
MPLAB® XC16 USER’S GUIDE

FOR EMBEDDED ENGINEERS

MPLAB® XC16 User’s Guide for Embedded Engineers
INTRODUCTION

This document presents five code examples for 16-bit devices and the MPLAB® XC16 
C compiler using the Common Code Interface (CCI). For more on CCI, see the MPLAB 
XC16 C Compiler User’s Guide (DS50002071).

Some knowledge of microcontrollers and the C programming language is necessary to 
use them.

1. Turn LEDs On or Off

2. Flash LEDs Using a Delay Function

3. Count Up on LEDs Using Interrupts as Delay

4. Display Potentiometer Values on LEDs Using an ADC

5. Display EEPROM Data Values on LEDs

A Run Code in MPLAB X IDE

B Get Software and Hardware
 2015-2019 Microchip Technology Inc. DS50002446C-page 1



MPLAB® XC16 User’s Guide for Embedded Engineers
1. TURN LEDS ON OR OFF

This example will light alternate LEDs on the Explorer 16/32 Development Board with 
a PIC24FJ128GA010 Plug-In Module (PIM). For more information, see 
Section B. “Get Software and Hardware”.

// PIC24FJ128GA010 Configuration Bit Settings

// For more on Configuration Bits,  see Section 1.1
// consult your device data sheet

// CONFIG2
#pragma config POSCMOD = XT   // XT Oscillator mode selected
#pragma config OSCIOFNC = ON  // OSC2/CLKO/RC15 as port I/O (RC15)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor disabled
#pragma config FNOSC = PRI    // Primary Oscillator (XT, HS, EC)
#pragma config IESO = ON      // Int Ext Switch Over Mode enabled

// CONFIG1
#pragma config WDTPS = PS32768 // Watchdog Timer Postscaler (1:32,768)
#pragma config FWPSA = PR128   // WDT Prescaler (1:128)
#pragma config WINDIS = ON     // Watchdog Timer Window Mode disabled
#pragma config FWDTEN = OFF    // Watchdog Timer disabled
#pragma config ICS = PGx2      // Emulator/debugger uses EMUC2/EMUD2
#pragma config GWRP = OFF      // Writes to program memory allowed
#pragma config GCP = OFF       // Code protection is disabled
#pragma config JTAGEN = OFF    // JTAG port is disabled

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

#include <xc.h>   see Section 1.2

int main(void) {

    unsigned char portValue = 0x55;  see Section 1.3

    // Port A access  see Section 1.4

    AD1PCFG = 0xFFFF;   // set to digital I/O (not analog)
    TRISA = 0x0000;     // set all port bits to be output
    LATA = portValue;   // write to port latch
    
    return 0;
}

DS50002446C-page 2  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
1.1 Configuration Bits

Microchip devices have configuration registers with bits that enable and/or set up 
device features.

1.1.1 WHICH CONFIGURATION BITS TO SET

In particular, you need to look at:

• Oscillator selection – this must match your hardware’s oscillator circuitry. If this 
is not correct, the device clock may not run. Typically, development boards use 
high-speed crystal oscillators. From the example code:
#pragma config FNOSC = PRI
#pragma config POSCMOD = XT

• Watchdog timer – it is recommended that you disable this timer until it is 
required. This prevents unexpected resets. From the example code:
#pragma config FWDTEN = OFF

• Code protection – turn off code protection until it is required. This ensures that 
device memory is fully accessible. From the example code:
#pragma config GCP = OFF

Different configuration bits might need to be set up to use another 16-bit device (rather 
than the MCU used in this example). See your device data sheet for the number and 
function of corresponding configuration bits. Use the part number to search 
https://www.microchip.com for the appropriate data sheet.

For more about configuration bits that are available for each device, see the following 
file in the location where MPLAB XC16 was installed:

MPLAB XC16 Installation Directory/docs/config_index.html

1.1.2 HOW TO SET CONFIGURATION BITS

In MPLAB X IDE, you can use the Configuration Bits window to view and set these bits. 
Select Window>PIC Memory Views>Configuration Bits to open this window.

FIGURE 1: CONFIGURATION BITS WINDOW

Once you have the settings you want, click in code where you want this information 
placed and then click the “Insert Source Code in Editor” icon, as was done in the exam-
ple code. See MPLAB X IDE documentation for more information on this window.

Note: If you do not set Configuration bits correctly, your device will not operate at 
all, or at least not as expected.
 2015-2019 Microchip Technology Inc. DS50002446C-page 3

http://www.microchip.com


MPLAB® XC16 User’s Guide for Embedded Engineers
1.2 Header File <xc.h>

This header file allows code in the source file to access compiler- or device-specific 
features. This and other header files can be found in the MPLAB XC16 installation 
directory, in the support subdirectory.

Based on the selected device, the compiler will set macros that allow xc.h to vector to 
the correct device-specific header file. Do not include a device-specific header in your 
code or your code will not be portable.

1.3 Variable for LED Values

The value to be written to the LEDs, as explained in the next section, has been 
assigned to a variable (portValue), i.e., LEDs D3, D5, D7, and D9 will be on and 
LEDs D4, D6, D8, and D10 will be off. See Section B. “Get Software and Hardware” 
for the demo board schematic location.

1.4 Port Access

Digital I/O device pins may be multiplexed with peripheral I/O pins. To ensure that you 
are using digital I/O only, disable the other peripheral(s). Do this by using the pre-
defined C variables that represent the peripheral registers and bits. These variables are 
listed in the device-specific header file in the compiler include directory. To determine 
which peripherals share which pins, refer to your device data sheet.

