
dsPIC33C I2C Software Library
1.0 OVERVIEW

This library provides a software implementation of an I2C interface for dsPIC33C using standard I/Os.
This library supports both Master and Slave modes. The performance and resources needed are
listed in Table 1. The software I2C Master code is blocking, which means that the Master I2C proce-
dures consume all CPU time when executed. The software I2C Master task should be implemented
as a low priority process interrupted by other high priority tasks in the application.

For the software I2C Slave, one edge processing takes about 67 instruction cycles. In this case, when
the nested interrupts are disabled, other interrupts may be delayed by 67 cycles.

2.0 I2C MASTER INTERFACE

2.1 Files

The files in the table below must be added to the application project to implement the Master I2C
interface:

The library package includes demo projects.

The demo project located in the master_demo folder shows how to use the Master I2C library func-
tions to access EEPROM 24FC256. The files related to this demo are:

Note: This software library should be used with the physical I2Cx pins (SCLx and SDAx)
without enabling the respective I2Cx module. Configure the Port pins multiplexed
with the I2Cx module to use I/O pins for Software I2C implementation.

TABLE 1: PERFORMANCE AND RESOURCES

Mode Max Speed
Program
(bytes)

RAM (bytes)
Instruction Cycles

per Byte
 Instruction Cycles

per SCL Clock Edge

Master 1 MHz 290 0 — —

Slave 650 kHz 390 14 1950 67

File Description

i2c_master.h This header contains I/O definitions/selection and timing/clock speed settings
used for the Master I2C interface. This file also includes prototypes of Master
I2C functions.

i2c_master.c This source file contains Master I2C function implementations.

File Description

i2c_master_eeprom_24fc256.h This header contains prototypes of functions to access
24FC256 EEPROM.

i2c_master_eeprom_24fc256.c This C source file contains functions implementations to
access 24FC256 EEPROM.

master_demo_main.c The main demonstration source file. It contains code to initial-
ize the I2C interface and write and read values to and from the
24FC256 EEPROM.
 2019 Microchip Technology Inc. Page 1

dsPIC33C I2C Software Library
2.2 Library Settings

The library settings are separate for the Master and Slave. The following parameters must be config-

ured for I2C MASTER INTERFACE in the i2c_master.h header:

The library does not set SCL and SDA pins input type. Setting the input type must be done in the appli-
cation. SCL and SDA must be configured as digital inputs using ANSELx registers.

2.3 Functions and Macros

File Description

I2C_CLOCK_DELAY This parameter is a quarter of the I2C clock period in instruction cycles and
defines timing for the I2C interface.

Note: I2C may not work if this parameter is wrong (clock is too fast).

SCL_TRIS This parameter sets the TRIS bit of I/O used for SCL signal. Verify that, in
the application, the SCL pin is configured as a digital input in the ANSEL
register.

SCL_ODC This parameter sets the ODC bit of I/O used for SCL signal.

SCL_LAT This parameter sets the LAT bit of I/O used for SCL signal.

SCL_PORT This parameter sets the PORT bit of I/O used for SCL signal.

SDA_TRIS This parameter sets the TRIS bit of I/O used for SDA signal. Verify that, in
the application, the SDA pin in the application is configured as a digital
input in the ANSEL register.

SDA_ODC This parameter sets the ODC bit of I/O used for SDA signal.

SDA_LAT This parameter sets the LAT bit of I/O used for SDA signal.

SDA_PORT This parameter sets the PORT bit of I/O used for SDA signal.

TABLE 2: MASTER FUNCTIONS AND MACROS

Function Description Parameters Returned Data

void I2CM_Init() This function initializes
SDA and SCL I/Os.

None. None.

short I2CM_Start() This function generates
an I2C start signal.

None. The function returns non-zero
value if the bus collision is

detected.

short I2CM_Stop() This function generates
an I2C stop signal.

None. The function returns non-zero
value if the bus collision is

detected.

short
I2CM_Write(unsigned
char data)

This function transmits 8-
bit data to Slave.

unsigned char data –
data to be transmitted.

This function returns
acknowledgment from Slave (0

means ACK and 1 means
NACK).

unsigned char
I2CM_Read(short ack)

This function reads 8-bit
data from Slave.

long ack – acknowl-
edgment to be sent to
Slave.

