref. The function takes one input sample in
and computes one output sample. The parameter mu controls the adaptation
rate of the filter.
dsplib_dsp.h
intle6
mips lmsl6
(

intl6 in,

intl6 ref,

intl6 *coeffs,

intl6 *delayline,

intl6 *error,

intle6 K,
int mu
) i
in: Input value in Q15 format.
ref: Desired (reference) value in Q15 format.
coeffs: Input/output array of 16-bit fixed-point coefficients.
delayline: Delay line array holding the last K input samples.
error: Input/output value indicating the difference between the filter
output and the reference value.
K: Number of coefficients (filter taps).
mu: Adaptation rate in Q15 format.

LMS filter output value in Q15 format.

* The pointers coeffs and delayline must be aligned on a 4-byte boundary.

* K must be larger than or equal to 4 and a multiple of 2.

The order of the elements of the coeffs and delayline arrays is implementation

dependent. The delayline array must be initialized to zero before the first call
to mips_Ims16().

© 2007-2012 Microchip Technology Inc.

DS51685E-page 115

32-Bit Language Tools Libraries

3.4 FREQUENCY DOMAIN TRANSFORM FUNCTIONS

mips_fft16

Description: Computes the complex fast Fourier transform (FFT) of the input sequence
din. The number of samples to be processed is specified by the parameter
log2N: N = 2/092N_ The fftc array holds complex coefficients needed by the
FFT algorithm. The scratch hold intermediate data; its contents are destroyed
on each call to mips_fft16().

Mathematically,

; N-1 2k
_ i N
e e, X
output[n] SIog2N z din[n] xe
k=0
Include: dsplib_dsp.h
Prototype: void
mips fftlé
(
intle6c *dout,
intl6c *din,
intlec *fftc,
intl6c *scratch,
int log2N
)i
Argument: dout: Output array with 16-bit complex fixed-point elements in Q15
format.
din: Input array with 16-bit complex fixed-point elements in Q15
format.
fftc: Input array with 16-bit complex fixed-point twiddle factors in
Q15 format.
Scratch: Intermediate results array holding 16-bit complex fixed-point
data.
log2N: Logarithm base 2 of the number of samples: N = 2/092N,
Return Value: None.
Remarks: * The pointers dout, din, ffic, and scratch must be aligned on 4-byte
boundaries.
* log2N must be larger than or equal to 3.
Notes: The scratch array must be large enough to hold N 16-bit complex data

samples having 16-bit real part and 16-bit imaginary part.
Copying fftc to RAM prior to calling this function can be used to improve
performance.

DS51685E-page 116 © 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_fft16 (Continued)

Example: #include “fftc.h” // pre-computed coefficients
int log2N = 6; // log2(64) = 6
int N = 1 << log2N; // N = 2”6 = 64
intleéc din([N];
intl6c dout[N];
intl6c scratch[N];
#define fftc fftl6c64 // from fftc.h, for N = 64
while (true)
{

// load complex input data into din

mips fftl6(dout, din, fftc, scratch, log2N);
// do something with dout

mips_fft16_setup — Function Deprecated

Description: Calculates the twiddle factors need to compute an FFT of size N. The twiddle
factors are used by the mips_fft16() function. The number of samples to be
processed is specified by the parameter log2N: N = 2/0g2N

Include: dsplib_dsp.h
Prototype: void
mips fftl6 setup

(
intl6c *twiddles,

int log2N
);
Argument: twiddles: Output array containing N 16-bit complex twiddle factors.
log2N: Logarithm base 2 of the number of samples: N = 2/092N,
Return Value: None.
Remarks: This function requires floating-point support.
Notes: This function is implemented in C.

© 2007-2012 Microchip Technology Inc. DS51685E-page 117

32-Bit Language Tools Libraries

mips_fft32

Description: Computes the complex Fast Fourier Transform (FFT) of the input sequence
din. The number of samples to be processed is specified by the parameter
log2N: N = 2/092N_ The fftc array holds complex coefficients needed by the
FFT algorithm. The scratch hold intermediate data; its contents are destroyed
on each call to mips_fft32().

Mathematically,

/ N-1 _j2mkn
_ i N
= X
output[n] Slog2N Z din[n] xe
k=0
Include: dsplib_dsp.h
Prototype: void
mips fft32
(
int32c *dout,
int32c *din,
int32c *fftc,
intl132 *scratch,
int log2N
)i
Argument: dout: Output array with 32-bit complex fixed-point elements in Q31
format.
din: Input array with 32-bit complex fixed-point elements in Q31
format.
fftc: Input array with 32-bit complex fixed-point twiddle factors in
Q31 format.
Scratch: Intermediate results array holding 32-bit complex fixed-point
data.
log2N: Logarithm base 2 of the number of samples: N = 2/092N,
Return Value: None.
Remarks: » The pointers dout, din, fftc, and scratch must be aligned on 4-byte bound-

aries.
» log2N must be larger than or equal to 3.
Notes: The scratch array must be large enough to hold N 32-bit complex data

samples having 32-bit real part and 32-bit imaginary part.
Copying fftc to RAM prior to calling this function can be used to improve

performance.
Example: #include “fftc.h” // pre-computed coefficients
int log2N = 6; // log2(64) = 6

int N = 1 << 1log2N; // N = 276 = 64

int32c din[N];

int32c dout[N];

int32c scratch[N];

#define fftc fft32c64 // from fftc.h, for N = 64
while (true)

{

// load complex input data into din

mips fft32(dout, din, fftc, scratch, log2N);
// do something with dout

DS51685E-page 118 © 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_fft32_setup — Function Deprecated

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:
Notes:

Calculates the twiddle factors need to compute an FFT of size N. The twiddle
factors are used by the mips_fft32() function. The number of samples to be
processed is specified by the parameter log2N: N = 2/0g2N

dsplib_dsp.h
void
mips fft32 setup

(
int32c *twiddles,

int log2N
)i
twiddles: Output array containing N 32-bit complex twiddle factors.
log2N: Logarithm base 2 of the number of samples: N = 2/0g2N

None.
This function requires floating-point support.
This function is implemented in C.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 119

32-Bit Language Tools Libraries

3.5 VIDEO PROCESSING FUNCTIONS

mips_h264_iqt

Description: Combined inverse quantization and inverse transform function. The input
DCT coefficients are inverse quantized by multiplying them with correspond-
ing elements of the inverse quantization matrix. The results are transformed
by a 4x4|-element integer inverse DCT as specified in the H.264 video

compression standard.
Include: dsplib_video.h
Prototype: void
mips h264 iqgt
(
uint8 b[4][4]
intl6 c[4][4]
intle iqg[4][4

’

]

Argument: b: Output 4x4-pixel array in 8-bit unsigned integer format.

Input 4x4-element array of DCT coefficients in signed 16-bit

integer format.

iq: Inverse quantization matrix in signed 16-bit integer format.
Return Value: None.
Remarks: The pointers b, ¢, and iq must be aligned on 4-byte boundaries.
Notes: The mips_iqgt_setup() function can be used to initialize the iq array.
Example: uint8 b[4][4]

intl6 dct datal(4][4];
intl6 iq matrix([4][4];

// quantization parameter

int QP = 28;

// initialize the inverse quantization matrix
mips h264 igt setup(ig matrix, mips h264 ig coeffs, QP);

// load DCT data into dct_data

mips h264 igt(b, dct data, ig matrix);

DS51685E-page 120

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

mips_h264_iqt_setup

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:
Notes:

Computes the inverse quantization matrix used by the mips_iqt() function.
The default inverse quantization coefficient array as specified by the H.264
video compression standard is provided as mips_h264_iq_coeffs and can be
used in place of the q parameter.
dsplib_video.h
void
mips h264 igt setup
(

intlée iqg[4][4],

intle g[6][4][4],

intl6é gp

)i

iq: Output 4x4-element inverse quantization matrix in signed
16-bit integer format.

q: Input 6x4x4-element inverse quantization coefficient array in
signed 16-bit integer format.

qp: Quantization parameter.

None.

None.

This function is implemented in C.

© 2007-2012 Microchip Technology Inc.

DS51685E-page 121

32-Bit Language Tools Libraries

mips_h264_mc_luma

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:
Example:

This function computes 1/4-pixel motion compensation for luma blocks as
specified by the H.264 video compression standard. The function performs all
necessary interpolations depending on the fractional offset of the desired
block as specified by the dx and dy input parameters. Note, however, that
there is no special handling of cases that cross the picture edge. It is
expected that the image will be enlarged by four pixels in each direction and
the pixels along the edges of the image will be replicated to the expanded
borders.
dsplib_video.h
void
mips h264 mc luma
(

uint8 b[4][4],

uint8 *src,

int ystride,

int dx,
int dy
)i
b Output 4x4-pixel array in 8-bit unsigned integer format.
src Pointer to the top-left pixel of the source image block.
ystride Vertical stride, i.e., distance in bytes between corresponding

pixels on adjacent rows.

dx, dy Fractional pixel offsets multiplied by four, e.g., dx = 1 specifies
a 1/4-pixel offset.

None.

The offsets dx and dy must have values between 0 and 3 inclusive.

uint8 b[4][4];
uint8 luma [HEIGHT] [WIDTH];

int ystride = WIDTH;

// obtain 1/4-pixel coordinates of desired block
int x4 = ...;
int yv4 = ...;

// compute the integer and fractional parts
int x = x4 >> 2;

int vy = yv4 >> 2;

int dx4 = x4 & 0x03;

int dy4 = y4 & 0x03;

mips h264 mc luma (b, &lumaly][x], ystride, dx4, dy4);

DS51685E-page 122

© 2007-2012 Microchip Technology Inc.

PIC32 DSP Library

3.51 MIPS Technologies Inc.’s DSP Library Notices:

Please note that the following notices apply to the MIPS Technologies Inc. DSP Library.
Copyright © 2003, 2005, 2006, 2007 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other
countries.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS
Technologies™). Any copying, reproducing, modifying or use of this information (in whole or in part) that
is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly
prohibited. At a minimum, this information is protected under unfair competition and copyright laws.
Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft
Word format) is subject to use and distribution restrictions that are independent of and supplemental to any
and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED
IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT
THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve
function, design or otherwise. MIPS Technologies does not assume any liability arising out of the
application or use of this information, or of any error or omission in such information. Any warranties,
whether express, statutory, implied or otherwise, including but not limited to the implied warranties of
merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS Technologies or an authorized third party, the furnishing of this
document does not give recipient any license to any intellectual property rights, including any patent
rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released,
directly or indirectly, in violation of the law of any country or international law, regulation, treaty,
Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States
of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial
computer software, commercial computer software documentation or other commercial items. If the user
of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government (“Government”), the use,
duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for
civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies.
The use of this information by the Government is further restricted in accordance with the terms of the
license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS 1, MIPS II, MIPS III, MIPS 1V, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64,
MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo,
MIPS-VERIFIED, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc,
5Kf, 20K, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24K Ec, 24KEf, 25Kf, 34K, 34Kc, 34K f, R3000, R4000, R5000,
ASMACRO, Atlas, “At the core of the user experience.”, BusBridge, CorExtend, CoreFPGA, CoreLV,
EC, JALGO, Malta, MDMX, MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2,
SmartMIPS, SOC-it, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in
the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

© 2007-2012 Microchip Technology Inc. DS51685E-page 123

32-Bit Language Tools Libraries

NOTES:

DS51685E-page 124 © 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 4. PIC32 Debug-Support Library

41 OVERVIEW

This library supports both the Application Input/Output debugging feature and the
PIC32 Starter Kit Debug I/O feature.