For the example in this section, Port A pins are multiplexed with peripherals that are 
disabled, by default. By default, the port pins are analog; so you will need to set them 
to digital I/O:

AD1PCFG = 0xFFFF;  // set to digital I/O (not analog)

A device pin is connected to either a digital I/O port (PORT) or latch (LAT) register in the 
device. For the example, LATA is used. The macro LEDS_ON_OFF is assigned to the 
latch:

LATA = LEDS_ON_OFF;   // write to port latch

In addition, there is a register for specifying the directionality of the pin – either input or 
output – called a TRIS register. For the example in this section, TRISD and TRISB are 
used. Setting a bit to 0 makes the pin an output and setting a bit to 1 makes the pin an 
input. For this example:

TRISA = 0x0000;   // set all port bits to be output
DS50002446C-page 4  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
2. FLASH LEDs USING A DELAY FUNCTION

This example is a modification of the previous code. Instead of just turning on LEDs, 
this code will flash alternating LEDs.

// PIC24FJ128GA010 Configuration Bit Settings

// For more on Configuration Bits, consult your device data sheet

// CONFIG2
#pragma config POSCMOD = XT   // XT Oscillator mode selected
#pragma config OSCIOFNC = ON  // OSC2/CLKO/RC15 as port I/O (RC15)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor disabled
#pragma config FNOSC = PRI    // Primary Oscillator (XT, HS, EC)
#pragma config IESO = ON      // Int Ext Switch Over Mode enabled

// CONFIG1
#pragma config WDTPS = PS32768 // Watchdog Timer Postscaler (1:32,768)
#pragma config FWPSA = PR128   // WDT Prescaler (1:128)
#pragma config WINDIS = ON     // Watchdog Timer Window Mode disabled
#pragma config FWDTEN = OFF    // Watchdog Timer disabled
#pragma config ICS = PGx2      // Emulator/debugger uses EMUC2/EMUD2
#pragma config GWRP = OFF      // Writes to program memory allowed
#pragma config GCP = OFF       // Code protection is disabled
#pragma config JTAGEN = OFF    // JTAG port is disabled

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

#include <xc.h>
#include <libpic30.h>   see Section 2.1

int main(void) {

    unsigned char portValue;

    // Port A access
    AD1PCFG = 0xFFFF; // set to digital I/O (not analog)
    TRISA = 0x0000;   // set all port bits to be output

    while(1) {   see Section 2.2

        portValue = 0x55;
        LATA = portValue; // write to port latch

        // delay value change   see Section 2.3

        __delay32(1500000);    // delay in instruction cycles

        portValue = 0xAA;
        LATA = portValue; // write to port latch

        __delay32(1500000);    // delay in instruction cycles

    }
    return -1;
}

 2015-2019 Microchip Technology Inc. DS50002446C-page 5



MPLAB® XC16 User’s Guide for Embedded Engineers
2.1 Library Header File

In this example, the __delay32() function from the libpic30 compiler library is used. 
To access this library, libpic30.h must be included.

2.2 The while() Loop and Variable Values

To make the LEDs on Port A change, the variable portValue is first assigned a value 
of 0x55 (LEDs 0, 2, 4, 6 are on)  and then a complementary value of 0xAA (LEDs 
1,3,5,7 are on). To perform the loop, while(1) { } was used.

If the main function returns, it means there was an error, as the while loop should not 
normally end. Therefore, a -1 is returned to signify an error.

2.3 The __delay32() Function

Because the speed of execution will, in most cases, cause the LEDs to flash faster than 
the eye can see, execution needs to be slowed. __delay32()is a library function that 
can be used by compiler.

For more details on the delay function, see the 16-Bit Language Tools Libraries 
Reference Manual (DS50001456).
DS50002446C-page 6  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
3. COUNT UP ON LEDs USING INTERRUPTS AS DELAY

This example is a modification of the previous code. Although the delay function in the 
previous example was useful in slowing down loop execution, it created dead time in 
the program. To avoid this, a timer interrupt can be used.

// PIC24FJ128GA010 Configuration Bit Settings

// For more on Configuration Bits, consult your device data sheet

// CONFIG2
#pragma config POSCMOD = XT   // XT Oscillator mode selected
#pragma config OSCIOFNC = ON  // OSC2/CLKO/RC15 as port I/O (RC15)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor disabled
#pragma config FNOSC = PRI    // Primary Oscillator (XT, HS, EC)
#pragma config IESO = ON      // Int Ext Switch Over Mode enabled

// CONFIG1
#pragma config WDTPS = PS32768 // Watchdog Timer Postscaler (1:32,768)
#pragma config FWPSA = PR128   // WDT Prescaler (1:128)
#pragma config WINDIS = ON     // Watchdog Timer Window Mode disabled
#pragma config FWDTEN = OFF    // Watchdog Timer disabled
#pragma config ICS = PGx2      // Emulator/debugger uses EMUC2/EMUD2
#pragma config GWRP = OFF      // Writes to program memory allowed
#pragma config GCP = OFF       // Code protection is disabled
#pragma config JTAGEN = OFF    // JTAG port is disabled

