Adding DMA Support for Peripherals on PIC32CZ CA and «»
SAM E70/S70/V7x MCUs using MPLAB Harmony v3 and @ MICROCHIP
MCC

www.microchip.com
Product Page Links

Introduction

In modern computing systems, efficient data transfer mechanisms are crucial for maintaining high
performance and responsiveness, especially in applications that handle large volumes of data. Direct Memory
Access (DMA) is one such mechanism that is pivotal in optimizing data movement. The DMA significantly
reduces processing bottlenecks by allowing hardware subsystems to access the system independently of the
CPU. Additionally, the use of a dedicated DMA controller ensures that data transfers are managed seamlessly
further enhancing system efficiency and performance.

This document describes how to configure and use DMA with peripherals, such as the SPI on PIC32CZ CA and
SAM E/S/V family of devices using MPLAB® Harmony v3 and MCC.

https://microchip.com

1. What is DMA?

Direct Memory Access (DMA) is an essential feature allowing specific hardware subsystems to
access the system memory (RAM) independently of the central processing unit (CPU). This capability
significantly enhances the efficiency and performance of data transfers, particularly in applications
requiring the rapid movement of large data volumes, such as multimedia, networking, and storage
systems.

The DMA process is managed by a dedicated hardware component known as the DMA controller,
which can be integrated into the CPU or exist as a separate chip. The controller typically includes
multiple channels, each capable of handling separate data transfer operations, and utilizes registers
to store memory addresses, transfer counts, and control information. The primary advantages of
the DMA include improved efficiency, faster data transfer rates, and reduced CPU overhead, making
it indispensable in applications like audio and video streaming and real-time embedded systems.

Figure 1-1. DMA Block Diagram

A 4

x| X
£l <
ol «
o| ©
c c
cC C
c| ©
e e
O O

Channeln

1.1 Working Principle of DMA

The DMA transfer can be started only when a DMA transfer request is detected. The transfer
requests may be software, peripheral, or an event. The DMA operation begins with the CPU
initializing the DMA controller, followed by a peripheral device requesting a transfer. The DMA
controller then arbitrates between multiple requests, if necessary, and takes control of the system
bus to perform the data transfer directly between memory and the peripheral device, thereby
freeing the CPU to perform other tasks. Upon completion, the DMA controller notifies the CPU
through an interrupt.

@ MICROCHIP

1.2 Types of Data Transfers in DMA

The DMA data transfers are essential for optimizing system performance by enabling efficient
communication between different components. These data transfers are categorized based on the
source and destination of the data. It is categorized into the following four categories:

+ Peripheral-to-Memory transfer

* Memory-to-Peripheral transfer

* Peripheral-to-Peripheral transfer
* Memory-to-Memory transfer

Table 1-1. Types of Data Transfers in DMA

Peripheral-to-Memory Peripheral Memory
Memory-to-Peripheral Memory Peripheral
Peripheral-to-Peripheral Peripheral Peripheral
Memory-to-Memory Memory Memory

Note: The SAM E/S/V family of devices does not support Peripheral-to-Peripheral type of data
transfer.

The DMA transfer mode can also be categorized based on the size of the data being transferred by
the components:

+ Beat transfer: Size of one data bus transfer.

+ Block transfer: Amount of data one transfer descriptor can transfer.

« Burst transfer: Back-to-back DMA transfer without CPU intervention.

+ DMA transaction: Complete transfer of all data in a linked list of descriptors.

+ Cycle Stealing: The DMA controller interrupts the CPU after every cycle to transfer data.

@ MICROCHIP

2. Creating the Application Using MPLAB Harmony v3 and MCC
The following software and hardware tools are used for this demonstration:
* MPLAB X IDE v6.20
* MPLAB Code Configurator Plugin v5.5.1
+ MPLAB XC32 Compiler v4.45
+ ¢spv3.20.0
« PIC32CZ CA90 Curiosity Ultra Development Board
« PIC32CZ CA80 Curiosity Ultra Development Board
+ SAM E70 Xplained Ultra Evaluation Kit
+ SAM V71 Xplained Ultra Evaluation Kit

Note: The updated versions of the above listed tools can also be used to create the application,
and users are not restricted to use the older versions. Also, only one of the above mentioned boards
is needed for creating the application.

2.1 Creating Demo Application Using PIC32CZ CA90 Curiosity Ultra Development
Board

To create an MPLAB Harmony v3-based project, follow these steps:
1. From the Start menu launch MPLAB X IDE.
On the File menu, click New Project or click on the New Project icon.