411 Application Input/Output with printf() and scanf()

Many PIC32 devices support the APPIN/APPOUT debugging feature. This PIC32 fea-
ture allows the PIC32 application to write text or data to an MPLAB IDE window,
invoked from the Tools menu, without halting the target device. Similarly, you may use
the display window to send text or data back to the target PIC32 device. This feature
requires an MPLAB REAL ICE emulator or MPLAB ICD 3 debugger.

41.2 Starter Kit Debug Print Mechanism with DBPRINTF() and
DBSCANF()

A similar target input/output feature is available for the PIC32 Starter Kit (DM320001)
featuring the PIC32MX360F512L MCU and the PIC32 USB Starter Board (DM320003)
featuring the PIC32MX460F512L MCU.

The print output functionality is routed to the Output window on the MPLAB PIC32MX
tab of the interface window.

For input using the Starter Kit, MPLAB IDE uses a TargetIN window. To send text to the
target, type your text into the Enter Information to be Sent to Target box, and click
Send.

4.2 CONFIGURING DEBUG INPUT/OUTPUT FOR THE TARGET AND TOOL

The debug-support library, for both the APPIN/APPOUT mechanism and the Starter Kit
mechanism, works by providing alternate I/O helper functions: mon write (),
_mon_putc (),and mon getc(), as described in Section 2.13.2 “Customizing
STDIO”. These alternate functions use the APPIN/APPOUT or Starter Kit mechanism
as requested in the project. These debug-support function implementations override
the default helper I/O function implementations.

You can choose which implementation to use by defining a preprocessor symbol. To
choose the APPIN/APPOUT implementation, pass the -mappio-debug option to
pic32-gcc.exe. To choose the PIC32 Starter Kit implementation, pass

-DPIC32 STARTER KIT to the compiler shell. Also use #include <p32xxxx.h>to
include the generic header file in your source code.

With one of the above options passed to the compiler and the sys/appio.h include file
added to your source code, the debugging-support library provides alternate 1/0 helper
functions to the linker. These alternate I/O helper functions redirect stdin and stdout
to the appropriate debugging mechanism. Standard I/O functions now use the selected
mechanism.

© 2007-2012 Microchip Technology Inc. DS51685E-page 125

32-Bit Language Tools Libraries

4.3 <SYS/APPIO.H> PIC32 DEBUGGING SUPPORT

The sys/appio.hheader file contains conditional-compilation directives that cause the
compiler to pull in the correct aliased functions. In addition, it provides macros that
simplify enabling and disabling the debugging feature.

DBINIT()

Description: Selects the appropriate mechanism (APPIN/APPOUT or Starter Kit)
and initializes buffering as appropriate. When the -mappio-debug
option is passed to the compiler, the init function initializes the debug
library for APPIN/APPOUT. When the -DPIC32 STARTER KIT optionis
passed to the compiler, the init function initializes the debug library
for the PIC32 Starter Kit.

The APPIN/APPOUT mechanism disables stdin/stdout buffering
while the PIC32 Starter Kit mechanism uses default line buffering.

Include: <sys/appio.h>

Remarks: Behaves as ((void) 0) when APPIO debugging or Starter Kit 1/0
debugging is not enabled.

DBPRINTF()

Description: Calls printf () butis enabled only with the -mappio-debug or
-DPIC32 STARTER_KIT option. When one of these options is not
specified on the compiler command line, DBPRINTF () behaves as
((void)0) and printf is not called.

Include: <sys/appio.h>

Remarks: Behaves as ((void) 0) when APPIO debugging or Starter Kit 1/0
debugging is not enabled via the -mappio-debug or
-DPIC32 STARTER KIT option. Use this macro to insert messages
that should print only when debugging.

DBSCANF()

Description: Calls scanf (). Available for only the APPIN/APPOUT mechanism,
not for the PIC32 Starter Kit mechanism.

Include: <sys/appio.h>

Remarks: Behaves as ((void)0) when APPIN/JAPPOUT debugging is not
enabled via the -mappio-debug Or -DPIC32 STARTER KIT option.
Use this macro to read formatted input that should read only when
debugging. PIC32 Starter Kit users should consider bBGETS instead.

DBGETC(canblock)

Description: Get a single char from the input mechanism.

Include: <sys/appio.h>

Remarks: Behaves as ((void) 0) when APPINJAPPOUT debugging or Starter

Kit I/O debugging is not enabled via the -mappio-debug or
-DPIC32 STARTER KIT option.

DS51685E-page 126

© 2007-2012 Microchip Technology Inc.

PIC32 Debug-Support Library

DBGETWORD(int canblock)

Description: Read a 32-bit word from the APPIN mechanism. Available only for the
APPIN/APPOUT mechanism, not for the PIC32 Starter Kit mechanism.

Include: <sys/appio.h>

Remarks: Behaves as ((void) 0) when APPIN/APPOUT debugging is not enabled via
the -mappio-debug or ~-DPIC32 STARTER KIT option.

DBPUTC(char c)

Description: Writes a single char to the output mechanism

Include: <sys/appio.h>

Remarks: Behaves as ((void) 0) when APPIN/APPOUT debugging or Starter Kit 1/0

debugging is not enabled via the -mappio-debug or
-DPIC32 STARTER KIT option.

DBPUTWORD(int w)

Description: Writes a 32-bit integer word to the APPOUT mechanism. Available only for
the APPIN/APPOUT mechanism, not for the PIC32 Starter Kit mechanism.

Include: <sys/appio.h>

Remarks: Behaves as ((void) 0) when APPIN/APPOUT is not enabled via the -map-
pio-debug or -DPIC32 STARTER KIT option.

Example #include <p32xxxx.h>
Code: int main (void)
{
int num;
char buf[256] ={0};
DBINIT () ;

while (1)
{
DBPRINTF ("Hello there!\n");
DBPRINTF ("Enter a string\n");
#1if defined(iAPPloiDEBUG)
DBSCANF ("%s", &buf[0]);
#elif defined(PIC32 STARTER KIT)
DBGETS (&buf[0],128);
#endif
DBPRINTF ("Entered \”%s\”\n\n", &buf[0]);

printf ("Prints to UART2 by default or APPOUT when
enabled\n") ;
}

return 0;

© 2007-2012 Microchip Technology Inc. DS51685E-page 127

32-Bit Language Tools Libraries

NOTES:

DS51685E-page 128 © 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Appendix A. ASCII Character Set

TABLE A-1: ASCII CHARACTER SET

Most Significant Character

Hex 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ | NAK % 5 E u e u
Least 6 ACK | SYN & 6 F \Y f v
Significant 7 Bell ETB 7 G w g w
Character 8 BS CAN (8 H X h X
9 HT EM) 9 I Y i y
A LF SuUB * J z j z
B VT ESC + K [k {
C FF FS , < L \ I |
D CR GS - = M 1 m }
E SO RS . > N A n ~
F SI us / ? o] _ o DEL

© 2007-2012 Microchip Technology Inc. DS51685E-page 129

32-Bit Language Tools Libraries

NOTES:

DS51685E-page 130 © 2007-2012 Microchip Technology Inc.

MICROCHIP

32-BIT LANGUAGE TOOLS

LIBRARIES

Appendix B. Types, Constants, Functions and Macros

_IOFBF
_IOLBF
_IONBF

* _mon_getc
* _mon_putc
+ abort

» abs

* acos

* acosf
 asctime

* asin

* asinf

* asinh

* asprintf

» assert

+ atan

+ atan2

+ atan2f

+ atanf

+ atanh

+ atexit

* atof

* atoi

+ atol

« atoll

* bsearch

* BUFSIZ

+ calloc

» cbrt

* cell

* ceilf

« CHAR BIT
+ CHAR_MAX
« CHAR_MIN
* clearerr

* clock
 clock_t

+ CLOCKS_PER_SEC
*+ close

* copysign

cos
cosf

cosh

coshf

ctime

DBL_DIG
DBL_EPSILON
DBL_MANT _DIG
DBL_MAX
DBL_MAX 10 _EXP
DBL_MAX_EXP
DBL_MIN

DBL _MIN_10_EXP
DBL_MIN_EXP
difftime

div

div_t

drem

EBADF

EDOM

EINVAL
ENOMEM

EOF

ERANGE

erro

exit
EXIT_FAILURE
EXIT_SUCCESS
exp

expf

expm1

fabs

fabsf

fclose

feof

ferror

fflush

ffs

ffsl

fgetc

fgetpos

fgets

FILE
FILENAME_MAX
finite

floor

floorf

FLT _DIG
FLT_EPSILON
FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MIN_EXP
FLT_RADIX
FLT_ROUNDS
fmod

fmodf

fopen
FOPEN_MAX
fpos_t

fprintf

fputc

fputs

fread

free

freopen

frexp

frexpf

fscanf

fseek

fsetpos

ffsll

ftell

fwrite

getc

getchar

getenv

© 2007-2012 Microchip Technology Inc.