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

#include <xc.h>

// Interrupt function (CCI)   see Section 3.1

void __interrupt(no_auto_psv) _T1Interrupt(void){
    // static variable for permanent storage duration
    static unsigned char portValue = 0;
    // write to port latch
    LATA = portValue++;
    // clear this interrupt condition
    _T1IF = 0;
}

int main(void) {

    // Port A access
    AD1PCFG = 0xFFFF; // set to digital I/O (not analog)
    TRISA = 0x0000;   // set all port bits to be output

    // Timer1 setup   see Section 3.2

    T1CON = 0x8010; // timer 1 on, prescaler 1:8, internal clock
    _T1IE = 1; // enable interrupts for timer 1
    _T1IP = 0x001; // set interrupt priority (lowest)

    while(1);

    return -1;
}

 2015-2019 Microchip Technology Inc. DS50002446C-page 7



MPLAB® XC16 User’s Guide for Embedded Engineers
3.1 The Interrupt Function

Functions may be made into interrupt functions by using the __interrupt specifier 
from the Common C Interface (CCI). Program Space Visibility (PSV) should be speci-
fied also, and for this simple example no PSV is used. For more on PSV, see the 
MPLAB XC16 C Compiler User’s Guide (DS50002071).

The primary interrupt vector specific to Timer 1 is used, _T1Interrupt(). Interrupt 
Vector Tables for each device are provided in the compiler install docs directory.

Within the interrupt function, the counter portValue is incremented when Timer1 
generates an interrupt.

3.2 Timer1 Setup

Code also needs to be added to the main routine to turn on and set up the timer, enable 
timer interrupts, and change the latch assignment, now that the variable value changes 
are performed in the interrupt service routine.
DS50002446C-page 8  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
4 DISPLAY POTENTIOMETER VALUES ON LEDS USING AN ADC

This example uses the same device and Port A LEDs as the previous example. How-
ever, in this example, values from a potentiometer (slider) on the demo board provide 
Analog-to-Digital Converter (ADC) input through Port B that is converted and displayed 
on the LEDs.

Instead of generating code by hand, the MPLAB Code Configurator (MCC) is used. The 
MCC is a plug-in available for installation under the MPLAB X IDE menu Tools>Plugins, 
Available Plugins tab. See MPLAB X IDE Help for more on how to install plugins.

For MCC installation information and the MPLAB® Code Configurator User’s Guide 
(DS40001725), go to the MPLAB Code Configurator web page at the following URL:

https://www.microchip.com/mplab/mplab-code-configurator

For this example, the MCC was set up as shown in the following figures.

FIGURE 2: ADC PROJECT RESOURCES - SYSTEM MODULE
 2015-2019 Microchip Technology Inc. DS50002446C-page 9

http://www.microchip.com/mplab/mplab-code-configurator


MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 3: ADC PROJECT SYSTEM MODULE CONFIGURATION
DS50002446C-page 10  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 4: ADC PROJECT ADC1 SELECTION

The PIC24/dsPIC33/PIC32MM  MCUs selection offers you the possibility 
to directly set up the peripheral in its finest details, via the Easy Setup 
view.

The Foundation Services Library is more abstract in nature, typically 
offering the basic functionality of the peripheral and easing the configura-
tion process.
 2015-2019 Microchip Technology Inc. DS50002446C-page 11



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 5: ADC PROJECT ADC1 CONFIGURATION

FIGURE 6: ADC PROJECT ADC1 PIN RESOURCE

RB5 to AN5 map displays after selection is made in Figure 6.
DS50002446C-page 12  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 7: ADC PROJECT RESOURCES - PIN MODULE

FIGURE 8: ADC PROJECT I/O PIN CONFIGURATION

Pins RA0:7 will appear in the window above when they are selected in Figure 9.

RB5 was previously selected in Figure 6.

RB6 and RB7 are preselected for debug communication.

Once visible in the window, pin configurations may be viewed or selected for each pin.
 2015-2019 Microchip Technology Inc. DS50002446C-page 13



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 9: ADC PROJECT I/O PIN RESOURCES
DS50002446C-page 14  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 10: ADC PROJECT PIN PACKAGE
 2015-2019 Microchip Technology Inc. DS50002446C-page 15



MPLAB® XC16 User’s Guide for Embedded Engineers
When the code is configured as shown in the previous figures, click the Generate but-
ton in the “Project Resources” window (Figure 7). Code generated by the MCC is mod-
ular. Therefore main, system, and peripheral code are all in individual files. Also, each 
peripheral has its own header file.

Traps files are generated to catch potential errors. Although no interrupts will be used 
in this application, interrupt manager files are generated for future use.

Editing of main.c is always required to add functionality to your program. Review the 
generated files to find any functions or macros you may need in your code.

FIGURE 11: ADC PROJECT TREE FOR CODE GENERATED BY MCC
DS50002446C-page 16  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 12: ADC CODE GENERATED BY MCC
 2015-2019 Microchip Technology Inc. DS50002446C-page 17



MPLAB® XC16 User’s Guide for Embedded Engineers
4.1 main.c Modified Code

The main.c template file has been edited as shown below. Some comments have 
been removed as described in < >. Code added to main() is in green.

/**
  Generated Main Source File

<See generated main.c file for file information.>
 */

/*
(c) 2016 Microchip Technology Inc. and its subsidiaries. You may use 
this software and any derivatives exclusively with Microchip products.

