
MPLAB XC8 GETTING
STARTED GUIDE
MPLAB® XC8 Getting Started Guide
This document provides a starting point for programmers who are just starting out with
the MPLAB® XC8 C Compiler, particularly those who are unfamiliar with embedded
programming or Microchip devices.
The following headings are linked to sections in this guide:
Creation of a Project in MPLAB X IDE
Foundation Code
Compilation
Specifying Device Configuration Bits
Accessing Device Registers
Disabling Peripherals that Share Port Pins
Downloading and Running Your Code
Implementing a Main Loop
Using Interrupts
Conclusion
While the MPLAB XC8 C Compiler can target hundreds of 8-bit PIC devices, this guide
uses the PIC18F87J11 microcontroller (MCU) with a PICDEM PIC18 Explorer Board.
However, the information presented in this document can be used in conjunction with
the XC8 C Compiler to create and compile equivalent code for almost any 8-bit MCU
and hardware.
This guide describes using the compiler from the MPLAB X Integrated Development
Environment (IDE); however, you can use it from the command-line, as well. If you have
a development board, you can download and run code on your device. You can also
use the simulator in MPLAB X IDE to confirm the operation of your code.
To demonstrate getting started with the MPLAB XC8 C Compiler, you will be guided
through the creation of a project that you can build and run. The project flashes an LED
that is connected to a port pin. To accomplish this, the following actions, presented here
in summary, are performed. They are expanded and described in more detail as you
progress through the pages of this guide.

• Include <xc.h> in your source file(s).
• Set the device Configuration bits using the config pragma.
• Disable any peripheral that uses the pin(s) used by the port.
• Initialize the port’s data direction register, and write values to the port latch.
• Use a delay to ensure you can see the changes in state.

The guide assumes that you have MPLAB X IDE and MPLAB XC8 C compiler installed
and activated (if applicable) before you commence. You could also use an evaluation
version of the compiler, or the compiler operating in Free mode.
For assistance installing or activating the compiler, refer to Installing and Licensing
MPLAB XC C Compilers (DS50002059). The document can be downloaded from the
Microchip Technology web site, wwww.microchip.com.
 2013 Microchip Technology Inc. DS50002173A-page 1

MPLAB XC8 Getting Started Guide
CREATION OF A PROJECT IN MPLAB X IDE
This section describes how to create a project in MPLAB X IDE using the MPLAB XC8
C Compiler.
The process is explained in the following steps:
Step 1 sets the project type.
Step 2 selects the target device.
Step 3 selects the device header.
Step 4 selects the tool to run the project code.
Step 5 is only applicable to some debugger tool selections.
Step 6 selects the tool to compile the source code.
Step 7 specifies the project name and path.
Step 8 completes creation of the project.
If you are not using the MPLAB X IDE, or you are already familiar with the process of
creating a project, skip to the next section, “Foundation Code”. Full information on
MPLAB X IDE is available online in the MPLAB X IDE User’s Guide (DS52027).
DS50002173A-page 2  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
Step 1 sets the project type.

From MPLAB X IDE, choose File>New Project.... In the window that opens (as shown
in Figure 1-1), select the “Microchip Embedded” category, and a “Standalone Project”
from the Projects field.

FIGURE 1-1: NEW PROJECT WINDOW
 2013 Microchip Technology Inc. DS50002173A-page 3

MPLAB XC8 Getting Started Guide
Step 2 selects the target device.

This selection must exactly match the device on your hardware. (If you are using the
simulator without hardware, you can choose any device.)
To make selecting a device simpler, devices are organized into families. MPLAB XC8
can compile for any device in the 8-bit-microcontroller families. In Figure 1-2, a
PIC18F87J11 has been selected from the PIC18 family.

FIGURE 1-2: DEVICE SELECTION DIALOG
DS50002173A-page 4  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
Step 3 selects the device header.

The use of debugging features is not required by this guide, so this selection could be
None, as shown in Figure 1-3.

FIGURE 1-3: HEADER SELECTION DIALOG

Step 4 selects the tool to run the project code.