This function returns 8-bit data
read.
Page 2  2019 Microchip Technology Inc.

dsPIC33C I2C Software Library
2.4 Getting Started with Master

When the dsPIC33C device is communicating with 24FC256 EEPROM, the following signals should
be generated to write a byte:

The signals can be generated to write a byte by using the following function calls:

To read a byte from EEPROM the following signals should be generated:

The write can be done by the following functions calls:

I2CM_Start();

I2CM_Write(0xA0);

I2CM_Write(address>>8);

I2CM_Write(address&0x00FF);

I2CM_Write(data);

I2CM_Stop();

I2CM_Start();

I2CM_Write(0xA0);

I2CM_Write(address>>8);

I2CM_Write(address&0x00FF);

I2CM_Start();

I2CM_Write(0xA1); // READ

data = I2CM_Read(1); // NO ACKNOWLEDGE

I2CM_Stop();
 2019 Microchip Technology Inc. Page 3

dsPIC33C I2C Software Library
3.0 I2C SLAVE INTERFACE

The files in the table below must be added to the application project to implement the Slave I2C
interface:

The library package includes demo projects.

The demo project located in the slave_demo folder shows how to use the Slave I2C library functions
to emulate EEPROM 24FC256. The files related to this demo are:

3.1 Library Settings

The following parameters must be configured for I2C SLAVE INTERFACE in i2c_slave.h header:

The library does not set SCL and SDA pins input type. It must be done in the application. SCL and
SDA must be configured as digital inputs using ANSELx registers.

File Description

i2c_slave.h This header contains I/O definitions/selection used for the Slave I2C interface.
Also, this file includes prototypes of Slave I2C functions.

i2c_slave.c This C source file contains Slave I2C functions implementations.

File Description

i2c_slave_eeprom_24fc256.h This C source file contains I2C callback functions implementations
to emulate 24FC256 EEPROM.

slave_demo_main.c The main demonstration source file. The code in this file initializes
I2C Slave interface and runs I2C task.

Parameter Description

SCL_TRIS This parameter sets the TRIS bit of I/O used for SCL signal. Verify that,
in the application, the SCL pin is configured as a digital input in the
ANSEL register.

SCL_ODC This parameter sets the ODC bit of I/O used for SCL signal.

SCL_LAT This parameter sets the LAT bit of I/O used for SCL signal.

SCL_PORT This parameter sets the PORT bit of I/O used for SCL signal.

SDA_TRIS This parameter sets the TRIS bit of I/O used for SDA signal. Verify that,
in the application, the SDA pin is configured as a digital input in the
ANSEL register.

SDA_ODC This parameter sets the ODC bit of I/O used for SDA signal.

SDA_LAT This parameter sets the LAT bit of I/O used for SDA signal.

SDA_PORT This parameter sets the PORT bit of I/O used for SDA signal.

I2C_DISABLE_-
CLOCK_STRETCHING

Add/uncomment the definition of this parameter to disable clock
stretching.
Page 4  2019 Microchip Technology Inc.

d
sP

IC
33C

 I 2C
 S

o
ftw

are L
ib

rary

Returned Data

None.

None.

None.

None.

 Return/Pass the Acknowledgment (bit #0)
and Write Mode (bit #1) flags to the library.
If the data received must be acknowledged,
then clear bit #0. For NACK, return one in bit
#0. If for the next transaction, the I2C Slave

must transmit data to the Master, then
return/pass one in bit #1. If for the next

transaction, the I2C Slave must still receive
the data from Master and then clear bit #1.

ent
In

t
ll
.

Return/Pass the 8-bit data to be transmitted
to I2C Master.
3.2 Functions and Macros

TABLE 3: SLAVE FUNCTIONS AND MACROS

Function Description Parameters

void I2CS_Init() This function initializes SDA and SCL I/Os. None.

void I2CS_Task() This function is an engine to process signals on SDA and SCL I/Os.
If some I2C event will be detected, this function will pass control to
the corresponding callback function implemented in the user’s
code.
The I2CS_Task() function must be executed periodically. It can
be done by:
• Change Notification interrupts on both SCL and SDA I/Os (the

interrupts must detect positive and negative edges/transitions)
• Calling it in main idle loop
• Using a Timer interrupt

None.

void I2CS_Start() This is a callback function controlled by the I2CS_Task()
function. If it is implemented in the application, it will be called each
time when I2C start signal is detected.

None.

void I2CS_Stop() This is a callback function controlled by the I2CS_Task()
function. If it is implemented in the application, it will be called each
time when I2C stop signal is detected.