<See generated main.c file for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"

unsigned int value = 0;

/*
                         Main application
 */
int main(void) {
    // initialize the device
    SYSTEM_Initialize();

    while (1) {

        // Wait for conversion   see Section 4.2
        // and then get result
        while(!ADC1_IsConversionComplete());
        value = ADC1_ConversionResultGet();
        
        // Shift for MSb
        value = value >> 2;
        
        // Write to Port Latch/LEDs   see Section 4.3
        LATA = value;

    }
    return -1;
}
/**
 End of File
 */
DS50002446C-page 18  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
4.2 ADC Conversion and Result

MCC sets AD1CON1 bits to turn on the ADC, use automatic sample acquisition, and 
use an internal counter to end sampling and start conversion. Therefore main() code 
only needs to wait for the conversion to end and get the result.

From the adc1.c module, use the functions:

bool ADC1_IsConversionComplete(void)
uint16_t ADC1_ConversionResultGet(void)

For information on setting up other ADC features, see the dsPIC33/PIC24 Family 
Reference Manual, “Section 17 - 10-bit Analog-to-Digital Converter (ADC)” (DS61104).

Since only 8 LEDs are available, and the ADC conversion result is 10-bit, the conver-
sion result in the variable value is shifted to display the most significant bits. Some 
resolution will be lost.

4.3 Write to Port Latch and LEDs

The ADC conversion result value is displayed on the Port A LEDs.
 2015-2019 Microchip Technology Inc. DS50002446C-page 19



MPLAB® XC16 User’s Guide for Embedded Engineers
5. DISPLAY EEPROM DATA VALUES ON LEDS

This example uses another Microchip device, the PIC24F32KA304 PIM, with the 
Explorer 16/32 board, to demonstrate how to write to and read from EEPROM Data 
(EEData). Read values are displayed on LEDs accessed from three ports.

MPLAB Code Configurator (MCC) is used to generate some of the code. To find out 
how to install and get the user’s guide for MCC, see: Section 4 “Display 
Potentiometer Values on LEDs Using an ADC”.

For this example, the MCC GUI was used to set up the System (oscillator speed, con-
figuration bits, etc.) and the General Purpose I/O (GPIO) for Ports A, B, and C 
(Figure 13). However, at this time, there is no EEData device resource available for 
16-bit devices in the MCC.

Code for using the EEData module is found in the device data sheet and the 
dsPIC33/PIC24 Family Reference Manual, “Section 5. Data EEPROM,” both located 
on the device web page:

https://www.microchip.com/PIC24F32KA304

FIGURE 13: EEDATA PROJECT RESOURCES - SYSTEM MODULE
DS50002446C-page 20  2015-2019 Microchip Technology Inc.

http://www.microchip.com/PIC24F32KA304


MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 14: EEDATA PROJECT SYSTEM MODULE CONFIGURATION
 2015-2019 Microchip Technology Inc. DS50002446C-page 21



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 15: EEDATA PROJECT RESOURCES - PIN MODULE

FIGURE 16: EEDATA PROJECT I/O PIN CONFIGURATION

Pins RA9:11, RB2:3, RB12 and RC8:9 will appear in the window above when they are selected in Figure 17.

RB6 and RB7 are preselected for debug communication.

Once visible in the window, pin configurations may be viewed or selected for each pin.
DS50002446C-page 22  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
FIGURE 17: EEDATA PROJECT I/O PIN RESOURCES

FIGURE 18: EEDATA PROJECT PIN PACKAGE
 2015-2019 Microchip Technology Inc. DS50002446C-page 23



MPLAB® XC16 User’s Guide for Embedded Engineers
After your code is configured (as shown in the previous figures), click the Generate but-
ton on the “Project Resources” window. Code generated by the MCC is modular. 
Therefore main, system, and peripheral code are all in individual files. Also, each 
peripheral has its own header file.

Traps files are generated to catch potential errors. Although no interrupts will be used 
in this application, interrupt manager files are generated for future use.

FIGURE 19: EEDATA PROJECT TREE FOR CODE GENERATED BY MCC
DS50002446C-page 24  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
The GPIO-generated files default to analog input, so they must be changed to digital 
input in the pin_manager.c file (Section 5.1).

In addition, because LED connections are not to one port but spread across three, an 
additional type definition and code to assign the port pins to the correct LED values are 
needed. A header file, LEDs.h (Section 5.2), and a C file, LEDs.c (Section 5.3), have 
been added to the project.

As previously mentioned, there is no EEData device resource currently available in 
MCC for 16-bit devices, so code needs to be added by hand. A header file eedata.h 
(Section 5.4) and a C file, eedata.c (Section 5.5), have been added to the project.

The final project tree will appear as shown in Figure 20.

FIGURE 20: EEDATA PROJECT TREE - FINAL

Editing of main.c is always required to add functionality to your program 
(Section 5.6). Review the generated files and additional files to find any functions or 
macros you may need in your code.
 2015-2019 Microchip Technology Inc. DS50002446C-page 25



MPLAB® XC16 User’s Guide for Embedded Engineers
5.1 pin_manager.c Modified Code

The main.c template file has been edited as shown below. Some comments and 
generated content have been removed as described in < >. Code that is changed is 
shown in green.

/**
  System Interrupts Generated Driver File 

<See generated pin_manager.c for file information.>

Copyright (c) 2013 - 2015 released Microchip Technology Inc. All 
rights reserved.

<See generated pin_manager.c for additional copyright information.>
 */

/**
    Section: Includes
 */
#include <xc.h>
#include "pin_manager.h"

/**
    void PIN_MANAGER_Initialize(void)
 */
void PIN_MANAGER_Initialize(void) {

<See generated pin_manager.c for port setup information.>
    
/********************************************************************
 * Setting the Analog/Digital Configuration SFR(s)
 ********************************************************************/
    ANSA = 0x0;
    ANSB = 0x0;
    ANSC = 0x0;

}

DS50002446C-page 26  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
5.2 LEDs.h Code

Some comments have been removed as described in < >.