If you have a debugger and wish to use it with your hardware, select it from the list;
otherwise, select Simulator. Figure 1-4 shows MPLAB REAL ICE selected as the
programmer/debugger to run the generated code.

FIGURE 1-4: TOOL SELECTION DIALOG
 2013 Microchip Technology Inc. DS50002173A-page 5

MPLAB XC8 Getting Started Guide
Step 5 is only applicable to some debugger tool selections.

Unless you must use a specific plugin board, select None (when/if the dialog shown in
Figure 1-5 appears).

FIGURE 1-5: PLUGIN SELECTION DIALOG

Step 6 selects the tool to compile the source code.

As shown in the Select Compiler window in Figure 1-6, several versions of the MPLAB
XC8 compiler might be listed under the XC8 disclosure widget. Select the most recent
version. You will be able to change this selection during development.

FIGURE 1-6: COMPILER SELECTION DIALOG
DS50002173A-page 6  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
Step 7 specifies the project name and path.

Type a name for the project in the Project Name field. Click Browse... if the default proj-
ect path is not suitable. In this case, the name quick_start_XC8 has been chosen
for illustration purposes and can be seen in Figure 1-7.
To differentiate the current project in the IDE (when multiple projects exist) as the main
project, click “Set as main project”.

FIGURE 1-7: PROJECT NAME AND PATH DIALOG
 2013 Microchip Technology Inc. DS50002173A-page 7

MPLAB XC8 Getting Started Guide
Step 8 completes creation of the project.

Click Finish, and the project is created. An icon representing the project appears in the
Projects window1, as shown in Figure 1-8. The Projects window is shown at the top left
in the figure. Below the Projects window, the Dashboard provides more detailed project
information.

FIGURE 1-8: THE PROJECTS WINDOW

1. You may need to select Windows>Projects if this pane is not visible by default.
DS50002173A-page 8  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
FOUNDATION CODE
The code presented here is actually a small program that could be the basis for all of
your MPLAB XC8 projects. Although it could be construed as trivial, the code is entirely
valid, and compiles and executes, as required.
The code creation process is explained in the following linked steps:
Step 1 creates a new source file.
Step 2 enters a suitable name for the source file.
Step 3 adds skeleton code to the new file.
Step 4 saves your work.
 2013 Microchip Technology Inc. DS50002173A-page 9

MPLAB XC8 Getting Started Guide
Step 1 creates a new source file.

With MPLAB X IDE, there are several ways to create a source file. The following
method is the most basic, and moves through the all aspects of the source creation pro-
cess.
As shown in orange in Figure 1-9, right click on the project icon that represents the new
project you created, quick_start_XC8. Select New>C Source File... on the resulting
pop-up command and target lists.

FIGURE 1-9: NEW FILE POPUP

This will open the New C Source File window, as shown in Figure 1-10.

FIGURE 1-10: NEW C SOURCE FILE WINDOW
DS50002173A-page 10  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
Step 2 enters a suitable name for the source file.

Ensure that the project name is correct.
As illustrated in Figure 1-10, the settings will create a file called main.c. After clicking
Finish, an icon representing the file should appear in the Project window. The file is
also opened in the text editor. At this time, the file is empty.

Step 3 adds skeleton code to the new file.

Copy or type the following text into the new source file, main.c.
#include <xc.h>

int main(void)
{
 return 0;
}

This initial code can be used to start every project built with MPLAB XC8. C.
Every C program must have one, and only one, function called main(); however, the
exact prototype for this function can vary from compiler to compiler. For all MPLAB XC
compilers, you may use the prototype shown above. Since main() returns an int,
there must be a return statement with a return value specified. The value 0 indicates
that main() returned successfully.
The inclusion of the header file, <xc.h>, allows code in this source file to access com-
piler- or device-specific features. Since such access is commonplace, you will need to
include it into virtually all of your source files.

Step 4 saves your work.