DS51685E-page 131

32-Bit Language Tools Libraries

gets
gettimeofday (User Pro-
vided)

gmtime
HUGE_VAL
hypot

INT_MAX
INT_MIN

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

isinf

islower

isnan

isprint

ispunct

isspace

isupper

isxdigit

jmp_buf
L_tmpnam

labs

LDBL_DIG
LDBL_EPSILON
LDBL_MANT_DIG
LDBL_MAX
LDBL_MAX_10_EXP
LDBL_MAX_EXP
LDBL_MIN
LDBL_MIN_10_EXP
LDBL_MIN_EXP
Idexp

Idexpf

Idiv

Idiv_t

link

llabs

lldiv

lIdiv_t
LLONG_MAX
LLONG_MIN
localtime

log

log10

log10f

log1p

logb

logf
LONG_MAX
LONG_MIN
longjmp
Iseek

malloc
MB_CUR_MAX
MB_LEN_MAX
mblen
mbstowcs
mbtowc
memchr
memcmp
memcpy
memmove
memset
mktime

modf

modff

NULL (stddef.h)
offsetof

open

perror

pow

powf

printf
ptrdiff_t

putc

putchar

puts

gsort

raise

rand
RAND_MAX
read

realloc
remove
rename
rewind

rint

scanf
SCHAR_MAX
SCHAR_MIN
SEEK _CUR
SEEK _END

SEEK_SET
setbuf

setjmp
settimeofday (User Pro-
vided)

setvbuf
SHRT_MAX
SHRT_MIN
sig_atomic_t
SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGFPE
SIGILL
SIGINT

signal
SIGSEGV
SIGTERM

sin

sinf

sinh

sinhf

size_t (stddef.h)
size_t (stdio.h)
size_t (string.h)
size_t (time.h)
snprintf
sprintf

sqrt

sqrtf

srand

sscanf

stderr

stdin

stdout
strcasecmp
strcat

strchr

strcmp

streoll

strcpy

strcspn
strerror
stritime

strlen
strncasecmp
strncat

DS51685E-page 132

© 2007-2012 Microchip Technology Inc.

Types, Constants, Functions and Macros

* strncmp
* strncpy
* strpbrk
* strrchr
 strspn

* strstr

* strtod

* strtof

* strtok

* strtol

« strtoll

* strtoul

* strtoull

+ struct timeval
+ struct tm
* strxfrm
* system

* tan

* tanf

* tanh

* tanhf

» time

* time_t

+ TMP_MAX

* tmpfile

* tmpnam

* tolower
 toupper

+ UCHAR_MAX
* UINT_MAX

* ULLONG_MAX
+ ULONG_MAX
* ungetc

* unlink

USHRT_MAX
va_arg
va_end
va_list
va_start
vfprintf
vfscanf
vprintf
vscanf
vsnprintf
vsprintf
vsscanf
wchar_t
wcstombs
wctomb
write

© 2007-2012 Microchip Technology Inc.

DS51685E-page 133

32-Bit Language Tools Libraries

NOTES:

DS51685E-page 134 © 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Appendix C. 16-Bit DSP Wrapper Functions

C.1 INTRODUCTION

The PIC32 DSP wrapper functions are intended to help port existing 16-bit application
software using dsPIC® DSP library functions to PIC32 with the least modifications in

the software. The wrapper functions internally call the DSP library functions provided
by MIPS Technologies. The wrapper functions are available for some of the functions
supported by dsPIC DSP library.

Note: The DSP libraries from MIPS Technologies support a variety of signal
processing functions that have applicability in speech compression, echo
cancellation, noise cancellation, channel equalization, audio decoding, and
many other DSP and media applications. It is always advisable for the new
users to use MIPS Technologies DSP libraries.

C.2 PIC32 DSP WRAPPER FUNCTIONS LIST

These functions are supported by the DSP wrapper functions for PIC32 MCUs:

* VectorAdd16

* VectorAdd32

» VectorDotProduct16
* VectorDotProduct32
» VectorMultiply16

» VectorMultiply32

* VectorScale16

» VectorScale32

» VectorSubtract16

» VectorSubtract32

* VectorPower16

* VectorPower32

* FIR

* FFTComplex16

» TwidFactorlnit16

* FFTComplex32

» TwidFactorlnit32

© 2007-2012 Microchip Technology Inc. DS51685E-page 135

32-Bit Language Tools Libraries

C3
LIBRARY

DIFFERENCES BETWEEN WRAPPER FUNCTIONS AND dsPIC® DSP

P1C32 DSP wrapper function names, input parameters and return parameters are
maintained the same as that of dsPIC DSP library. However, these are some

differences:

TABLE C-1:

DIFFERENCES IN WRAPPER FUNCTIONS

PIC32 DSP

Name

Wrapper Function

FIR (int numSamps, TwidFactorlnit16 (int log2N,
short int* dstSamps, fractcomplex16* twidFactors,
short int* srcSamps, int conjFlag)

FIRStruct* filter

TwidFactorlnit32 (int log2N,
fractcomplex32* twidFactors,
int conjFlag)

DSP Library

Differences with
Corresponding
Function of dsPIC®

Some of the parameters of the
structure “FIRStruct” are not
necessary for PIC32 library
function. Hence, it is not
necessary to initialize these
parameters before the FIR
function is called. These
parameters are namely:
filter->coeffsEnd,

filter -> coeffsPage,
filter->delay End,
filter->delay

There is a provision in the
“TwidFactorlnit” function of dsPIC
library, either to generate or not
generate a complex conjugates of
twiddles. It is controlled by flag
“conjFlag”. There is no such facility
in the PIC32 DSP library.
“TwidFactorlnit16” and
“TwidFactorlnit32” in PIC32 do not
generate a complex conjugate of
twiddles. However, the parameter
is kept in the function prototype of
“TwidFactorlnit” of PIC32 to make
it compatible with dsPIC.

DSP Library

General Comments
Regarding PIC32

Number of coefficients in filter -
(filter->numCoeffs) must be larger
than or equal to 4 and multiple of
4.

Note 1:
2:

PIC32 supports both 16-bit and 32-bit vector math operations.

The current version of PIC32 DSP wrapper functions does not support
floating-point calculations.

For all the vector math operations, the number of samples must be larger
than or equal to 4 or multiple of 4.

log2N must be larger than or equal to 3 for function “FFTComplex16” and
“FFTComplex32”.

All the source and destination pointers used for math operations must be
aligned on 4-byte boundaries.

The include file for these DSP wrapper functions is
mchp_dsp_wrapper.h.

DS51685E-page 136

© 2007-2012 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Index
Symbols APPENG ...ttt 70,73
LA O =1 SO R 50 arccosine
FILE_ oo 14 Double Floating Point................ccooovvvviiciie. 82
TLINE 14 Single Floating Point.............cccoooviiiiiinne, 82
JOFBF s 35, 50 arcsine
TOLBF oo 35, 50 Double Floating Point...........ccoccvviniiiiieeecneen. 83
TIONBE oo 36, 50 Single Floating Point..........ccccoooiiiiiiiiiice, 83
TIMON_PULC v eseeee e 38 arctangent
NSETUMP ... 28 Double Floating POINt...........cccccooverinvcvnicnnnen 83
B o N N 50 Single Floating Point............coooiiiiiniiinns 84
\f, FOMM FEEM w..oivvveevaneeeecoeee e 17 arctangentof yix
\n, NEWIINeccocceeervrrne. 17, 34, 40, 42, 45, 46, 48 Double Floating POint...........cccoovvvervinvvcriennecnnns 83
\r, Carriage REMUMo..ooveeeeeeeeeeeeeeeeeeeseeereeeneae 17 Single Floatlng Point.....ccoviii 84
\t, Horizontal Tab......c.c.ocveveveecce e 17 Argument List
\v, Vertical Tabcoocoooeiiiiiiiieee e 17 Array Alignment and Length Restrictions................ 101
BHE oo 25 ASCII Character Set............ccoooviiiiiviiniii 129
HNCIUGE ..o 14 BSCHME ... 8
0/0’ PErCeNt .o 47, 49, 50, 80 ASIN e 83
ASINT . 83
Numerics SINN... oo 83
(0 RSO PUTR 17, 46, 65, 66 aSPIiNt oo 38
A ASSEIMT .ot 14
ASSEIT.N oo 14
Abnormal Termination Signal..............co.cocooeviinnne. 30 =TT o SR 14
=1 0o] o SRR 57 ASSIGNMENt SUPPIESSION ...eeveeeeee e, 49
ADS e ————— 57 ASEIISK oo 46, 49
Absolute Value BTN .. 83
Double Floating Point ..., 87 ATANZ .. 83
INEEGEr. ..o o7 1= 174 O 84
Long INEQer. ..o 60 AANT .o 84
Single Floating Point.............coovviiiiniiinnnn. 87 AtANN L 84
Absolute Value Function ALEXIL. oo 57,60
ADS o7 (o] {F SRR 57
faDS 87 1 (o] ISR 58
FADSE....ee 87 BHON e 58
JADS ..o 60 G0Nl 58
Access Mode
Binary ... 41 B
T Xt e 41 BaSE ..o 65, 66
ol o 1= U 82 10 e 21, 22,23, 24,90, 91
ACOST e 82 2 e 23
Allocate MEemOrYccuuiiieiiiiiiiiee e 61 L= PRSPPI 90, 91
CAllOC. ...t 59 FLT_RADIX ..ot 21,22,23,24
Free e 60 Binary
FEAIIOC ... 63 BaSE....oi i 23
Alphabetic Character MOAE ... 41, 51
Definedooiiiiiiie e 15 SEArCh...ciiii i 59
BT 0 (o SRR 15 StrEaMS. ..o 34
Alphanumeric Character Bitfields......oooeiieiiiiee e 33
Definedcooovieeiee e 15 DSEAICH ... 59
B =TS 8 (o] N 15 BUFfer Size.........eeeeiiiiiieeee e 36, 50
AM/PM o 80 Buffering Modescoocviiiiiiiiiiieceeeeee 50

© 2007-2012 Microchip Technology Inc. DS51685E-page 137

32-Bit Language Tools Libraries

Buffering, See File Buffering

BUFSIZ ... 36, 50
C
(O3 o Tz S 15,27
Calendar TiMe.........coovvveevveeieeeeeeeeeeeeenen, 77,78,79, 81
(o711 [0TSR 59, 60
Caret (M) oo 50
Carriage Return.........coooiiviiiiieeeeeee e 17
CBIt e 84
CIL e 84
CeIIT e 85
ceiling

Double Floating Point...........cccceeviiiiiniiecinneenn. 84

Single Floating Pointccccoviiieiiiieeeeee, 85
char

Maximum Valuecccooiiiieee 25

Minimum Valueccocoooiiiiiii 25

Number of BitScooiiiiie 25
CHAR _BIT oot 25
CHAR _MAX .. 25
CHAR_MIN....oiiie e 25
Character Arraycoooeeeereee e 50
Character Case Mapping