/*-------------------------------------------------------------------
 * PICF32KA304 LEDs header
 *
 * (c) Copyright 1999-2015 Microchip Technology, All rights reserved
 *
<See generated header files for additional copyright information.>
 */

/********************************************************************
 * Union of structures to hold value for display on LEDs
 * LAT_LEDx - bit fields of value
 * w - entire value
 *******************************************************************/
typedef union {
    struct {
      unsigned LAT_LED0:1;
      unsigned LAT_LED1:1;
      unsigned LAT_LED2:1;
      unsigned LAT_LED3:1;
      unsigned LAT_LED4:1;
      unsigned LAT_LED5:1;
      unsigned LAT_LED6:1;
      unsigned LAT_LED7:1;
    };
    struct {
      unsigned w:16;  
    };
} LAT_LEDSBITS;
extern volatile LAT_LEDSBITS LAT_LEDSbits;

/* LAT_LEDSBITS */
#define _LED0 LAT_LEDSbits.LAT_LED0
#define _LED1 LAT_LEDSbits.LAT_LED1
#define _LED2 LAT_LEDSbits.LAT_LED2
#define _LED3 LAT_LEDSbits.LAT_LED3
#define _LED4 LAT_LEDSbits.LAT_LED4
#define _LED5 LAT_LEDSbits.LAT_LED5
#define _LED6 LAT_LEDSbits.LAT_LED6
#define _LED7 LAT_LEDSbits.LAT_LED7
#define _LEDS LAT_LEDSbits.w

/********************************************************************
 * Function: DisplayValueOnLEDs
 * Precondition: None.
 * Overview: Display input value on Explorer 16 LEDs
 * Input: Value to display
 * Output: None.
 *******************************************************************/
void DisplayValueOnLEDs(unsigned int value);
/**
 End of File
 */
 2015-2019 Microchip Technology Inc. DS50002446C-page 27



MPLAB® XC16 User’s Guide for Embedded Engineers
5.3 LEDs.c Code

Some comments have been removed as described in < >.

/**
  Display on LEDs Source File

<See LEDs.c for file description information.>

 */
/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All 
rights reserved.

<See generated header files for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"
#include "LEDs.h"

volatile LAT_LEDSBITS LAT_LEDSbits;

/********************************************************************
 * Function: DisplayValueOnLEDs
 * Precondition: None.
 * Overview: Display input value on Explorer 16 LEDs
 * Input: Value to display
 * Output: None.
 *******************************************************************/
void DisplayValueOnLEDs(unsigned int value) {

    _LEDS = value;
    
    _LATA9  = _LED0;
    _LATA10 = _LED1;
    _LATA11 = _LED2;
    _LATC8  = _LED3;
    _LATC9  = _LED4;
    _LATB12 = _LED5;
    _LATB2  = _LED6;
    _LATB3  = _LED7;

}

/**
 End of File
 */
DS50002446C-page 28  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
5.4 eedata.h Code

Some comments have been removed as described in < >.

/*-------------------------------------------------------------------
 * PICF32KA304 Data EEPROM header
 *
 * (c) Copyright 1999-2015 Microchip Technology, All rights reserved
 *
<See generated header files for additional copyright information.>
 */

/********************************************************************
 * Function: EEData_WTL
 * Precondition: None.
 * Overview: Write one word of EEData
 * Input: Action to take: Erase or Write, Data to write
 * Output: None.
 *******************************************************************/
void EEData_WTL(unsigned int action, unsigned int data);

/********************************************************************
 * Function: EEData_Erase
 * Precondition: None.
 * Overview: Set up erase of one word of EEData
 * Input: None.
 * Output: None.
 *******************************************************************/
void EEData_Erase(void);

/********************************************************************
 * Function: EEData_Write
 * Precondition: None.
 * Overview: Set up write of one word of EEData
 * Input: Data to write
 * Output: None.
 *******************************************************************/
void EEData_Write(unsigned int data);

/********************************************************************
 * Function: EEData_Read
 * Precondition: None.
 * Overview: Read one word of EEData
 * Input: None.
 * Output: Value read from EEData
 *******************************************************************/
unsigned int EEData_Read(void);

/**
 End of File
 */
 2015-2019 Microchip Technology Inc. DS50002446C-page 29



MPLAB® XC16 User’s Guide for Embedded Engineers
5.5 eedata.c Code

Some comments have been removed as described in < >.

/**
  Data EEPROM Write and Read

<See eedata.c for file description information.>

 */
/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All 
rights reserved.