Select File>Save to ensure that your work is saved.
If you are not using MPLAB X IDE, you may enter the above program into a file using
any editor, as long as it is saved as plain text and the file uses the .c extension.
 2013 Microchip Technology Inc. DS50002173A-page 11

MPLAB XC8 Getting Started Guide
COMPILATION
As mentioned previously, the new program is a valid C program. This means it can be
compiled. This section explains how to build code.
MPLAB X IDE knows which compiler to execute when building your source code, but
options can be used to alter how the compiler operates. The default options are accept-
able for most projects. If you do need to adjust the compiler options, you can do so from
the Project Properties dialog. Open this dialog using the top button on the left in the
project dashboard, as seen in Figure 1-11. From this dialog you can also change other
project attributes, such as the device or compiler associated with your project.

FIGURE 1-11: PROJECT PROPERTIES BUTTON

There are several ways to execute the compiler. There are buttons on the toolbar to
enable quick access to the different build operations, but you can also access these
from the Run and Debug menus. Some operations only build your code; others build
and then execute your code. Both the build and run steps can be made in either a
release or debug mode.
Debug mode operations enable the debug executive on your device. This allows
access to debugging features like breakpoints. For the debug executive to be active, it
must utilize some of the device’s memory that normally would be available for your
code. Debug builds ensure that this memory is reserved for the debug executive.
Release mode operations do not allow any debug features to be used, but all the device
memory is available for your project. This is the build mode you would use to produce
a production image suitable for products you intend to release.

Project properties
DS50002173A-page 12  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
Figure 1-12 shows the most common toolbar buttons that are used to build code.

FIGURE 1-12: BUILD BUTTONS

From left to right, the identified buttons perform the following functions:
• Build (release) any project source files modified since the last build, then link
• Build (release) all project source files, then link
• Build (release) any project source files modified since the last build, link, then

download and run your code
• Build (debug) any project source files modified since the last build, link, then

download and run your code with the debug executive enabled
For the purposes of this demonstration, click Build, or Clean and Build.

Build project
Clean & Build project Build & Debug project

Build & Run project
 2013 Microchip Technology Inc. DS50002173A-page 13

MPLAB XC8 Getting Started Guide
The compiler associated with your project will be invoked, and every source file in your
project (currently only one) will be built and linked into one binary image. You will see
a transcript of the build process in the Output window, which will open if it is not already
visible in the workspace. This might look similar to that shown in Figure 1-13.

FIGURE 1-13: THE OUTPUT WINDOW

Note that there are several warnings relating to missing configuration settings1, but
these have not stopped the compilation process and the BUILD SUCCESSFUL mes-
sage at the lower part of the window indicates that the code was built. The red error, at
the bottom of the Output window, indicates a mismatch in the code compiled and the
target device. The next section explains how to configure the device, which will resolve
these warnings and the error.
If you are building from a terminal, use the following command line.
xc8 --chip=18f87j11 main.c

Adjust the device and source file name, as appropriate. If the compiler is not in the
search path, you should use its full path, in addition to the application name, xc8.

1. If you are compiling for a device other than the PIC18F87J11, you may see more or fewer of these
warnings
DS50002173A-page 14  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
SPECIFYING DEVICE CONFIGURATION BITS
Although the new program is a valid C program, it is unlikely that it would run properly
on the device. All Microchip 8-bit PIC devices must be configured to ensure correct
operation. Some configuration settings affect fundamental operation of the device, like
those for the instruction clock. If that setting is incorrect, the clock may not run.
The warnings shown in the Output window in the previous section can indicate potential
problems with the device’s configuration, but it is important to note that you must
specify these configuration settings even if you do not see any warnings issued by the
compiler.
The configuration settings are specified by special bits in the device.The MPLAB XC8
C Compiler uses pragmas that allow you to specify the configuration bit settings in your
code. The values derived from these pragmas are merged with your project’s compiled
binary image and downloaded to your device.
The number and type of configuration settings vary from device to device. Consult the
data sheet for the MCU you are using to learn what each setting controls. In this case,
the device is a PIC18F87J11, the data sheet is the PIC18F87J11 Family Data Sheet
(DS39778), and can be downloaded from www.microchip.com.
The easiest way to complete the pragmas that are needed to configure your device is
to use the Configuration Bits Window, a feature of MPLAB X IDE. The following steps
describe how to use the window to get the information to complete the pragmas.
Step 1 opens the Configuration Bits window.
Step 2 reviews every setting.
Step 3 generates the pragmas that can implement the settings you have chosen.
Step 4 copies the code from this window to a source file of your choosing.
 2013 Microchip Technology Inc. DS50002173A-page 15