Lower Case Alphabetic Character 18

Upper Case Alphabetic Character 18
Character Case Mapping Functions

TOIOWET ... 18

L1010] o= S 18

Character Handling, See ctype.h
Character Input/Output Functions

FOOIC e 39
FOEES e 40
FPULC oo 42
FPULS oo 42
GEIC o 44
etChar ... 45
LS 1 45
PULC et 47
o101] - P 48
PULS ettt 48
UNGELC .ot 52
Character Testing
Alphabetic Characterccccvvveiiiieieniiees 15
Alphanumeric Characterc.cccoccvveeeeeennne 15
Control Character..........ccceeeeeviciee e 15
Decimal Digit........ocueeeeiiiiiieeeeee 16
Graphical Character.........ccccocoviiiiiiiiicce, 16
Hexadecimal Digitccooceviniiiiiiiiiniiee e 17
Lower Case Alphabetic Character 16
Printable Character...........ccccooveiiiienineee 16
Punctuation Charactercccccevieeviceennnenn. 17
Upper Case Alphabetic Character 17
White-Space Character............ccocceeiiieveniinennns 17
Character Testing Functions
ISAINUM ... 15
15221 o - S 15
ISCNE .. 15
£ o |1 SR 16
ISGIAPN e 16
ISIOWET ..t 16

157 0] | S 16
157 0 o SR 17
ISSPACE ... enirieeeiie ettt 17
[E70] o] o= AU PPOPPPR PPN 17
ISXAIGIE .. 17
Characters
Alphabetic ..., 15
Alphanumeric ..o, 15
(7] 0117 PP 15
Convert to Lower Case Alphabetic.................... 18
Convert to Upper Case Alphabetic.................... 18
Decimal Digit.........coooiiiiiiiiiiiie e 16
GraphiCal.........ccoceviiiiiiiiiieeeeccee e 16
Hexadecimal Digitccooviiiiiiiiiieee e 17
Lower Case Alphabeticcccccceeiniiiniinene 16
Printable ..o 16
Punctuationccoooiiii 17
Upper Case Alphabetic.........ccccccceeveieieeeennneen. 17
White-Space.........cccouueeeeiiiiiiiee e, 17
Classifying Characterscccocceviiieevieeece e 15
ClEAIEIT ...t 38
Clearing Error Indicatorcccoeeviiieeeeeeiien. 38, 96
ClOCK e 78
o1 o T3 QN SO 76,78
CLOCKS_PER_SEC ...t 77
ClOSE .. 96
Common Definitions, See stddef.h
Compare StrNGSc.veveiiieiiieeee e 7
Comparison Functioncccccieiiiiiieieeennneen. 59, 63
Comparison Functions
(L= 03170] o S 69
SITCMP oo 71
SECOl . 71
SENCMP . 73
SUXTTIM L 75
Compiler Options
-fno-short-double..............cccviiiiiii e 34
“MSMAM-I0 .. 34
Concatenation Functions
Streat .o 70
StrNCat ..o, 73
Control Character
Defined.......cceiiiiieee e 15
LIS 0 (o SR 15
Control Transfers..........uoii i 28
(076101711 (o] o IS 46, 49, 51
Convert
Character to Multibyte Character 67
Multibyte Character to Wide Character-............. 62
Multibyte String to Wide Character String......... 62
String to Double Floating Point 57, 64
String to Integer........ooovviiiii 58
String to Long Integer.........ccocoviiiiiieiiiinenns 58, 65
String to Unsigned Long Integer 65, 66
To Lower Case Alphabetic Character 18
To Upper Case Alphabetic Character 18
Wide Character String to Multibyte String......... 66
Copying Functions
MEMCPY ..tveteeeeeireeeee e e e reereeee e et ee e s e eneneee s e e ennee 69
MEMIMOVE ...iiiiiiiieeeeiiiieeee e ettt e e e e e neeeee e e e 70

DS51685E-page 138

© 2007-2012 Microchip Technology Inc.

MEMSELoiiiiiiiiiii e 70
SECPY ot 7
SENCPY e 73
COPYSIGN .ottt ettt ee et e et ere e e e 85
(o1 1= SRS 85
COST e 85
COSN e 85
COSIF L 86
cosine
Double Floating Pointccccoeiiiiiieiiieenne 85
Single Floating Point...........ccccoiiviiiiiieceen 85
ClIME e 78
CRYPE.N e 15
ISAINUIM L.t 15
ISASCil 1 eteee e e ettt 15
ISCNE e 15
ISAIGIt. et 16
ISGrAPN . 16
iSIAPNA ... 15
ISIOWE ...t 16
ISPIING 1ttt 16
ISPUNCE .. 17
ISSPACEeee it ettt 17
(1510 o] o 1= SN 17
ISXAIGIt ... 17
TOIOWEN . 18
TOUPPET .. 18
Current Argumentoceeeiiieiniie e 32
Customer Notification Service..........cccccovvveiniiennenn. 8
Customer SUPPOrt........coeeeiiiiieeeeecee e, 9
D
[= o I 50
Date and TiMecoeeeiiiii e 80
Date and Time Functions, See time.h
Day of the Month............oocoiiiiiie 77,78,80
Day of the Weekccoooiiiiiie 77,78, 80
Day of the Year ... 77,80
Daylight Savings Timeccccoviiiieviiiiieiiiee e 77,79
DBGETC(canblock)........cccuvueeiiiieeiiee e 126
DBGETWORD(int canblock)...........cccceeiererninrnne. 127
DBINIT() cereeeeieeciiieeeiiie e e e 126
DBL_DIG.....oiiiiiiie ettt 21
DBL_EPSILONoooiiiiiieeieeeee e 21
DBL_MANT_DIG ...ooiiiiiieeiieeee e 21
DBL_MAX ..ot 21
DBL_MAX_10_EXP ..o 21
DBL_MAX_EXP ..ot 21
DBL_MIN .o 21
DBL_MIN_10_EXP ..ooiiiiiiieiieeee e 21
DBL_MIN_EXP ..eoiiiiiiiieeie e 22
DBPRINTF().eeeiiiieeeieeeeee e 126
DBPUTC(Char €) ..ccuveveiieeeeciiie e 127
DBPUTWORD(Nt W)..ooevieeiiieeeiiee e 127
DBSCANF() weeeieieeeiiiieiieee e 126
Deallocate MemOrycccveeiiiiiiiiiie e 60, 63
Debugging LOgiC Errorsooocceveeiiiiniieeeeenieeennn 14
Decimalcoooiiiiiiiieceeeeeee 47, 50, 65, 66
Decimal Digit
Definedooviiiiie e 16
Number Of ... 21,22,23

=] 0 o 16
Decimal Point........ccoooiiiiiiiicccee e 46
Default Handleroovvvviiieeiieieeeeee e 29

Diagnostics, See assert.h

Diagnostics, See unistd.h

AIfftimMe ... 78
Digit, Decimal, See Decimal Digit

Digit, Hexadecimal, See Hexadecimal Digit

Direct Input/Output Functions

frEad .. oo 42
TWIIEE oo 44
IV e 56, 59
AIV e 56
Divide
INtEGET ... 59
Long INteger.......ooovveiiiiiiiiiieee e 61
Divide by Zero ... 30, 59
Documentation
ConNVENtiIONSeveieiiiieeee e 6
Layout ... 5
Domain Error........ 19, 82, 83, 84, 85, 88, 90, 91, 93, 94
Ot e 46
Double Precision Floating Point
Machine Epsilon........cccccvviviiiiiiiiiiiiieieeeeeeeeeee, 21
Maximum Exponent (base 10).......cccccccceeeenneenn. 21
Maximum Exponent (base 2)ccccceeeeveereeenn. 21
Maximum Valueccoeciiiiiiiiiiicc e 21
Minimum Exponent (base 10).........ccccoccevernnneen. 21
Minimum Exponent (base 2)cccoceeeirieeenne 22
Minimum Valueccocoiiiie 21
Number of Binary DigitSccccevriiireriieeennenn. 21
Number of Decimal Digitscccecevvevieeeennenn. 21
dOUDIE TYPE ..o 34
Dream FUNCHON........cccoiiiiiiieee e 46
AFEM . 86

100

E
EBADF ...t 19
EDOM .ot 19
110 (o] o TN 82
EINVAL ..o 19
EIlPSES (1) toveeeeiiiie it 32,50
Empty Binary File ..., 41
Empty Text File ... 41
ENd Of FIl€ covvveieeeeeeeeeeeeeeeeeeeeee e 36
INdiCatorovvveeee e, 34
SEEK ...t 43
B =TS A e R 39
ENOMEM ...ttt 19
Environment Function
GEIENV Lo 60
= L R 36
ERANGE ... 19
EIANGE ...t 82
EITNO ..ttt e et e e e e e e e e e e et e e e es 19, 20, 82
EITNO.N ..o 19, 82
EBADF ... 19
EDOM ...t 19
EINVAL .o 19

© 2007-2012 Microchip Technology Inc.

DS51685E-page 139

32-Bit Language Tools Libraries

ENOMEM.....ooooeiieieeeeeeeeeeeeeeeeeeeee e 19
ERANGE ..o 19
(=1 0 (o TR 20
Error CodeSuuuuiiiiiiiieeieeeeiee e 19,72
Error Conditionscevvuieeiieeiieeeeeeee e 82
Error Handler...........oooovviiiiiieeieeeeceeeee e, 59
Error Handling Functions
ClEAreIT ... 38, 96
L{<Y) R 39
L{<] g (0] S 39
PEITON .ottt 46
Error Indicatorcoovvvviiiiiiiieeie e 34
Error Indicators
Clearing......ceeeerieeeeee e 38,49, 96
ENd Of File ..ovveeeiieie e, 38,40
=4 o] 38,40
B =TS A e] 39
Error Signaloocveeeiiieeee e 29
Errors, See errno.h
Errors, Testing For ... 19
EXCeption Errorccveiiiiiieiee e 59
EXIt e 51, 57,60
EXIT_FAILUREooiiiiiiie e 56
EXIT _SUCCESS ... 56
EXP weeterrreretattea e e e e e e e —————————————aaaaaaaaaaaaaaaa e 86
EXPT e 86
EXPMT Lo 87
Exponential and Logarithmic Functions
XD ceee ettt 86
EXPT e 86
FEEXP e 88
FrEXPF oo 89
IAEXP et 90
[AEXPS .. 90
JOG ettt 90
10910 e 90
(oo 1 0 ST 91
oo | SRR 91
L0000 T | NN 92
(0000 T | 1 IR 92
Exponential Function
Double Floating Point...........cccoooiiiiinne 86
Single Floating Point...........cccovivieiiiieiiee e 86
F
FADS e 87
L£=] 01 87
L{e1[0 X1 TSRS 38, 96
FEOT e 38, 39
L(ST (o] SN 38, 39
(1 (o 97
FAUSH e 39, 96
£ 68
FOOIC o 39
FOEIPOS v 40
FQOLS e 40, 97
Field WIdthoeeeeeeeeeeeeeeeeeeee e 46
U 14, 34, 35
File Access Functions
FClOSE .. e 38
FUSH oo, 39