None.

short
I2CS_Read(unsigned
char data)

This is a callback function controlled by the I2CS_Task()
function. If it is implemented in the application, it will be called each
time when 8-bit data are received from the I2C Master.

unsigned char data – data
received from I2C Master.

unsigned char
I2CS_Write(short
prev_ack)

This is a callback function controlled by the I2CS_Task() function.
If it is implemented in the application, it will be called each time
when I2C Master requests 8-bit data from Slave.

long prev_ack – acknowledgm
for the previous transaction.

most cases if the Master
answered with NACK (=1)

before, the new data are no
required, and the Master wi
generate a stop event soon

dsPIC33C I2C Software Library
3.3 Getting Started with Slave

Assuming that the dsPIC33C device must emulate the 24FC256 EEPROM, the following signals will
be generated by the Master to write a byte:

and to read a byte:

To emulate this protocol, the I2C Slave must:

1. Detect a start condition using the I2CS_Start() callback function.

2. Receive the first byte after start and decode DEVICE address and read RW bit (bit #0) in the
first byte.

3. If the DEVICE address matches the required address and next byte will be read (RW bit = 0),
then read 2 address bytes and store data byte received using I2CS_Read(…) callback
function.

4. If RW bit = 1, the Slave must transmit data to Master using I2CS_Write(…) callback function.
Page 6  2019 Microchip Technology Inc.

dsPIC33C I2C Software Library
The EEPROM emulation protocol can be done if the callback functions are implemented as shown in
Example 1.

EXAMPLE 1: SLAVE COMMUNICATION EXAMPLE

// 24FC256 COMMUNICATION PROTOCOL STATES
typedef enum {
 STATE_DEV_ADDRESS, // device address will be received
 STATE_ADDRESS_HIGH_BYTE, // high byte of memory address will be recieved
 STATE_ADDRESS_LOW_BYTE, // low byte of memory address will be recieved
 STATE_DATA_READ, // data byte will be read from master
 STATE_DATA_WRITE // data byte will be sent to master
} I2C_STATE;

// current state
I2C_STATE state = STATE_DEV_ADDRESS;

// 24FC256 device 7-bit address
#define EEPROM_DEV_ADDRESS 0x50 // from 24FC256 datasheet
#define EEPROM_SIZE 256 // 256 bytes

unsigned char eeprom_data[EEPROM_SIZE]; // memory storage
short eeprom_address = 0; // current memory address

// This callback function is called every time when I2C start is detected
void I2CS_Start(){
 state = STATE_DEV_ADDRESS; // after start the device address byte will be transmitted
}

// This callback function is called every time when data from I2C master are received
short I2CS_Read(unsigned char data){

 switch(state){

 case STATE_DEV_ADDRESS:
 if((data >> 1) == EEPROM_DEV_ADDRESS){ // bits from #7 to #1 are device address
 if(data&1){ // if bit #0 is set (=1) it indicates that the next data go from

 // slave to master
 state = STATE_DATA_WRITE;
 return 2; // ACK to master (bit #0 = 0), master reads data on next transaction

 //(bit #1 = 1)
 }else{ // if bit #0 is cleared (=0) it indicates that the next data go from master
to slave
 state = STATE_ADDRESS_HIGH_BYTE;
 return 0; // ACK to master
 }
 }
 return 1; // NACK to master if device address doesn't match EEPROM_DEV_ADDRESS
 case STATE_ADDRESS_HIGH_BYTE:
 state = STATE_ADDRESS_LOW_BYTE;
 eeprom_address = (data<<8);
 return 0; // ACK to master
 case STATE_ADDRESS_LOW_BYTE:
 state = STATE_DATA_READ;
 eeprom_address |= data;
 return 0; // ACK to master
 case STATE_DATA_READ:
 state = STATE_DEV_ADDRESS;
 if(eeprom_address >= EEPROM_SIZE){
 return 1; // NACK to master, the memory address is wrong
 }
 eeprom_data[eeprom_address] = data; // store the data received
 return 0; // ACK to master
 default:

state = STATE_DEV_ADDRESS;
 return 1; // NACK to master / unknown state
 }

 return 1; // NACK to master
}

// This callback function is called every time when data must be sent to I2C master
unsigned char I2CS_Write(short prev_ack){
 2019 Microchip Technology Inc. Page 7

dsPIC33C I2C Software Library
EXAMPLE 1: SLAVE COMMUNICATION EXAMPLE (CONTINUED)

if(eeprom_address >= EEPROM_SIZE)
 {
 return 0;
 }
 return eeprom_data[eeprom_address]; // send memory data to master
}

void main()
{
 I2CS_Init();

 while(1){
 I2CS_Task();
 }
}

Page 8  2019 Microchip Technology Inc.

	1.0 Overview
	2.0 I2C Master Interface
	2.1 Files
	2.2 Library Settings
	2.3 Functions and Macros
	2.4 Getting Started with Master

	3.0 I2C Slave Interface
	3.1 Library Settings
	3.2 Functions and Macros
	3.3 Getting Started with Slave