MPLAB XC8 Getting Started Guide
Step 1 opens the Configuration Bits window.

Select Window>PIC Memory Views>Configuration Bits from the menus. The window,
similar to the one that is shown in Figure 1-14, lists information that relates to
Configuration bit locations and values.

FIGURE 1-14: THE CONFIGURATION BITS WINDOW

The Name and Field columns will help you to find the equivalent settings in the device
data sheet.
The Category column describes what the setting controls.
The Setting column shows the current state of that setting.

Step 2 reviews every setting.

Pay particular note to the following settings, which will almost certainly cause runtime
failure if not they are not specified correctly:

Oscillator section
This must match that of your hardware’s oscillator circuitry. If this is not correct,
the device clock may not run. If you are using the simulator as a debug tool, this
setting can be ignored. Typically, development boards use high-speed crystal
oscillators.
Watchdog timer
It is recommended that you disable this timer, until it is required. This prevents
unexpected Resets.
Code protection
Turn off code protection, until it is required. This ensures that the device is fully
accessible.
Extended instruction set
This PIC18 setting must be disabled. The MPLAB XC8 C Compiler does not
support this instruction set.

Change the settings by clicking on the relevant line in the Settings column and
choosing from the appropriate setting in the pull-down list.

Step 3 generates the pragmas that can implement the settings you have chosen.

Click the Generate Source Code to Output button. The generated code will appear in
the Config Bits Source window, as shown in Figure 1-15.
DS50002173A-page 16  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
FIGURE 1-15: THE CONFIGURATION BITS SOURCE WINDOW

Step 4 copies the code from this window to a source file of your choosing.

It is not executable code and should be placed outside of function definitions. The code
has been copied to the main.c file (comments omitted for clarity), as shown below1.
#include <xc.h>

// CONFIG1
#pragma config WDTEN = OFF
#pragma config STVREN = ON
#pragma config XINST = OFF
#pragma config CP0 = OFF

// CONFIG2
#pragma config FOSC = HSPLL
#pragma config FCMEN = ON
#pragma config IESO = ON
#pragma config WDTPS = 32768

// CONFIG3
#pragma config EASHFT = ON
#pragma config MODE = XM16
#pragma config BW = 16
#pragma config WAIT = OFF
#pragma config CCP2MX = DEFAULT
#pragma config ECCPMX = DEFAULT
#pragma config PMPMX = DEFAULT
#pragma config MSSPMSK = MSK7

int main(void)
{
 return 0;
}

1. This code is specific to a PIC18F87J11 device and the PICDEM PIC18 Explorer board. You must
use configuration settings that are specific to your device and hardware.
 2013 Microchip Technology Inc. DS50002173A-page 17

MPLAB XC8 Getting Started Guide
Note that there is not a link between the configuration pragmas in your source code and
the Configuration Bits window. If you need to adjust a configuration setting, you must
manually edit the pragmas in your source code. Or, change the settings in the Config-
uration Bits window, regenerate the source code, and replace your existing pragmas
with those newly generated.
There is another place, outside of MPLAB X IDE, that you can find settings and values
associated with supported Microchip devices. An HTML guide was included in the
download with the compiler. In the DOCS directory of your compiler installation, open
the file pic_chipinfo.html or pic18_chipinfo.html. Click the link to your tar-
get device, and the page will show you the settings and values that are appropriate for
the config pragmas.
With the configuration pragmas included into your source code, you should now be
able to build as you did in the previous section, but with no warnings or errors. The
successful build is shown in Figure 1-16.