FOPEN e 41
frEOPEN ..o 43
SetbUF L. 50
SEtVDUT. ..o 50
File Access Modesoceveeeeeeeeeeeeieeieinnn. 34,41
File Buffering
Fully Buffered..........cccooeoeiiieeiieeeeeee e 34,35
Line Buffered...........coceivieiniiiiieeeeeee 34,35
Unbufferedceeeeiiiiiiiieiee e 34, 36
File Operations
REMOVE ..o 48
Rename.........oooiiiiii e 48
File Positioning Functions
fOEIPOS oo 40
FSEEK .. 43
FSELPOS .. e 44
L1 U SPP 44
FEWING.....eiiiiee et 49
FILENAME_MAX.....oiiiiieiiiie e 36
File-Position Indicator.................. 34, 35, 39, 40, 42, 44
Files, Maximum Number Open............ccccceeiiininnen.n. 36
NI e 87
Fixed-Point TYPEScceeviiiiiiiiiii e 100
112 Lo PR 46
Float.Neee e 21
(]2 I][O 21
DBL_EPSILON......ccocoiiiieeeeiee e 21
DBL_MANT _DIG....cccoiiiieeeeiee e 21
DBL_MAX ..ottt 21
DBL_MAX_10_EXP ...ooiiiiiiiieeeee e 21
DBL_MAX_EXP ..ooiiiiieeeee e 21
(]2 I 1V [21
DBL_MIN_10_EXP ..ooiiiiieeieeeeee e 21
DBL_MIN_EXP ..ot 22
FLT DIG oo 22
FLT_EPSILON ...ooiiiiiiiieee e 22
FLT_MANT_DIG ... 22
FLT_MAX e 22
FLT_MAX_10_EXP.cooiiiiieiie e 22
FLT _MAX_EXP ..ooiiiiiiieeeee e 22
FLT_MIN oo 22
FLT_MIN_10_EXP ..ooiiiiiiie e 22
FLT_MIN_EXP ..o 23
FLT_RADIX .eiiiiiieeee e 23
FLT_ROUNDS ...ttt 23
LDBL_DIG.....oiiiiiiieeie e 23
LDBL_EPSILON.....ccciiiiie e 23
LDBL_MANT _DIG....ccceiiiieeiieeeeee e 23
LDBL_MAX ...t 23
LDBL_MAX_10_EXP ..cooiiiieiiiiee e 23
LDBL_MAX_EXP ..ccoiieieeeeee e 24
LDBL_MIN.....oiiiiiiiieie e 24
LDBL_MIN_10_EXP ...ooiiiiieiiieeeee e 24
LDBL_MIN_EXP ...ooiiiiieeee e 24
Floating Point
LIMIitS .o 21
Types, Properties Ofcccociiiiiiiiiiiiiee, 21
Floating Point, See float.h
Floating-Point Error Signalccccovvieiiiieiiiienns 30
1[0 o SRS 87

DS51685E-page 140

© 2007-2012 Microchip Technology Inc.

Double Floating Point ... 87
Single Floating Point..........cccocooiviiiiiiee e, 88
FlOOI e 88
FLT DIG oot 22
FLT _EPSILON ...t 22
FLT_MANT_DIG ...oiiiiiiieiee e 22
FLT _IMAX et 22
FLT_MAX_10_EXP i 22
FLT_MAX_EXP .ot 22
FLT _MIN oo 22
FLT_MIN_10_EXP ..o 22
FLT_MIN_EXP ... 23
I O ¥] 23
FLT_RADIX Digit
Number Ofcoooieiiiieee e 21,22,23
FLT_ROUNDSooiiiiiieciieeee e 23
FIUSH <o 39, 60
L1001 Yo S 88
FNOAF e 88
-fno-short-double...........ccccoiiiiiiiiiiiie e 34
fOPEN o 34, 41,45, 50
FOPEN_MAX ..ot 36
Form Feed ... 17
Format Specifiers.........cccoveeeevciiiieeiccieee e 46, 49
Formatted 1/0O Routines..........cccoevieieiiiiiieeiieee 34
Formatted Input/Output Functions
FPIINE - 41
fSCANT ..o 43
PRNT e 46
SCANT i 49
SPINE oo 51
SSCANT ..o 51
VIDIINE e 52
VPINE e 53
VSPINE oo 54
Formatted Text
Printing......oooiiii e 51
SCANNING .eei et 51
FPOS_t o 35
fPrINt o 34, 41
FPULC o 42
FPULS oo 42
fraction and exponent function
Double Floating Point ... 88
Single Floating Point...........ccccoiiiiiiinieceen 89
Fraction DigitSccooveeiiniiiiiieeeiiiee e 46
(Y= Lo 42, 97
LT USSR 60
Free Memory......c..uoeiiiieee e 60
frEeOPEN ... 34,43, 45
FTEXD ct ettt 88
FrEXPT e 89
fSCANT ... 34,43
FSEEK e 43,52, 96
fSEPOS .t 44,52
L] OSSR 68
11 G | PO 44, 96
FUull BUFfEringcocuveeieieceee e 50
Fully Buffered...........coooveiiiieeiiiiecee e 34,35
FWHIEE et 44

G
GEIC i 44
getChar ... 45
GEIENV L 60
LS i 45,97
gettimeofday.........cccooviiiiiiii 79
GMT e 79
IMEIME (e 79
Graphical Character
Defined.......cooiiiieeee e 16
LIS 0 (o S 16
Greenwich Mean Timeccccooiiiiiiiiiiieeeee, 79
H
hmodifier ... 47,49
Handler
Default........cc..oooii e 29
EFTOr ..o 59
Nested.....oouiiie e 28
SIGNAL e 29
SigNal TYPE .o 29
Handling
Interrupt Signal..........ccccooiiiiiiiii e 31
Header Files
ASSEIT.N oo 14
CHYPE.N e 15
EIMNO. N 19, 82
floath oo 21
HMIES. N e 25
locale.n ... 27
Math.N e 82
SetimpP.h oo 28
SIGNALN ..o 29
Stdarg.N.....oeei i 32
stddef.h .o 33
SEAION Lo 34
StAID. N 56
SHNG.N e 68
SYS/@PPI0.N ..o 126
tME.N L 76
UNIStd.h oo 96
Hexadecimalcccoooiieiiiiii 47,50, 65, 66
Hexadecimal Conversionc..cccoevveeeiiieeeceenene 46
Hexadecimal Digit
Defined.....cccieeiieee e 17
TeStfOr e 17
Horizontal Tab ... 17
HOUN e 77,78, 80
HUGE_VAL ... 82
Hyperbolic Cosine
Double Floating Point...........ccocvviiiiinieeecneen. 85
Single Floating Point..........ccccooiiiiiiiiiicie, 86
Hyperbolic Functions
COSN e s 85
COSF 1. 86
SINN L 93
SINNT . 93
FANN L 94
tanhf . e 95
Hyperbolic Sine

© 2007-2012 Microchip Technology Inc.

DS51685E-page 141

32-Bit Language Tools Libraries

Double Floating Point...........cccoooiiieiiiiie 93

Single Floating Pointccccoviiiiiiiiiineee. 93
Hyperbolic Tangent

Double Floating Point...........ccceeeiiiiiniiciineene 94
hyperbolic tangent

Single Floating Point...........ccccoviiiiiiiieiieee 95
NYPOL . 89
|
IgNore Signalcoeiiviiiiiieie e 29
lllegal Instruction Signalcccccveiviiiieiiiieeeeee e 30

Implementation-Defined Limits, See limits.h
Indicator

End Of File .ccueiiiiieeee e 34, 36

EFrOr . 34,39

File Positioncccocvriieceennnn. 34, 39,40, 42, 44
INFINIEY o 82
Input and Output, See stdio.h
INnput FOrmatsooocvviiiii e 34
int

Maximum Valueccccoooiiiiiie e 25

Minimum Valuecooooeiiii e, 25
INT_MAX ..t 25
INT_MIN e 25
Integer LimitS........oooiiiiiiiee e 25
Internal Error Message..........ccooecvveeriieeiiiec e 72
Internet Address, Microchip.........ccccccvvvviiieiiienereneeenn. 8
Interrupt Signal.........ccooooiiiiiie e 30
Interrupt Signal Handling..........ccccooviieiieieieee. 31

Inverse Cosine, See arccosine
Inverse Sine, See arcsine
Inverse Tangent, See arctangent

[0] =] 35,50
IOLBF ...t 35,50
10N =] 36, 50
ISAINUM ... 15
(532 T o | SRR 15
ISCNEI e 15
£ o |1 OO 16
ISGIAPN . 16
557) SO ES 89
ISIAPNA ... 15
ISIOWET ..ot 16
(1] g F= 1 o D PO P PP PR TRTRTRPIN 89
1] o] | USRI 16
1] o] o I 17
(1515 o 7= o7 SRR 17
[ET0] o] o= PP UP PP UUUPPPPR 17
ISXAIGIE + e 17
J

JMP_BUF L 28
JUSTITY o 46
L

L mMOdifier ..cooveeeeeeeeeeee e 47,49
[g a ol 1) =Y USSR 47,49
L tMpnam ... 36, 52
[ADS...eeee 60
LC _ALL ittt 27
LC_COLLATE ...t 27

LC _CTYPE ... it 27
LC_MONETARY ... 27
LC_NUMERIC ...t 27
LC TIME ...t 27
1CONV, SIUCE ... 27
LDBL_DIG ...iiiiieeee e 23
LDBL_EPSILON ...t 23
LDBL_MANT _DIG.....coiiiieiiieeeeee e 23
LDBL_MAX ...ttt 23
LDBL_MAX_10_EXP ...eoiieiieeeeeeeceeeeee e 23
LDBL_MAX_EXP ...ooiiiiiiieciiee et 24
LDBL_MIN ...coiiiiiiiee e 24
LDBL_MIN_10_EXP...cooiiiiieieieeeeeee e 24
LDBL_MIN_EXP ...t 24
IAEXP ce e 90
IAEXPT .t 90
LIV e 56, 61
Lo N SRR 56
Leap Secondcccovveeeiiiiiiiieee e 77,80
Left JUSHIfY .eoeiee e 46
Libraries
Standard C ..o 13
Standard C Math ..., 82
Limits
Floating Point ..., 21
INEEGE .. 25
HMIES. N e 25
CHAR BITS ...t 25
CHAR _MAX ...t 25
CHAR_MIN ..o 25
INT_MAX e 25
INT_MIN. e 25
LLONG_MAX ..t 25
LLONG_MIN ..o 25
LONG_MAX. oottt 25
LONG_MIN. ..oiiiiiiee e 25
MB_LEN_MAX. ... 26
SCHAR_MAX ..ot 26
SCHAR _MIN ...ooiiiiiiiiieecee e 26
SHRT_MAX .. it 26
SHRT_MIN. ..o 26
UCHAR _MAX ...t 26
UINT_MAX. e 26
ULLONG_MAX . .eiieiiee it 26
ULONG_MAX ...t 26
USHRT_MAX. .o 26
LINE . 14
Line Buffered...........ccoeeviiiiniiiie e 34,35
Line BUFferingcccoeevoeeiiiee e 50
BNK e 48, 96, 97
I mMOdIfier ..o 47,49
HADS ... 61
BV e 56, 61
NIVt e 56
LLONG_MAX ..ottt 25
LLONG_MIN ...ttt 25
Load Exponent Function
Double Floating Point...........ccccoeiiiiiiiinieeeee 90
Single Floating Pointccccoiiiiiiiiiiiiiiee 90
Local TiIMeueeeieiiiieieee e 78,79

DS51685E-page 142

© 2007-2012 Microchip Technology Inc.