The New Project window will be displayed. From the Steps navigation pane, click Choose
Project.

4. Inthe right Choose Project property page:
a. Categories select Microchip Embedded.

b. Projects select Application Project(s).
5. Click Next.

Figure 2-1. New Project Window

B3 New Project X
Steps Choose Project
1. Choose Project Q, Fiter:
2 ..

Categories: Projects:
) |Microchip Embedded (=] Application Project(s)
) Other Embedded (&3 Prebuilt (Hex, Loadable Image) Project
) Generic (& User Makefile Project

(§ Library Project
Description:
Creates a new application project. It uses an IDE-generated makefile to buid your project.

@ MICROCHIP

https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide
https://www.microchip.com/en-us/tools-resources/configure/mplab-code-configurator
https://www.microchip.com/en-us/tools-resources/develop/mplab-xc-compilers
https://github.com/Microchip-MPLAB-Harmony/csp/tree/master
https://www.microchip.com/en-us/development-tool/ev16w43a
https://www.microchip.com/en-us/development-tool/ev51s73a
https://www.microchip.com/en-us/development-tool/dm320113
https://www.microchip.com/en-us/development-tool/atsamv71-xult

6. Click Select Device and in the right Select Device property page, for Device select
P1C32CZ8110CA90208 for creating the project on the PIC32CZ CA90 Curiosity Ultra Development
Board (the selected device will be reflected under the Target Device).

Figure 2-2. Device Selection

B3 New Project

i
i

Family:

Device:

Tool:

All Families v

Jric3acza110cA90208 ~|

No Tool v | [[) Show All

< Back

7. Click Next.

8. Click Select Compiler, and in the right Select Compiler property page, under Compiler
Toolchains click and expand XC32, and then select XC32 (v4.45).

Figure 2-3. Select Compiler

3 New Project

FEEE
Ei
i

ez (\-4.;5) [C:\Program Fies Wicrochp \xc 324,45 \bin)
GEVIE Fies 1BC OO v O

9. Click Next.

- -

10. Click Select Project Name and Folder and in the right Select Project Name and Folder

property page:

a. Project Name: Enter pic32cz_ca90_cult (Indicates the name of the project that will be shown
in MPLAB X IDE to set the project's name).

@ MICROCHIP

b. Project Location: Enter C:\microchip\h3\tech_brief\dma_support\firmware (Indicates the path

to the root folder of the new project. All project files will be placed in this folder. The project
location can be any valid path).

c. Project Folder: Read-only content (Automatically updates when users make changes to the
above entries).

Figure 2-4. Project Name and Folder Settings

3 New Project X
| Steps q Select Project Name and Folder
I‘ 3
1. Choose Project
2. Select Device Project Name: pic32cz_ca%0_cult
3. Select Header
; Select Plugin Board Project Location: C:\microchipth3\tech_brief\dma_support\firmware Browse...
£ NSiect Bioject Ram e Project Folder: tech_briefidma_support\firmare\pic32cz_ca%0_cult.X
7. (Optional) Add Project Overwrite existing project.
Also delete sources
{8 Set as main project
— (@ Open MCC on Finish
(7] Use project location as the project folder
MPLAB Encoding: 150-8859-1 =
< Back Add Another Project Next > Cancel Help
11. Click Finish to launch MCC.
12. The MCC plugin will open in a new window as shown in the following figure:
Figure 2-5. MPLAB Code Configurator Window
File Edit View Navigate Source Refactor Production Debug Team Tools Window Help Q- Search (oD
BEE DD JEH B)RR B 0B W 20T e
Projects | Files | Resource Management [MCC] x @ | [Ktwindow x| StartPage x| MPLABXStore x| ProjectGraph x| ()@ configuration Options x o
MCCy55.1 Xom® 2| [poons: <] erofies: [Man S Ve [Root N EE]
ProjeclResource... import.. | Export | @ || @ = System
T Lo D o e o i
S o
@ Interrupts (NVIC)
& DMA (DMAC)
Project Resources T
Device Resources [% content Manager
~ Goraes

T s x50 Project Graph Configuration Options

» Third Party Libraries

 Took
Device Resources
Output x| News 2 =
Ppic32cz_ca90_cult - Dashboard x | Navigator | EDBG x Kis x Scripting X MPLAB® Code Configurator x