FIGURE 1-16: THE OUTPUT WINDOW CLEAN BUILD
DS50002173A-page 18  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
ACCESSING DEVICE REGISTERS
The code that was compiled in the previous section still has no runtime function. It is
time to set up the device to perform a task. This section explains how to access the
device’s special function registers (SFRs) and turn on an LED attached to a port.
The following code sets the data direction for port D, then writes a value to that port’s
latch1.
#include <xc.h>

// your configuration bit settings go here
// configuration code (indicated earlier) omitted for brevity

int main(void)
{
 // code to access your port replaces the following
 TRISD = 0x0; // set all port D bits to be output
 LATD = 0x55; // write a value to the port D latch

 return 0;
}

In this code, special identifiers are used to represent the SFRs. These identifiers are
associated with variables that are defined by the inclusion of <xc.h>. They can be
used like any other C variable, but they are each assigned an address that maps them
over the register they represent. Note that writing to these variables writes to the reg-
ister, and consequently could change the state of the device. Simply the act of reading
these variables could, on occasion, affect the device.
The identifiers mentioned above are the same as the names of the registers they rep-
resent, as specified by the device data sheet. However, that may not always be the
case, particularly with the identifiers that represent bits within SFRs.
To learn which names to use when accessing SFRs on the device, follow these steps
to find the register names used for any device.
Step 1 creates a source file that includes <xc.h>.
Step 2 verifies appropriateness of the device, builds the code, and checks for errors.
Step 3 looks into the preprocessed file that was produced by the compiler in step 2.

1. Some devices do not have a latch register associated with a port and you will need to write to the
port directly, for example the PORTD register. Check your device data sheet.
 2013 Microchip Technology Inc. DS50002173A-page 19

MPLAB XC8 Getting Started Guide
Step 1 creates a source file that includes <xc.h>.

The content of the file is largely irrelevant. The skeleton code we started with in this
guide (i.e., an empty main() function) is ideal. You can use the file from the previous
section.

Step 2 verifies appropriateness of the device, builds the code, and checks for errors.

Step 3 looks into the preprocessed file that was produced by the compiler in step 2.

This file is usually left behind after compilation. If your source file is called main.c, the
preprocessed file is called main.pre. If you are compiling on the command-line, the
file will be left in the same directory as the source file. If you are using MPLAB X IDE,
click on the Files window, shown in the upper left of Figure 1-17. Look under the project
folder in this window, in the build/default/production folder1.

FIGURE 1-17: THE PREPROCESSED FILE SHOWING REGISTER NAMES

The content of this preprocessed file for the PIC18F87J11 is also shown in Figure 1-17.
It appears on the right, opened in the editor. It contains the C definitions for all the
variables that represent the SFRs.
In Figure 1-17, you can see that the variable TRISD is defined as an unsigned char
and is placed at the address 0xF95. If you check the data sheet for the PIC18F87J11,
it will confirm that this is, indeed, the address of the TRISD register. Note also that there
is an alias for this variable, DDRD. You can also see the bits defined inside this register,
so for example, you can use the structure bit-field TRISDbits.TRISD7, or its alias,
TRISDbits.RD7, to access the MSb of the port direction register. Use the addresses
of registers to find the corresponding names in the file if you cannot find them other-
wise. It is important to note that this preprocessed file is an intermediate file, any
changes you make to it will be lost the next time you build.

1. The production directory is used to hold intermediate files for a release (production) build; the
debug directory holds the same files for a debug build, see “Compilation”.
DS50002173A-page 20  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
The source code presented at the beginning of this section writes a value to the port D
latch. If you were to run this code and observe the content of that latch in the simulator
or an emulator, you would see that the value 0x55 is stored in that register. However,
this does not necessarily mean that the value in the port latch will appear on any device
pins—in fact, for the Configuration bits specified earlier, and the PIC18F87J11 device,
the port will not be mapped to the pins. In other words, if you measure the voltage on
the pins corresponding to port D, or connect LEDs to these pins, you may not see the
voltages or illuminated LEDs you are expecting. There is something else we must do
to ensure that port D is connected to the device pins.
 2013 Microchip Technology Inc. DS50002173A-page 21