[oTo7=] [T OO 15, 27
Locale, Otherooovueeeieeei e, 27
10CAlE.N ... 27
[OCAIECONV ..ot 27
Localization, See locale.h
localtime ... 78,79
Locate Characterccoeoeivieniieeee e 71
[OG e 90
10GT0 - 90
1OGT0f . 91
JOGTP et 91
Logarithm Function

Double Floating Point ... 90

Single Floating Point..........cccocoovviiiiiiiiee e 91
Logarithm Function, Natural

Double Floating Pointcccccooiiiiiiiiieene 90

Single Floating Point...........ccccoiiviiiiiiccee, 91
1OGD <.

Logic Errors, Debugging
Long Double Precision Floating Point

Machine EpSiloncccooeeiiiiiiiiiicieceeee 23
Maximum Exponent (base 10)........c.cccceevveennnne 23
Maximum Exponent (base 2).........ccccceeeineennne 24
Maximum Value ..o 23
Minimum Exponent (base 10).......cccccceeviieennne 24
Minimum Exponent (base 2).........cccccceeviieenns 24
Minimum Valueccoooiiiiie e 24
Number of Binary DigitS..........ccocveiiiieeiniiennns 23
Number of Decimal Digitscccvviveeiiiienns 23
long int
Maximum Value ... 25
Minimum Valueccoooiiiiiie e 25
long long int
Maximum Valuecccociiiiiiieeeeee 25
Minimum Value ... 25
long long unsigned int
Maximum Value ..o 26
long unsigned int
Maximum Valuecccociiiiiiiiiice e 26
LONG_MAX ...ttt 25
LONG_MIN ..ottt 25
[ONGIMP e 28
Lower Case Alphabetic Character
(070] 01771 o S o TSR 18
Definedooviiiiiie e 16
TeStOr i 16
ISEEK....vi ittt 39, 43, 44, 45, 96
M
Machine Epsilon
Double Floating Point ... 21
Long Double Floating Pointccceeiiinis 23
Single Floating Point...........ccciiiiiinieceen 22
Magnitudeoooiiii s 86, 88, 93
[007=1 | Lo o TSR 60, 61
Mapping Characters..........ccccoreiiiieeenee e 15
Math Exception Errorcccccvvveiieiieieiiee e 59
MAtN.N 82
A0S, 1ottt a e e e e 82
ACOST. oo 82

= 1S3] OSSP 83
= 1] 83
ASINN e 83
AlAN. . e 83
= 1 ¢= | 012N 83
=1 7= 0 24 T 84
AtANT. e 84
atanh ..o 84
(o] o A 84
Lo | DN 84
L7 1| N 85
COPYSIGN 1ttt 85
COS ettt eiee e e e e e ettt e e e e e e e e e e e aaaaaaeaaas 85
(o7 1= 85
[o70 1] [N 85
FoT0 1] | N 86
Lo [(=70 0 [N 86
1= (o T 86
EXPT 86
1= (o] 1. 87
FADS oo 87
FADST e 87
fINIEE e, 87
L[0T 87
L[0T o 88
.87 o I 88
fFMOAF ..., 88
FIEXD ettt 88
FrEXPT e 89
HUGE _VAL....ooiiiiee e 82
NYPOL .. 89
1531 89
ISNAN .o, 89
[AEXP et 90
IAEXPS - 90
[OG et 90
10910 e 90
(oo 1 0 SR 91
[OGTP et 91
1OGD . 91
[OGF e 91
070 Yo | 92
[0 To Yo L 92
POW eieieieeieeeeeeeeeeeeeeeeesesesneenn e eraeeeeeeeaaaaeaeeas 92
POWT <.t 92
(410 SRR 93
SN s 93
SINT s 93
SINN Lo 93
SINNF e 93
SO e 94
SAM e 94
BAN e 94
BANT s 94
AN 94
tANNT e ———— 95
Mathematical Functions, See math.h
Maximum
Multibyte Character...........cccoooveviiiiiniicieeee 56

Maximum Value

© 2007-2012 Microchip Technology Inc.

DS51685E-page 143

32-Bit Language Tools Libraries

Double Floating-Point Exponent (base 10)....... 21
Double Floating-Point Exponent (base 2)......... 21
Long Double Floating-Point Exponent (base 10)..
23
Long Double Floating-Point Exponent (base 2) 24
Multibyte Character...........ccccovoveiiienineeen 26
FANA ... s 57
Single Floating-Point Exponent (base 10)......... 22
Single Floating-Point Exponent (base 2)........... 22
TYPE Char ... 25
Type DoubIe......ccoviiiiiiieiec e 21
TYPE Nt oo 25
Type Long Double...........ccccooviiiiiiiiiie 23
Type long inteeiiiiii e 25
Typelong long int........ccoooeiiiiiiiiiii e 25
Type long long unsigned int...........ccoceveiiinenns 26
Type long unsigned int..........ccccooviiiiiieiniiinene 26
Type shortint ... 26
Type signed char ... 26
Type SiNGIE .. 22
Type unsigned charccccceevvieiiiieeeniieens 26
Type unsigned int.........cccceeiiiiinie e 26
Type unsigned shortint...........cccoceeiiieiinieens 26
MB_CUR_MAX ...ttt 56
MB_LEN_MAX ..ottt 26
MBDIBN < 62
MBDSIOWCES ...t 62
MBDEOWC ...t 62
MEMCAT L. 69
MEMCIMIP .eeeeeee et te e e e e eeeeaeeeaeeeeeeesesenannnnes 69
MNEIMCPY - nettteee e ettt e e e ettt e e e e et ee e s e sneeee e e e e aeneeeee s 69
MEMIMOVEcvviiiiriieeiree e sree e esre e e sreeeesrneeesneee e 70
Memory
Allocateoooeeeeeeeeee e 59, 61
Deallocatecooveeveiiiiiiiiiiecee 60
Free. .. 60
Reallocateooceeeiiiiii 63
MEMSEL ... 70
Minimum Value
Double Floating-Point Exponent (base 10)....... 21
Double Floating-Point Exponent (base 2)......... 22
Long Double Floating-Point Exponent (base 10)..
24
Long Double Floating-Point Exponent (base 2) 24
Single Floating-Point Exponent (base 10)......... 22
Single Floating-Point Exponent (base 2)........... 23
TYPE Char ... 25
Type Double..........coooiiiiiiiiiie e 21
TYPE Nt oo 25
Type Long Double...........cccooviiiiiiiiie 24
Type 1oNg int ... 25
Type long long int........ccooceiiiiiiiiiieceeee 25
Type shortint ..o 26
Type signed char ... 26
TYpPe SiNGIE ..o 22
MINUEE .o 77,78, 80
MIPS Technologies Inc.’s DSP Library Notices 123
MIPS_FIT16...cceeeiie 116
Mips_fit16_Setupccoevriiiii 117
MIPS_ft32. .o 118

mips_fft32_setup.......ccooeiviieii e, 119
MIPS_fir16 .. 111
MIPS_fir16_setupoccoeiiiiiiie e 112
MIPS_h264_iqt......cceeiiiiiiiiiee e 120
mips_h264_igt_setupcccceeviiiiiiiiii e 121
Mips_h264 mMC_lumaccccuvvrvrieeiiiiiieieiee e, 122
MIPS_IM6 oo 113
MIPS_iir16_Setupccoeeeeeeeere e 114
MIPS_IMST6 ..o 115
MIPS_VEC_abS16oooiiiiiiiieiiieeeeeeee e 102
MIPS_VEC_abS32cocciiiiiiiiiieceeeeeeee e 102
Mips_VveC _add16ccccciiiiiiiiiiieieeeeeee e 103
Mips_vec_add32cccooiiiiiiiireeeeee e 103
Mips_vec_addC16 ... 104
MIPS_veC_addC32cccovieeiiiiieieeeeeee e 104
MIPS_VeC_dOtPT16cooveiiiiiiiieiceeeee e 105
MIPS_VeC_dOtP32cccceviiiiieiiieeeeeee e 106
MIPS_VeC MUITB ... 106
MIPS_VEC MUI32 ... 107
MIPS_VEC _MUICTB....ccooiiieieeeeeeeer e 107
MIPS_VeC_MUIC32.......cceiiiiiiiiiiceeee e 108
MIPS_VEC_SUDTBooiiiiiiiieccie e 108
MIPS_VEC_SUD32ooiiiiiiiiiieeee e 109
MipS_vec_sum_squares16........cccccveeveeeieeeeeneenennnn. 109
MIPS_VEC _SUM_SQUArES32.......cvvrieereiririrereaeaeenaaens 110
MKEME ... 79
MOAT < 92
MO e 92
modulus function

Double Floating Point............coccviiiiiiiiniee. 92

Single Floating Pointcccocooiiiiiiiiieiiee 92
MONEh .o 77,78, 80
“MSMAM-I0 Lo 34
Multibyte Charactercccccoeviiiiiiieinines 56, 62, 67

Maximum Number of Bytes...........ccoceervnirenne. 26
Multibyte String.......ccceeeeviiiee e 62, 66
N
NAN L 82
Natural Logarithm

Double Floating Point............ccccciiiiiieniee. 90

Single Floating Pointccccoiviiiiiiiiiiiiiee 91
NDEBUGooiiiiiieiiecceeece e 14
Nearest Integer Functions

CIl ettt 84

o= | OO 85

FlOOT e 87

FlOOKT <. 88
Nested Signal Handler ... 28
Newline.......ccccoeeveiiieeeicieene 17, 34,40, 42,45, 46, 48
No BUfferingcoevvveiniie e 34, 36, 50
Non-Local Jumps, See setjmp.h
NSETIMP ..ot 28
NULL e 33, 36
(0]
OCtal .o 47, 50, 65, 66
Octal ConVversion..........cccoecuiiiieiiiiiiee e 46
OffSEIOf ..o 33
[0 0= o USSR 45
Output Formatscceeeeiiiiiiee e 34

DS51685E-page 144

© 2007-2012 Microchip Technology Inc.