¥ |73 pesa_ca%0_oit

P Loading script file C:\Users\177539\.mchp packs\Microchip\PIC32CZ-CA90 DFP\1.S5.162\CA90\scripts\properties device.py
@ Project Type: Applicaton - Configuration: default

o
=

Device

@ PICIC28110CA%0208

8 Checksum: Blank, no code loaded
B | L@ crcanrex e unmaiie Output
© | o @ Pads

8 PICICZ-CAT0_DFP (15.162)

& oSS (5.8.0)

= Conpier Tookhan
' XC32 (v4.35) [C:\Program Fies Wicrochpxc32\v4.45\bi]
 Producton Image: Optmzaton: < 016+ 01

@ MICROCHIP

2.2 Creating Demo Application Using SAM E70 Xplained Ultra Evaluation Kit
To create an MPLAB Harmony v3-based project, follow these steps:
1. From the Start menu launch MPLAB X IDE.
On the File menu, click New Project or click on the New Project icon.

3. The New Project window will be displayed. From the Steps navigation pane, click Choose
Project.

4. Inthe right Choose Project property page:
a. Categories select Microchip Embedded.
b. Projects select Application Project(s).
5. Click Next.

Figure 2-6. New Project Window

| B3 New Project %
Steps Choose Project
1. Choose Project Q Fiter:
2 ..
Categories: Projects:
) |Microchip Embedded [=1 Application Project(s)
{2 Other Embedded (& Prebuit (Hex, Loadable Image) Project
) Generic (& User Makefile Project

& Library Project

Desription:

Creates a new application project. It uses an IDE-generated makefile to buid your project.

6. Click Select Device, and in the right Select Device property page, for Device select
ATSAME70Q21B for creating the project on the SAM E70 Xplained Ultra Evaluation Kit (the
device entry will be reflected under the Target Device).

@ MICROCHIP

Figure 2-7. Device Selection

B3 New Project X

Steps Select Device

. Select Header Family: All Families v

" Select Project Name and Device: JATSAME70Q218 v

k
§
g

E e Ak Eriect Tool: No Tool | [0 Show Al

7. Click Next.

8. Click Select Compiler, and in the right Select Compiler property page, under Compiler
Toolchains click and expand XC32 and then select XC32 (v4.45).

Figure 2-8. Selecting Compiler

B3 New Project X
Steps . Select Compiler
1. Choose Project
2. Select Device Compler Toolchains
3. Select Header =81 [Doeoload L atact]
gLy
6. Select Project Name and R s g . N
Folder
7. (Optional) Add Project
MPLAB
X IDE
tvj
= = =
9. C(lick Next.
10. Click Select Project Name and Folder, and in the right Select Project Name and Folder
property page:

a. Project Name: Enter sam_e70_xult (Indicates the name of the project that will be shown in
MPLAB X IDE to set the project's name).

b. Project Location: Enter C:\microchip\h3\tech_brief\dma_support\firmware (Indicates the path
to the root folder of the new project. All project files will be placed in this folder. The project
location can be any valid path).

@ MICROCHIP

c. Project Folder: Read-only content (Automatically updates when users make changes to the
above entries).

Figure 2-9. Project Name and Folder Settings

B3 New Project X
)

\ Steps 1 Select Project Name and Folder
)
1. Choose Project
2. Select Device Project Name: sam_e70_ult
3. SelectHeader
8. Sdectc -I Project Location: C:\microchip\h3\tech_briefidma_support\firmware Browse...
& Folder L Mo Project Folder: ‘th3\tech_brief\dma_support\firmware\sam_e70_xult.X

9
£
:
i

Overwrite existing project.
Also delete sources.
{8 Set as main project
— (B Open MCC on Finish
() Use project location as the project folder

150-8859-1 v

< Back Add Another Project Next > Cancel Help

11. Click Finish to launch the MCC.

12. The MCC plugin will open in a new window as shown in the following figure:

Figure 2-10. MPLAB Code Configurator Window

File Edit View Navigate Source Refactor Production Debug Team Tools Window Help

S D@ = JE B DR OB OB 2D feodemer

[serh D)

Projects | Files | 1 x 2 |[Ktwindow x| StertPage x|y MPLABXStore x| ProjectGraph x| an|c[@]

MCCus5.1 X CRERE | |[ons o profiess Man = View: [Root

Project Resourc... | Gener.. || Impo | Exp. | @][|

v Libraries o & Device & Project Configuration
[Device Famity pack 0FF) JRY < stem J Csis Pack |
» Harmony Lo T A SR & Cortex-M7 Configuration
v System & Clock (PMC)
@ = system & Ports (PIO)
& Interrupts (NVIC)
& DMA (XDMAC)
H ® RSWDT
Project Resources Do
Device Resources [©% content Manager