MPLAB XC8 Getting Started Guide
DISABLING PERIPHERALS THAT SHARE PORT PINS
This section describes the additional code that must be added to the sample project to
ensure that the value stored in the port latch is presented on the device pins. Failure to
include this code is a common reason why many simple getting-started programs do
not work as expected.
The 8-bit Microchip PIC devices have a large number of peripherals on-board, but a
limited number of pins. The IO lines from many peripherals might share the same pin.
But, only one peripheral can use a pin at any given time.
The digital IO ports are treated the same as any other peripheral—unless a port is
assigned use of a pin, it is not connected to the outside world. In many instances, by
default, the ports are not connected to pins.
To learn which peripherals share a pin, consult the device data sheet. The pin diagrams
provide quick reference, but many PIC device data sheets have a section that fully
explains the usage associated with each pin.
Use the following steps to work out which peripherals may need to be initialized so that
the port will be connected to the port pins.
Step 1 locates the Pinout I/O Description or similar table in the device data sheet.
Step 2 focuses on the first alternate peripheral listed in the table.
Step 3 determine what to write to the SFRs to disable the peripheral.
Step 4 repeats this process for any other peripheral listed in the table from step 1.
DS50002173A-page 22  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
Step 1 locates the Pinout I/O Description or similar table in the device data sheet.

An extract from this table for the PIC18F87J11 device (an 80-pin package) is shown in
Figure 1-18.

FIGURE 1-18: PINOUT TABLE EXTRACT FOR THE PIC18F87J11

For the PICDEM PIC18 Explorer Board used in this guide, LEDs are connected to port
D. (Check the user’s guide for your development board connections, if required.) The
pins used by port D are labeled RD0, RD1, RD2, etc. You will notice from the figure that
these pin labels also include other references, for example RD0/AD0/PMD0. The table
indicates that port D, the external memory bus and the parallel master port all share the
same pins. The other pins used by port D (not shown in the Figure 1-18) are also
shared with the SPI peripherals.

Step 2 focuses on the first alternate peripheral listed in the table.

Find the section in the device data sheet that is relevant to that peripheral and look for
the SFRs that control the peripheral.
 2013 Microchip Technology Inc. DS50002173A-page 23

MPLAB XC8 Getting Started Guide
Step 3 determine what to write to the SFRs to disable the peripheral.

For example, the section relating to the external memory bus indicates the EBDIS bit
in the MEMCON SFR controls the external memory module. As indicated in the device
data sheet extract shown in Figure 1-19, the value at POR (Power-on Reset) for EBDIS
is 0, which implies the bus is active. This module must be disabled by setting the EBDIS
bit.

FIGURE 1-19: EXTERNAL BUS REGISTER DESCRIPTION EXTRACT

Following a similar process for the parallel master port, we see that this port is con-
trolled by the PMPEN bit. It has a POR value of 0, which implies this peripheral is
already disabled after POR. Thus, no additional code is required in our program for this
peripheral.1

Step 4 repeats this process for any other peripheral listed in the table from step 1.

Through repetition of these steps, the test program for the PIC18F87J11 can now be
expanded as follows2.
#include <xc.h>

// your configuration bit settings go here
// configuration code (indicated earlier) omitted for brevity

int main(void)
{
 // intialization code for your device replaces the following
 WDTCONbits.ADSHR = 1; // enable alternate access to MEMCON
 MEMCONbits.EBDIS = 1; // turn off external memory bus

 // code to access your port replaces the following
 TRISD = 0x0; // set all port D bits to be output
 LATD = 0x55; // write a value to the port latch

 return 0;
}

1. There is no harm in explicitly disabling this peripheral. If your program performs a soft Reset, then
the value of this bit may no longer be 0.