IndeXx

Overflow Errorsoeeeveeeeeeeeeeeeeeenne. 19, 82, 86, 90, 92
OVEHap ..oeeveeeiieeeee e 69,70,71,73
P
Pad Characters...........oooooeceeiieeeeeeeeeeeeeeeeeee e, 46
Percent.....ccccoooveiiiiiiiee 47,49, 50, 80
PEITON .ottt et 46
PI1C32 Debugging Support, See sys/appio.h
PIC32 DSP Library.......cccceceeeeeeeiiieeeee e 99
PIUS SigN ... 46
Pointer, Temporary ..o 63
POW .ttt et 92
Power Function

Double Floating Pointccccooiiiiiieinieenne 92

Single Floating Point..........cccocoovviiiiiiiieeeiee, 92
Power Functions

1011 SN 92

POWF Lttt 92
POWT e e 92
PrECISIONeiiiitiie ettt 46
PrefiX. e 17,46
Print Formatsooovviiiiiieieeceeeeeeee, 34
Printable Character

Definedcooveeeeeeee e 16

B =TS (o] N 16
PRI e 34,46
Processor Clocks per Second..............cccvveveeeinneen. 77
Processor TIMeuueeeeeeieiiiiiieecceeeee e 76,78
Pseudo-Random Numbercccccceeeeeeeieeinnenn, 63, 64
PUAIff_t ..o 33
Punctuation Character

Definedcooveeeeeeee e 17

=] 0 o 17
Pushed BacK...........cooovvvuieiiiiiiiiieececeee e, 52
PULC oottt 47
PULCNAT ...t 48
PUES <. 48
Q
GSOM et 63
(O T Te] QS T o S 63
R
[= To [23
FAISE ..evveteieeee e e et tcee e e e e e e e e e e e aeeeaes 29, 30, 31
(=] o Lo RSOSSN 63, 64
RAND_MAX ..o 57,63
RENGE ..o 50
Range Errorccccveene 19, 65, 66, 85, 86, 90, 92, 93
(<Y T N 97
Reading, Recommendedccccceiiiiiiieeiiniineenn. 7
FEANIOC ..o 60, 63
Reallocate Memory ..o 63
Registered Functionsccccooiiiiiiiiie 57,60
Remainder

Double Floating Pointccccoeviiinieiinieene 88

Single Floating Point..........cccccooiviiiiiiiieeciee, 88
Remainder Functions

.87 Yo I 88

fMOAF .. 88
FEIMOVE ..ouneeieiee e e e et e e e s 48, 97

FENAME ... e e e e e e et e e e e e eeeeeeeeaens 48, 96, 97
RESEL ... 57
Reset File PoINter.........ccoovviviviiiieeeeeeeeeeee 49
FEWING.. ..o 49, 52
TN e 93
Rounding Mode..........ccuuviiiiiiiiiie e 23
S
Saturation, Scaling, and Overflow............cccccooueee.. 101
Scan FOrmats.......ccovvveeeveeieeeieieeeeeeeeeeeeeeeeeeeeean 34
Eo7= o 1 7 34, 49
SCHAR _MAX ..ottt 26
SCHAR _MIN ...ooiiiiiiiieece e 26
Search Functions
MEMCAT ..o 69
SHCNT e 71
L] (o= o] o S 72
SUPDIK . 74
LS o] o] N 74
SEISPN <o 74
SIS e 74
SEEOK e 75
ST ToTo] o Lo [F 77,78,80
ST=T= T I 63, 64
Seek
From Beginning of File..........cccooviiiiieiieee 43
From Current Position..........cccccveeeeeieiiiiiieeeen. 43
From End Of Fil€....evvvveeeeeieieeeeeeeeeeeeeeeeee, 43
SEEK CUR....oooiiiee e 36,43
SEEK_END ... 37,43
SEEK _SET ...t 37,43
SEtbUf ..o 34, 36, 50
S M . 28
SetMpP. N 28
JMP_BUF 28
[ONGIMP .t 28
SEHMP e 28
SEHOCAIE ... 27
settimeofdaycccevviiiir 80
SetvbUf ..., 34, 35, 50
short int
Maximum Valueooeeveeeeeiiieieeeeees 26
Minimum Value ... 26
SHRT_MAX ..ttt 26
SHRT_MIN ...ooiiii e 26
SIg_atomiC ... 29
SIG DFL oot 29
SIG_ERR ..o 29
SIG_IGN....oiii e 29
SIGABRT ... 30
SIGFPE ... 30
SIGILL ..o 30
SIGINT e 30
Signal
Abnormal Termination..........ccccceeeeeeeiiiiiiiiiinnnnn. 30
=4 o] R 29
Floating-Point Error..........ccccoeiiiieieniieeeeee 30
IGNOTE ... 29
lllegal INStructioncooooiiiiiiiii e 30
INEEITUPL. ... 30
RepOrtingcooovvviiieiiciiee e 31

© 2007-2012 Microchip Technology Inc.

DS51685E-page 145

32-Bit Language Tools Libraries

Termination Request...........ccoooei i, 30
SIGNAL et 30, 31
Signal Handler ... 29
Signal Handler Type........ccooviviiiiiieieieeee e 29
Signal Handling, See signal.h
SIGNALN oo 29

FISE ...ieeeee et 31

SIg_atomic_t....cccoeeiiiiie 29

SIG_DFL ettt 29

SIG_ERR ..o 29

SIG_IGN ..o 29

SIGABRT ...ttt 30

SIGFPE ...ttt 30

SIGILL ettt 30

SIGINT L 30

SIGNAL.....eiiiiiiie 31

SIGSEGV ..ottt 30

SIGTERM.....ctiiiiiiiiciecee e 30
signed char

Maximum Valuecccooiiiieee 26

Minimum Valueccccooiiiiii 26
SIGSEGV ..ttt 30
SIGTERM ..ottt 30
][o DU PTSPPPTNE 93
sine

Double Floating Point...........cccoooiiieiiinie 93

Single Floating Point...........ccccoviiiiiiiiiiie, 93
SINT e 93
Single Precision Floating Point

Machine Epsilon.........cccccoviiiiiiiiiiieeeee e 22

Maximum Exponent (base 10).........cccccceerrunennn. 22

Maximum Exponent (base 2)ccccceeceeernennn. 22

Maximum Valueccooooiiiie 22

Minimum Exponent (base 10)ccccoeveernineen. 22

Minimum Exponent (base 2)cccccoevveinnnen. 23

Minimum Valuecccooiiii 22

Number of Binary Digitsccccevierriiniienn. 22

Number of Decimal Digitsccccccevviieeinnenn. 22
SINN L.
SINNT .
SIZE et
SIZE b
SIZEOF .
snprintf
Sort, QUICK ..o 63
Source File Name.........cccoeeiiiiieiiiiieee 14
Source Line Numberccccooeiiiiiiiiiee e 14
SPACE e 46
Space Character

Defined......cooiiiieieee e 17

TeStfOr e 17
SPECIfIEIS . 46, 49
SPINT oo 34, 51
<o i SRS 94
SO e 94
Square Root Function

Double Floating Point...........ccceeeiiiiniiecinnnene 94

Single Floating Point...........ccccoviiiiiiiiiiiee, 94
Square Root Functions

<o | S 94

SOAME e 94
SFANA .. 64
SSCANT ... 34, 51
Standard C Libraryccccooiiiriiiiiiee e 13
Standard C Locale...........cooeiiiiiiiiiiiieeeeieee e 15
Standard Error...........ccoooiiiiieiiee e 34,37
Standard INput.........ccccoiiiiiiii 34, 37
Standard Output.........cccoeeeiiiiiiiie e 34,37
SEAMt-UP ..o 34
StAArg.N ..o 32

VA_AIT it e e 32

Va_ BN oo 32

Va_ LISt 32

va_start ..o 32
stddef.h. ..o 33

NULL coeece e 33

Offsetof . 33

PrAiff t .. 33

SIZE b 33

1o 0= SRS 33
SEAOIT e 34, 36, 37, 46
StAIN..eeeee e 34, 36, 37, 45, 49
SEAIO N e 34

(O] =] SRR 35
IOLBF ...ttt 35

CIONBF .o 36

_MON_PULC .. 38

AP Lo 38

BUFSIZ ..o 36

ClEAIEIT .t 38

EOF .o 36

FClOSE .. 38

FEOF e 38,39

FOITOr e 39

FAUSH ..o 39

L0 =] (SR 39

fOEIPOS oo 40

fOELS oo 40

FILE ... e 35

FILENAME_MAXooiiiiiiieiie e 36

FOPEN L. 41

FOPEN_MAX ..ot 36

fPOS b 35

PN e 41

FPULC oo 42

FPULS o 42

fread . 42

frEOPEN ..o 43

FSCANT ... 43

LT R 43

FSELPOS ... 44

L1 U 44

TWIIEE e 44

GEIC it 44

getehar ... 45

GEES it 45

L_tmpnam ... 36

NULL coeee e 36

OPEIN ittt 45

01T (o] SR 46

DS51685E-page 146

© 2007-2012 Microchip Technology Inc.