* s Project Graph Configuration Options

> Board Support Packages (B55)
> Core

> Drivers

> Libraries

> & Peripherals

> System Senvices

> Third Party Libraries

> Tools
_ Variables | Output x| News 1 =
D06 x Kis x Sorptiog x . * EDBG-sam_e70xult x sam_e70_ut @uid Lood, .) x Debugoer Console x
Loading script file Ci\Users\I77539\.mchp packs\iti SAMETO DEP\4.11.257\same70b\. . \scripts\dsp cortex-ul.py
'sam_e70_xult - Dashboa... x | RX_DMA, | @|| Zoading script file C:\Users\177539\.mchp packs\Microchip\SAME70 DEP\4.11.257\same70b\..\. device.py
% (T8 sam_e70_nit Loading script file C:\Program Fi rochip\M . 70_DEP\4.10.248\same70b\ . . \scripts\dap_cortex-m7.py
€0 | Gy T oplaton ~Confuration:defat Loading script £ile Ci\erogram Ei . SAME70 DEP\4.10.245\same70b\. .\scripts| device.py
B|] e msavenqus December 18 2024-— 10:31:45
2 2 Checksum: Bk, no code loaded Begin comn session Output
2 GRC32 e le avaiale Loading script £ile C:\Users\ITI539\.mchp packs\Hicrochp\SRET) DFP\4. 11, cxipta\dap cortex-sl.py
Z b“"fmm e 11259 TLoading script file C:\Users\I77539\.mchp packs\Microchip\SAMETO DFE\4.11.257\same70b\. \scrip device.p;
i SIS (5.8.0)
@ 086 (16,752
& Conpler oo
G XC72(v4.9) [Program Fiesicrocho ezl 51

@ MICROCHIP

3. Adding and Configuring MPLAB Harmony Components

3.1 PIC32CZ CA90 Curiosity Ultra Development Board

To add and configure MPLAB Harmony components using MCC, follow these steps:

1. In the MCC window, under Device Resources, click and expand the list of options Harmony >

Peripherals > SERCOM.

2. Click SERCOM2 and observe that the SERCOM2 Peripheral Library block is added in the Project

Graph section.

Figure 3-1. SERCOM Module

Device Resourc...l (% Content Manager
roouvr -

> RSTC

» RTC

»_SDMMC
£ SERCOMO
Eg = SERCOM1
BN = SERCOM2
&8 <= SERCOM3
B3 & sercom4
& SERCOMS
& SERCOMS
& SERCOM7
& SERCOMS
& SERCOM9

> sQl

» SUPC

> = TCC

» TRAM

3. Click SERCOM2 and in the Configuration Options property page, click and expand SERCOM2

and configure SERCOM2 module as SPI Master as shown below.

Figure 3-2. SERCOM2 Configuration

ProjectGraph = [+ [=)(@) | configuration Options x|
Profiles: |Main . View: |Root . |||[=] 3

E-SERCOMZ

Sflzelect SERCOM Operation Mode | SPIMaster

1 Pack (DFP)

~

-Enahle Interrupts ?
--Enahble operation in Standby mode
SERCOM2 SPI Data Out Pad

O]
0

DO on PAD[0], SCK on PAD[1] and 55 on PAD[2Z] -~

e | 5PI Data In Pad Selection

SERCOM PAD3 i used as data input ~ |

e - 5PI Data Order
- SPI Speed in Hz
SPI Data Character Size
- 5PI Clock Phase
-SRI Clock Dolaritv

MSE is transmitted first -
1,000,000 -
8-hits character -
The data is sampled on a leading SCK edge and chang

SCKis low when idle -~

--IEnabIe SPI Master Hardware Slave Select

a]

SPI Receiver Enable
- *¥**5p] Transfer Mode 0 is Selectad***

@ MICROCHIP

10

4. From the Plugins drop-down list, select Pin Configuration.

Figure 3-3. Plugins - Pin Configuration

5. Click Pin Settings and then sort entries by selecting Ports from the Order list.

X omomns ¢ |ofes]