2. The ADSHR bit must be set to access the MEMCON register on this device.
DS50002173A-page 24  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
DOWNLOADING AND RUNNING YOUR CODE
The source code listed at the end of the previous section works for the PIC18F87J11
device. Confirm that the code you have written for your device works as expected. In
this section, you can build, download and run the binary image.
Click the Build and Run project button, as shown in Figure 1-12. Or, click Build and
Debug project if you want to explore your hardware debugger’s features. Either of
these buttons will ensure that the compiled binary image of your code is up-to-date, and
will download and execute your code. If you click the Build and Debug project button,
it will start the debug executive in your device, as well. You can watch your code being
built in the Output window, similar to what is shown in Figure 1-20.

FIGURE 1-20: EXECUTION OF THE CODE

With your code running, you should see the LEDs illuminate as you have specified in
your code, or be able to measure the voltage on the pins assigned to the port you are
using. A value of 0x55 assigned to the port will illuminate every second LED connected
to the port’s pins.
However, if you are using the simulator, you should stop execution of your code and
confirm the value contained in the port. And, that will only prove that you are correctly
writing to the port, not that the port would be connected to the pins on an actual device.
Consult the MPLAB X IDE documentation if you wish to explore stepping, breakpoints
or other debug features.
 2013 Microchip Technology Inc. DS50002173A-page 25

MPLAB XC8 Getting Started Guide
IMPLEMENTING A MAIN LOOP
As it stands, the simple test program we ran in the previous section executes a couple
of statements then terminates. After execution reaches the end of main(), code added
by the compiler jumps back to the Reset vector. The device then executes the runtime
startup code and the main() function again. These soft Resets are not desirable. In
this section, other features of the compiler are introduced. You will learn how to change
the program so that it writes different values to the LEDs, and how to adjust main()
so that it never terminates.
In the following code, we prevent main() from terminating by adding an infinite loop.
Inside this loop we assign the value of a counter (portValue) to the port latch and
increment this counter so that the port value changes with time. A delay routine is also
added so that the individual states of the LEDs can be seen.
#include <xc.h>

// your configuration bit settings go here
// configuration code (indicated earlier) omitted for brevity

unsigned char portValue;

int main(void)
{
 // intialization code for your device replaces the following
 WDTCONbits.ADSHR = 1; // enable alternate access to MEMCON
 MEMCONbits.EBDIS = 1; // turn off external memory bus

 // code to access your port replaces the following
 TRISD = 0x0; // set all port D bits to be output

 while(1) {
 LATD = portValue++;
 _delay(40000);
 }

 return 0; // we should never reach this
}

Build and run this code. If you are using hardware, ensure the LEDs connected to the
port count up the binary values from 0 to 0xFF.
Note that the port itself was not incremented. Using a port register in such expressions
may trigger read-modify-write issues. Always use a variable to hold the value you want
the port to assume. Modify this variable as required, then assign the value of this
variable to the port or port latch.
The delay routine used here (note the leading underscore character) is actually a com-
piler built-in function, but you can find help for this and compiler library functions in the
appendixes of the MPLAB XC8 C Compiler User’s Guide. Without the delay, the LEDs
would flash so fast that they would appear to be just dimly lit. You may need to adjust
the delay length to suit your device’s clock frequency.
DS50002173A-page 26  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler
USING INTERRUPTS
In this section, the code presented in the previous section is converted to use inter-
rupts. This can be done entirely in the C language. For 8-bit devices, the compiler pro-
duces code that switches context and this is automatically linked to the interrupt vector.
Below is code that is functionally identical to the code we saw in the previous section.
Instead of using a delay, it uses timer 0 to generate an interrupt. The code associated
with the interrupt increments the counter variable. The while() loop in main() writes
the counter value to the port (LEDs), as it did previously.
#include <xc.h>

// your configuration bit settings go here
// configuration code (indicated earlier) omitted for brevity

unsigned char portValue; // our counter variable

void interrupt myIsr(void)
{
 // only process timer-triggered interrupts
 if(INTCONbits.TMR0IE && INTCONbits.TMR0IF) {
 portValue++;
 INTCONbits.TMR0IF = 0; // clear this interrupt condition
 }
}

int main(void)
{
 WDTCONbits.ADSHR = 1; // enable alternate access to MEMCON
 MEMCONbits.EBDIS = 1; // turn off external memory bus