PRIt e 46
PULC et 47
PULCNAT ..ottt 48
PUES et 48
FEIMOVE ... ceieeeeeeee e e et e e 48
FENAMEceieeeeeiiieeeeeeeeeeee et eeee e e e e e eeeeeeeenaeaanns 48
FEWING ..o 49
SCANT ..o 49
SEEK_CURooiieeeee e 36
SEEK _END.....ooiiiiieeee e 37
SEEK _SET it 37
SetbUf ... 50
SetvbUf ..o, 50
SIZE b i 35
SNPFN Lo 51
SPIINET oo 51
SSCANS . 51
StAEIT. e 37
SEAIN o 37
StAOUL ... 37
TMP_MAX oot 37
IMPFIlE oo 51
IMPNAM L 52
UNGELC .t 52
VIPRNE o 52
VISCANT s 53
VPIINE e 53
VSCANT e 53
VSNPINEE (o 54
VSPINEE oo 54
(VLTS o7=] o1 7 55
SEAND. N e 56
=1 0 o] o SRR 57
ADS e ——— 57
AtEXIt oo 57
= 1 (o) 57
= | (o] IS RUUROSS PR 58
ALON e 58
= 1 (o]| R 58
bsearch ..o 59
CallOC.. ..o 59
AIV e 59
AIV s 56
BXIE e 60
EXIT_FAILURE........cooiiiiieeeiee e 56
EXIT_SUCCESS ... 56
(=TT 60
GEIENV L 60
[ADS e 60
o RS 61
IAIV_t oo 56
121 o1 TN 61
T [2RO 61
HAIV e 56
MAllOC .. 61
MB_CUR _MAX ... 56
(001] 1Y o TSN 62
MBSIOWECS ... 62
[00]0) 00 11N 62
(o =T S 63

(7= 1 o PP 63
RAND_MAX ... 57
FEAIIOC .. 63
L] =1 Lo [P 64
SHOA . 64
] (4 (o) TR 64
SO e 65
SEAON e 65
SHOUL ..o 65
SHOUIL ..o 66
SYSIEM .. 66
WCEOMD .. 67
WXSTOMDS ..o 66
StAOUL ..o 34, 36, 37, 46, 48
SErCASECMP .. 70
SICAl o 70
SUCNT Lo 7
SITCMIP oo 71
SO e 7
SEICPY et 7
SEICSPN .t 72
SHrEAMS ... 34
BiNArY ...oooieeieiiee e 34
BUFfering.......cooveeeeieee e 50
ClOSING -eeeeeiiieeeiee e 38, 60
OPENING <t 41
Reading From ..o 44
TEXE ettt 34
WIiting TO..ooee e 44, 47
SEEITON e 72
SETHIME Lo 80
String
Length ..ccoeeiiiie 72
SEArCH...coiii i 74
TransformM.. ... 75
String Functions, See string.h
SHNG.N oo 68
L OSSR 68
TSIl e 68
MEMCII L. 69
MEMOCIMP ..ottt e e 69
MEMCPY . eterieee e ietietee e e et e e e s enee e e e s e eeeeeee e 69
MEMIMOVE ...eiiiiiiiiiiiie et ee et e e e eeeeee e 70
MEMSEL ... 70
SIZE_ L. 68
SErCASECMP.. .. 70
SECAL e 70
SHCAF . 7
L] (o] 1.0 TR 71
SECOII..eeeee e 7
SECPY i 7
SEICSPN e 72
SIPEITON e 72
SHIEN . 72
StrNCASECMIP.cciiieiee e 72
SHNCAL ..o 73
SENCMIP e 73
SENCPY e 73
SUPDIK . 74
SUTCRI e 74

© 2007-2012 Microchip Technology Inc.

DS51685E-page 147

32-Bit Language Tools Libraries

SIISPN e ————— 74
SIS e, 74
SEEOK e 75
SEXTIM e 75
SHIEN e 72
SIrNCASECMIP ..o 72
SINCAL .o, 73
SINCIMP e 73
SENCPY e 73
SUPDIK e 74
SHTCRI . 74
SIISPN i 74
SIS e 74
SO e 57,64
SEOf e 64
SEEOK .o 75
L] (g (o R 58, 65
SEONl ..., 65
SEOUl oo, 65
SEOUlL. ..o, 66
SETUCLICONV .. 27
struct timevaloovvviiiiiiiiee e, 76
Struct tm ..o, 77
L0041 0 4 P 75
SUDSHINGS .o 75
Subtracting Pointers...........cccoovoiiiiieece e 33
Successful Termination..........cccccceviiiiiiinne, 56
SYS/APPI0.N ..o 126
DBGETC(canblock)..........ccccueeeeeiiiiiiieeeee. 126
DBGETWORD(int canblock)...........ccccceeueennnee. 127
DBINIT() ceeeeeeeeeiiee e 126
DBPRINTF().eeeeetieeiieieiiieeeee e 126
DBPUTC(Char €)...cccevvveviieeiiieciee e 127
DBPUTWORD(INt W)...ovvieeiiieeeiie e 127
DBSCANF() .eeeeeviieeieie et 126
SYSIEM i 66
T
L= o 17
BAN e 94
L6210 1 94
tangent
Double Floating Point............cccceeiiiiiniiecinneeene 94
Single Floating Point...........ccccoviiiiiiiiiiee, 94
AN 94
L6210 o | 95
Temporary
1= 51,60
Filenameceeeeieiiiiiiieeeee e, 36, 52
POINtEr ... 63
Termination
Request Signal..........ccccovviiiiiiiee e 30
SUCCESSTUL..ovvviiiieeieieeeeeeeeeeeee s 56
UNSUCCeSSTUl........cooovvveiiceeeeeeeeeee e 56
TEXEMOAE ... 41
Text Streamscvveeeieeieeeeeeeee e 34
THCKS ettt 78
BIME e 81
Time Difference..........cooooiveeeeeeceeereeeee e 78
Time Structure..........cceeeeeeiiiiiiceee e, 77,80
TIME ZONE ... 80

time to. s 76,77,79, 81
BME. N 76
= 1103 [L= R 78
ClOCK .. 78
ClOCK i 76
CLOCKS PER_SEC......cccocciiiiiieeeeeeeeee e, 77
ClIME . 78
Aifftime...coe e 78
gettimeofday.........ccccoeeiiiniiii 79
IMEIME i 79
localtime ..o 79
MKEME...iee e, 79
settimeofday........cccevriiiiiii 80
SIZE b 76
SEIME o 80
struct timeval ... 76
struct tm ..., 77
BIME e 81
tMe o 77
TMP_MAX oot 37
EMPFIlE .o 51
IMPNAM e 52
TOKEBNS.....cceeeeeeeee e a s 75
TOIOWET ... 18
(00 o] o= USRS 18
Transferring Controlcccooooeeiiii e 28
Transform StriNg........ccocvviiii e 75
Trigonometric Functions
= Tolo 1= TSR 82
= (o7 1= 82
ASIN . 83
ASINT . e 83
AtAN ..o, 83
AtAN2 .. 83
AtAN2f s 84
atant ..o 84
O ittt e e e e e e e e e e 85
(o7 1= 7N 85
£ o PSPPSR 93
SN s 93
BAN e 94
L6210 | 94
117/ 01 T PSPPSR 47,50
U
UCHAR _MAX ..ot 26
UINT_MAX et e 26
ULLONG _MAX ...oi it 26
ULONG _MAX ..ot 26
Underflow Errorsccoeeeeeeeeeeeneeeinnee, 19, 82, 86, 90, 92
UNQGELC. ..t 52
UNISEA. N, 96
ClOSE ... 96
DK e 96
[SEEK ... 96
(<Y=L I 97
UNNINK e 97
W e 97
Universal Time Coordinated..........ccccveeveveeeeeeeeeeeennn.. 79
UNINK ceeeeeeeeeeee e 48, 97

unsigned char

DS51685E-page 148

© 2007-2012 Microchip Technology Inc.

IndeXx

Maximum Valuec..coooviviviiiiiiieeeeeeeeeeeee, 26
unsigned int

Maximum Valuec.ooooivviiiiiiieeeeeeeeeeeeee, 26
unsigned short int

Maximum Valuec.ooooovviiiiiiiieeee e 26
Unsuccessful Termination...........ccccceoeeeeeeeiiieeeennee, 56
Upper Case Alphabetic Character

[070101Y7=Tx B o T 18

Definedcoooveeeeee e 17

B =TS 8 (o] N 17
USHRT_MAX ..ot 26
L 1 79
Utility Functions, See stdlib.h
\"/
A2z T [[P SRR OUPPRPRN 32,52, 53, 54
Va_ENA e 32,52,53, 54
VA_IISE .o 32
va_start ..., 32,52,53,54
Variable Argument Lists, See stdarg.h
Variable Length Argument List................ 32,52, 53, 54
Vertical Tab.....coooeiiiiiiiceeeee e 17
VPR L, 34, 52
VESCANT ... 53
VPN L 34,53
VSCANT ...t 53
VSNPHNE Lo 54
VSPHNEE e 34,54
(VTS o7=] o1 R 55
W
(Vo1 o - | RN 33
WCSTOMDS ... 66
WCEOMD ... 67
Web Site, Microchip ..o 8
WEEK ... 80
White Space.......cccccoeeeeciieeicciee e 49, 57, 58, 64
White-Space Character

Definedcoovveeeeeee e 17

B =TS 8 (o] N 17
Wide Character.............oouvveeeeeieieeeeeeeeeee. 62, 67
Wide Character String.......ccccocvevveeevieeeiieee 62, 66
Wide Character Value..............coooeeeeeeeeeecveeveeeens 33
Width .. 46
WIAth ..o 46, 49
Wrapper FUNCLIONS..........cccooiiiiieiiiee e 135
WIEIEE e e e e e 97
Y
Y AN ..o 77,78, 80
Z
4= (o T 82
Zero, divide DBY ... 30, 59

© 2007-2012 Microchip Technology Inc.

DS51685E-page 149

MICROCHIP

Worldwide Sales and Service

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

11/29/11

© 2007-2012 Microchip Technology Inc.

DS51685E-page 150

http://support.microchip.com
http://www.microchip.com

	32-Bit Language Tools Libraries
	Table of Contents
	Preface
	Chapter 1. Library Overview
	1.1 Introduction
	1.2 Start-up Code
	1.3 32-Bit Peripheral Libraries
	1.4 Standard C Libraries (with Math Functions)

	Chapter 2. Standard C Libraries with Math Functions
	2.1 Introduction
	2.2 Using the Standard C Libraries
	2.3 <assert.h> Diagnostics
	2.4 <ctype.h> Character Handling
	2.5 <errno.h> Errors
	2.6 <float.h> Floating-Point Characteristics
	2.7 <limits.h> Implementation-Defined Limits
	2.8 <locale.h> Localization
	2.9 <setjmp.h> Non-Local Jumps
	2.10 <signal.h> Signal Handling
	2.11 <stdarg.h> Variable Argument Lists
	2.12 <stddef.h> Common Definitions
	2.13 <stdio.h> Input and Output
	2.14 <stdlib.h> Utility Functions
	2.15 <string.h> String Functions
	2.16 <time.h> Date and Time Functions
	2.17 <math.h> Mathematical Functions
	2.18 <unistd.h> Miscellaneous Functions

	Chapter 3. PIC32 DSP Library
	3.1 Introduction
	3.2 Vector Math Functions
	3.3 Filtering Functions
	3.4 Frequency Domain Transform Functions
	3.5 Video Processing Functions

	Chapter 4. PIC32 Debug-Support Library
	4.1 Overview
	4.2 Configuring Debug Input/Output for the target and tool
	4.3 <sys/appio.h> PIC32 Debugging Support

	Appendix A. ASCII Character Set
	Appendix B. Types, Constants, Functions and Macros
	Appendix C. 16-Bit DSP Wrapper Functions
	C.1 Introduction
	C.2 PIC32 DSP Wrapper Functions List
	C.3 Differences Between Wrapper Functions and dsPIC DSP Library

	Index
	Worldwide Sales and Service