<See generated header files for additional copyright information.>
 */

#include <xc.h>
#include "eedata.h"

#define ERASE_EEWORD 0x4058
#define WRITE_EEWORD 0x4004

int __attribute__ ((space(eedata))) eeData = 0x0;
unsigned int offset = 0x0;

/********************************************************************
 * Function: EEData_WTL
 * Precondition: None.
 * Overview: Write one word of EEData
 * Input: Action to take: Erase or Write, Data to write
 * Output: None.
 *******************************************************************/
void EEData_WTL(unsigned int action, unsigned int data) {
    
    // Set up NVMCON to write one word of data EEPROM
    NVMCON = action;
    
    // Set up a pointer to the EEPROM location to be written
    TBLPAG = __builtin_tblpage(&eeData);
    offset = __builtin_tbloffset(&eeData);
    __builtin_tblwtl(offset, data);
    
    // Issue Unlock Sequence & Start Write Cycle
    __builtin_write_NVM();
    
    // Wait for completion
    while(NVMCONbits.WR);
}

/********************************************************************
 * Function: EEData_Erase
 * Precondition: None.
 * Overview: Set up erase of one word of EEData
 * Input: None.
 * Output: None.
 *******************************************************************/
void EEData_Erase(void) {
    
    EEData_WTL(ERASE_EEWORD, 0);
}

DS50002446C-page 30  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
/********************************************************************
 * Function: EEData_Write
 * Precondition: None.
 * Overview: Set up write of one word of EEData
 * Input: Data to write
 * Output: None.
 *******************************************************************/
void EEData_Write(unsigned int data) {
    
    EEData_WTL(WRITE_EEWORD, data);
}

/********************************************************************
 * Function: EEData_Read
 * Precondition: None.
 * Overview: Read one word of EEData
 * Input: None.
 * Output: Value read from EEData
 *******************************************************************/
unsigned int EEData_Read(void) {
    
    // Set up a pointer to the EEPROM location to be read
    TBLPAG = __builtin_tblpage(&eeData);
    offset = __builtin_tbloffset(&eeData);
    
    // Read the EEPROM data    
    return __builtin_tblrdl(offset);
}

/**
 End of File
 */
 2015-2019 Microchip Technology Inc. DS50002446C-page 31



MPLAB® XC16 User’s Guide for Embedded Engineers
5.6 main.c Modified Code

The main.c template file has been edited as shown below. Some comments have 
been removed as described in < >. Code that has been added is shown in green.

/**
  Generated Main Source File

<See generated main.c for file information.>
 */

/*
(c) 2016 Microchip Technology Inc. and its subsidiaries. You may use 
this software and any derivatives exclusively with Microchip products.

<See generated main.c for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"
#include "eedata.h"
#include "LEDs.h"
#include "libpic30.h"

#define IC_DELAY 1000000

unsigned int data_write = 0x0;
unsigned int data_read = 0x0;

/*
                         Main application
 */
int main(void) {
    // initialize the device
    SYSTEM_Initialize();

    while (1) {

        data_write++;
        
        // Erase one word of data EEPROM 
        EEData_Erase();
        
        // Write one word of data EEPROM
        EEData_Write(data_write);
        
        // Read one word of data EEPROM 
        data_read = EEData_Read();
        
        // Display result on LEDs       
        DisplayValueOnLEDs(data_read);
        
        // Delay change on LEDs so visible
        __delay32(IC_DELAY); // delay in instruction cycles
        
    }

    return -1;
}
/**
 End of File
 */

see Section 5.7

see Section 5.8

see Section 5.9
DS50002446C-page 32  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
5.7 Erase and Write to EEData

To write a single word in the EEData, the following sequence must be followed:

1. Erase one data EEPROM word.

2. Write the data word into the data EEPROM latch.

3. Program the data word into the EEPROM.

The code to erase and write one word to EEData is found in eedata.c (Section 5.5).

For a PIC24F32KA304 device, a key sequence needs to be written to NVMKEY (in 
NVMCON) before EEData can be erased or written.

Built-in functions are used to simplify coding:

• unsigned int __builtin_tblpage(const void *p);
• unsigned int __builtin_tbloffset(const void *p);
• void __builtin_tblwtl(unsigned int offset, unsigned int data);
• void __builtin_write_NVM(void);

Details on these functions may be found in the MPLAB XC16 C Compiler User’s Guide 
(DS50002071), “Appendix G. Built-in Functions.”

5.8 Read from EEData

For this example, after EEData is written, the word of EEData is read.

The code to read one word to EEData is found in eedata.c (Section 5.5).

Built-in functions are used to simplify coding:

• unsigned int __builtin_tblpage(const void *p);
• unsigned int __builtin_tbloffset(const void *p);
• unsigned int __builtin_tblrdl(unsigned int offset);

Details on these functions can be found in the MPLAB XC16 C Compiler User’s Guide 
(DS50002071), “Appendix G. Built-in Functions.”

5.9 Display Data on LEDs and Delay

Displaying the data on the demo board LEDs is more involved for this device, as three 
ports provide connections to the LEDs. Therefore, union and structure data types are 
used so that the whole data value can be assigned (LAT_LEDSbits.w), and then indi-
vidual bits may be accessed so they can be assigned to the correct port pins for display 
(e.g., LATAbits.LATA9 = LAT_LEDSbits.LAT_LED0).

The code creating the union and structures is found in LEDs.h (Section 5.2).

The code assigning the port pins to LED values is found in LEDs.c (Section 5.5).

Because the speed of execution will, in most cases, cause the LEDs to flash faster than 
the eye can see, the _delay() function is used again (as in Section 2.) to slow 
execution.
 2015-2019 Microchip Technology Inc. DS50002446C-page 33



MPLAB® XC16 User’s Guide for Embedded Engineers
A. RUN CODE IN MPLAB X IDE

A.1 Create a Project

1. Launch MPLAB X IDE.

2. From the IDE, launch the New Project Wizard (File>New Project).

3. Follow the screens to create a new project:

a) Choose Project: Select “Microchip Embedded,” then “Standalone Project.”

b) Select Device: Select the example device.

c) Select Header: None.

d) Select Tool: Select your hardware debug tool by serial number (SN), 
SNxxxxxx. If you do not see an SN under your debug tool name, ensure that 
your debug tool is correctly installed. See your debug tool documentation for 
details.

e) Select Plugin Board: None.

f) Select Compiler: Select XC16 (latest version number) [bin location]. If you 
do not see a compiler under XC16, ensure the compiler is correctly installed 
and that MPLAB X IDE can find the executable. Select Tools>Options, click 
the Embedded button on the Build Tools tab, and look for your compiler. 
See MPLAB XC16 and MPLAB X IDE documentation for details.

g) Select Project Name and Folder: Name the project.