 TRISD = 0x0;

 T0CON = 0b10001000; // enable the timer as 16 bit...
 // internal clock, no prescaler
 INTCONbits.TMR0IE = 1; // enable interrupts for timer 0
 ei(); // enable all interrupts

 while(1) {
 LATD = portValue;
 }

 return 0;
}

After building and running this code, you should see the LEDs toggle as they did in the
previous section. To adjust the LED’s rate of change, you can, for example, enable the
timer’s prescaler to slow its clock.
Notice that the interrupt specifier was used to turn the function myIsr() into an
interrupt function. As this one interrupt function may have to deal with multiple interrupt
sources, code was added to ensure that the counter is only incremented if it was the
timer that generated the interrupt. It is good practice to place as little code as possible
inside the interrupt function.
In main(), note that a binary constant (using the 0b prefix) is used so that the bits
within T0CON can be seen easily. Remember that if you are using a different device,
you need to consult the data sheet for the device to find the register names and bits
within those registers that must be set for correct timer operation.
The compiler macro, ei(), was used to enable the interrupts, but you can explicitly set
the GIE bit in the INTCON register, if you prefer.
 2013 Microchip Technology Inc. DS50002173A-page 27

MPLAB XC8 Getting Started Guide
CONCLUSION
Using the basic concepts and methods presented in this guide, you will be able to write
quite advanced programs for a 8-bit PIC device. You will be able to configure the device
correctly, determine the names for all the SFRs and the SFR bits used by your device.
Plus, you can make the device peripherals trigger interrupts and have your code
respond to these events.
It is important to be familiar with the C89 ANSI Standard C language implemented by
this compiler. The MPLAB XC8 C Compiler User’s Guide (DS50002053) has more
detailed information on the operation of the compiler and non-standard syntax. This
document can be found in the DOCS directory of the compiler’s installation directory. It
can also be accessed by clicking the Compiler Help button (the blue “?” button at the
bottom of the vertical row of buttons in the dashboard, as shown in Figure 1-11) in the
project Dashboard.
DS50002173A-page 28  2013 Microchip Technology Inc.

MPLAB XC8 C Compiler

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2013 Microchip Technology Inc.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2013, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-62077-271-3

Microchip received ISO/TS-16949:2009 certification for its worldwide
DS50002173A-page 29

headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS50002173A-page 30  2013 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/12

http://support.microchip.com
http://www.microchip.com

	MPLAB XC8 Getting Started Guide
	Creation of a Project in MPLAB X IDE
	Figure 1-1: New Project Window
	Figure 1-2: Device Selection Dialog
	Figure 1-3: Header Selection Dialog
	Figure 1-4: Tool Selection Dialog
	Figure 1-5: Plugin Selection Dialog
	Figure 1-6: Compiler Selection Dialog
	Figure 1-7: Project Name and Path Dialog
	Figure 1-8: The Projects Window

	Foundation Code
	Figure 1-9: New File Popup
	Figure 1-10: New C Source File Window

	Compilation
	Figure 1-11: Project Properties Button
	Figure 1-12: Build Buttons
	Figure 1-13: The Output Window

	Specifying Device Configuration Bits
	Figure 1-14: The Configuration Bits Window
	Figure 1-15: The Configuration Bits Source Window
	Figure 1-16: The Output Window Clean Build

	Accessing Device Registers
	Figure 1-17: The Preprocessed File Showing Register Names

	Disabling Peripherals that Share Port Pins
	Figure 1-18: Pinout Table Extract for the PIC18F87J11
	Figure 1-19: External BUS Register Description Extract

	Downloading and Running Your Code
	Figure 1-20: Execution of the Code

	Implementing a Main Loop
	Using Interrupts
	Conclusion
	Worldwide Sales and Service