A.2 Select the Common Compiler Interface (CCI)

After your project is created, right click on the project name, in the Projects window, and 
select Properties. In the dialog, click on the “xc16-gcc” category, select the “Prepro-
cessing and messages” option category, and select the “Use CCI syntax” checkbox. 
Click the OK button.

A.3 Debug the Examples

Do one of the following, based on the example you are using:

1. For examples 1, 2, and 3, create a file to hold the example code:

a) Right click on the “Source Files” folder in the Projects window. Select 
New>main.c. The “New main.c” dialog will open.

b) Under “File name,” enter a name, e.g., examplen, where n is the example 
number.

c) Click Finish. The file will open in an editor window.

d) Delete the template code in the file. Then cut and paste the example code 
from this user’s guide into the empty editor window and select File>Save.

2. For examples 4 and 5, follow the instructions in each section to generate code 
using MCC and then edit main.c and other files with the code shown.

Finally, select Debug Run to build, download to a device, and execute the code. View 
the demo board LEDs for output. Click Halt to end execution.

FIGURE 21: TOOLBAR ICONS

DEBUG RUN HALT
DS50002446C-page 34  2015-2019 Microchip Technology Inc.



MPLAB® XC16 User’s Guide for Embedded Engineers
B. GET SOFTWARE AND HARDWARE

For the MPLAB XC16 projects in this document, the Explorer 16/32 board with a 
PIC24F PIM is powered from a 9V external power supply and uses standard (ICSP™) 
communications. MPLAB X IDE was used for development.

B.1 Get MPLAB X IDE and MPLAB XC16 C Compiler

MPLAB X IDE v5.10 and later can be found at:

https://www.microchip.com/mplab/mplab-x-ide

The MPLAB XC16 C Compiler v1.35 and later can be found at:

https://www.microchip.com/mplab/compilers

B.2 Get the MPLAB Code Configurator (MCC)

The MCC v3.66 and later can be found at:

https://www.microchip.com/mplab/mplab-code-configurator

B.3 Get PIC® MCU Plug-in Module (PIM)

The PIC MCU PIMs used in the examples are available at the following locations on 
the Microchip Technology web site:

PIC24FJ128GA010: https://www.microchip.com/MA240011

PIC24F32KA304: https://www.microchip.com/MA240022

B.4 Get and Set Up the Explorer 16/32 Board

The Explorer 16/32 development board, schematic and documentation are available on 
the web site:

https://www.microchip.com/dm240001-2

Jumpers and switches were set up as shown in the following table. 

B.5 Get Microchip Debug Tools

Emulators and debuggers can be found on the Development Tools web page:

https://www.microchip.com/development-tools

TABLE 1-1: JUMPER/SWITCH SELECTS FOR PROJECTS

Jumper/Switch Selection Jumper/Switch Selection

JP2 Closed J37 Open

J19 Open J38 Open

J22 Open J39 Default

J23 Default J41 Open

J25 Closed J42 Open

J26 Closed J43 Default

J27 Open J44 Default

J28 Open J45 Default

J29 Open J50 Closed

J33 Open
 2015-2019 Microchip Technology Inc. DS50002446C-page 35

http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/mplab/compilers
http://www.microchip.com/mplab/mplab-code-configurator
http://www.microchip.com/MA240011
http://www.microchip.com/MA240022
http://www.microchip.com/dm240001-3
http://www.microchip.com/development-tools


MPLAB® XC16 User’s Guide for Embedded Engineers
NOTES:
DS50002446C-page 36  2015-2019 Microchip Technology Inc.



Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the 
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our 
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data 
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2015-2019 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide 
headquarters, design and wafer fabrication facilities in Chandler and 
Tempe, Arizona; Gresham, Oregon and design centers in California 
and India. The Company’s quality system processes and procedures 
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping 
devices, Serial EEPROMs, microperipherals, nonvolatile memory and 
analog products. In addition, Microchip’s quality system for the design 
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT  SYSTEM 
CERTIFIED BY DNV 

== ISO/TS 16949 == 
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, 
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, 
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, 
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, 
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, 
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip 
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, 
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered 
trademarks of Microchip Technology Incorporated in the U.S.A. 
and other countries.

ClockWorks, The Embedded Control Solutions Company, 
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, 
mTouch, Precision Edge, and Quiet-Wire are registered 
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any 
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, 
CryptoAuthentication, CryptoAutomotive, CryptoCompanion, 
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average 
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial 
Programming, ICSP, INICnet, Inter-Chip Connectivity, 
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, 
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, 
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, 
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, 
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, 
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total 
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, 
WiperLock, Wireless DNA, and ZENA are trademarks of 
Microchip Technology Incorporated in the U.S.A. and other 
countries.

SQTP is a service mark of Microchip Technology Incorporated in 
the U.S.A.

Silicon Storage Technology is a registered trademark of 
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology 
Germany II GmbH & Co. KG, a subsidiary of Microchip 
Technology Inc., in other countries. 

All other trademarks mentioned herein are property of their 
respective companies.

© 2018, Microchip Technology Incorporated, All Rights 
Reserved.

ISBN: 978-1-5224-4089-5
DS50002446C-page 37



DS50002446C-page 38  2015-2019 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 
Fax: 480-792-7277
Technical Support: 
http://www.microchip.com/
support
Web Address: 
www.microchip.com

Atlanta
Duluth, GA 
Tel: 678-957-9614 
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370 

Boston
Westborough, MA 
Tel: 774-760-0087 
Fax: 774-760-0088

Chicago
Itasca, IL 
Tel: 630-285-0071 
Fax: 630-285-0075

Dallas
Addison, TX 
Tel: 972-818-7423 
Fax: 972-818-2924

Detroit
Novi, MI 
Tel: 248-848-4000

Houston, TX 
Tel: 281-894-5983

Indianapolis
Noblesville, IN 
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA 
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800 

Raleigh, NC 
Tel: 919-844-7510

New York, NY 
Tel: 631-435-6000

San Jose, CA 
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980 
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000 

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880 

China - Guangzhou
Tel: 86-20-8755-8029 

China - Hangzhou
Tel: 86-571-8792-8115 

China - Hong Kong SAR
Tel: 852-2943-5100 

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000 

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200 

China - Suzhou
Tel: 86-186-6233-1526 

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138 

China - Zhuhai
Tel: 86-756-3210040 

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444 

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160 

Japan - Tokyo
Tel: 81-3-6880- 3770 

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600 

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828 
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20 
Fax: 33-1-69-30-90-79 

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0 
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana 
Tel: 972-9-744-7705

Italy - Milan 
Tel: 39-0331-742611 
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286 

Netherlands - Drunen
Tel: 31-416-690399 
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737 

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

08/15/18

http://support.microchip.com
http://www.microchip.com

	MPLAB® XC16 User’s Guide for Embedded Engineers
	Introduction
	1. Turn LEDs On or Off
	1.1 Configuration Bits
	1.2 Header File <xc.h>
	1.3 Variable for LED Values
	1.4 Port Access

	2. Flash LEDs Using a Delay Function
	2.1 Library Header File
	2.2 The while() Loop and Variable Values
	2.3 The __delay32() Function

	3. Count Up on LEDs Using Interrupts as Delay
	3.1 The Interrupt Function
	3.2 Timer1 Setup

	4 Display Potentiometer Values on LEDs Using an ADC
	4.1 main.c Modified Code
	4.2 ADC Conversion and Result
	4.3 Write to Port Latch and LEDs

	5. Display EEPROM Data Values on LEDs
	5.1 pin_manager.c Modified Code
	5.2 LEDs.h Code
	5.3 LEDs.c Code
	5.4 eedata.h Code
	5.5 eedata.c Code
	5.6 main.c Modified Code
	5.7 Erase and Write to EEData
	5.8 Read from EEData
	5.9 Display Data on LEDs and Delay

	A. Run Code in MPLAB X IDE
	A.1 Create a Project
	A.2 Select the Common Compiler Interface (CCI)
	A.3 Debug the Examples

	B. Get Software and Hardware
	B.1 Get MPLAB X IDE and MPLAB XC16 C Compiler
	B.2 Get the MPLAB Code Configurator (MCC)
	B.3 Get PIC® MCU Plug-in Module (PIM)
	B.4 Get and Set Up the Explorer 16/32 Board
	B.5 Get Microchip Debug Tools
	AMERICAS
	Corporate Office
	Atlanta
	Austin, TX
	Boston
	Chicago
	Dallas
	Detroit
	Houston, TX
	Indianapolis
	Los Angeles
	Raleigh, NC
	New York, NY
	San Jose, CA
	Canada - Toronto

	ASIA/PACIFIC
	Australia - Sydney
	China - Beijing
	China - Chengdu
	China - Chongqing
	China - Dongguan
	China - Guangzhou
	China - Hangzhou
	China - Hong Kong SAR
	China - Nanjing
	China - Qingdao
	China - Shanghai
	China - Shenyang
	China - Shenzhen
	China - Suzhou
	China - Wuhan
	China - Xian
	China - Xiamen
	China - Zhuhai

	ASIA/PACIFIC
	India - Bangalore
	India - New Delhi
	India - Pune
	Japan - Osaka
	Japan - Tokyo
	Korea - Daegu
	Korea - Seoul
	Malaysia - Kuala Lumpur
	Malaysia - Penang
	Philippines - Manila
	Singapore
	Taiwan - Hsin Chu
	Taiwan - Kaohsiung
	Taiwan - Taipei
	Thailand - Bangkok
	Vietnam - Ho Chi Minh

	EUROPE
	Austria - Wels
	Denmark - Copenhagen
	Finland - Espoo
	France - Paris
	Germany - Garching
	Germany - Haan
	Germany - Heilbronn
	Germany - Karlsruhe
	Germany - Munich
	Germany - Rosenheim
	Israel - Ra’anana
	Italy - Milan
	Italy - Padova
	Netherlands - Drunen
	Norway - Trondheim
	Poland - Warsaw
	Romania - Bucharest
	Spain - Madrid
	Sweden - Gothenberg
	Sweden - Stockholm
	UK - Wokingham
	Worldwide Sales and Service