Figure 3-4. Selecting Ports from the Order Menu

Pin Configuration

Profiles: | Main

SERCOM2
Peripheral Library

..on| StartPage x| @ MPLABX Store x | ProjectGraph x| PinDiagram

x| PinTable x| PinSettings x|

Table view B Easy View
Custom Name Function Mode Direction Latch
6. Configure the pins as shown below:
Figure 3-5. Configuration of Pins
:"m PinID Custom Name Function Mode Direction Latch PulUp PulDown OpenDran SlewRate
V15 PB31 Available v | Digital High Impedance | Low O (m] (m] FAST
P15 PCOO Available v Digital High Impedance Low 0 0O O FAST
T17 PCO1 Available v| Digtal | HighImpedance | Low 0O (=] =] FAST
T18 PCO2 Available v Digital High Impedance | Low (@] 0O O FAST
R17 PCO3 Avalable v | Digital High Impedance | Low O (] (] FAST
R18 PCO4 Available ~| Dt | Highlmpedance ~| Low [B)] | [m] FAST
N15 PCOS Available v Digital High Impedance ~ | Low (] (| (] FAST
N17 PCOS Available ~| Digita High Impedance | Low O (] (] FAST
N18 PCO7 Avaiable v | Digtal | Highlmpedance | Low [m] [m] =] FAST
— — —
M13 PCO8 SERCOM2_PADO ~ Digital High Impedance nja] (] m] FAST
Mi8 PCO9 SERCOM2_PAD1 ~ | Digital High Impedance n/a [m)] 0O [m] FAST
Hi7 PC10 SERCOM2_PAD2 ~ | Digital High Impedance n/a O (m] (m] FAST
H15 PC11 SERCOM2_PAD3 Digital High Impedance n/a O (m] O FAST
F18 PC12 ‘Avaiable v Dotal | Highlmpedance < | Low @)) w] FAST
F17 PC13 Available v Digital High Impedance | Low O (m] a FAST
E17 PC14 Avalable ~| Digital High Impedance | Low (@] 0O O FAST

7. Inthe Plugins drop-down list, select DMA Configuration.

@ MICROCHIP

11

Figure 3-6. Plugins - DMA Configuration

XCREIR®E 4+

FY o~y Tl o

lcock confioration
B oma configuration

Peripheral Library

8. In the DMA Configuration, click Add Channel to add DMAC Channel 0 and choose the trigger as
SERCOM2_Transmit. Repeat the same steps, but for DMAC Channel 1 choose SERCOM2_Receive
as the trigger.

Figure 3-7. DMA Configuration

Active Channels List Use Linked List Mode
Channel Number Trigger DMA Channel 0 Settings
DMAC Channel @ SHCOMSTR. Trigger Action (Cell Auto Start Enable) | e e Transfer Per DMA Start Trigger v
DMAC Channel 1 SERCOM2_Receive Read Address Sequence Incrementing Address+1 with Transfers of Byte Operands ¥

Write Address Sequence

Add Channel Remove Selected Channel
Cell Transfer Size

Channel Priority Level

Fixed Byte Address (Single Byte Address with Enable Based u...

'

Priority Level 1 v

9. Click Generate to generate the code.

Figure 3-8. Generating the Code

MCCv5.5.1

Project Resources l Generate l Import... || Export 0 || @ ‘

¥ Libraries

¥ Harmony
> Packs
¥ Peripherals
> EVSYS
¥ SERCOM
& SERCOM2
¥ System

£ System

@ MICROCHIP

3.2 SAM E70 Xplained Ultra Evaluation Kit
To add and configure MPLAB Harmony components using MCC, follow these steps:

1. In the MCC window, under Device Resources, click and expand the list of options Harmony >
Peripherals > SPI.

2. Click SP10 and observe that the SPI0 Peripheral Library block is added in the Project Graph
section.

Figure 3-9. SPI Module

Device Resour... | (% Content Mana...

» MCAN

> PWM

> QSPI

» RAM

» RSTC

» RTC

» RTT

> SMC
FEEDN
< P

> SUPC

» TC

» TRNG

> = TWIHS

3. Click SPIO, and to configure SPI0 module, click and expand SP10 and then configure it as shown
below.

Figure 3-10. SPI0 Configuration

XTHREEE $|®puons - Profles: [man view: [Root o |||EI
&-SPI0
Interrupt Mode a
asterfSlave Mo R
Bit rate source clock frequency (Hz) 150,000,000 -
EFC e Delay between chip selects 1=
moh:;:;:vw e s | Enable NPCS0/ Use GPIO? @] |
. Ser = Enable NPCS1? []
Baud Rate (Hz) 1,000,000 -5+
Bits Per Transfer 8 bits for transfer
Clock Polarity Clock is low when inactive (CPOL=0)
Clock Phase Data is vaiid on dock leading edge (NCPHA=1)
Delay before SPCK of
Delay between conseoutive transfers [o
Chip Select Active After Transfer O

Chip Select Not Active After Transfer @

SPI Mode 0 is Selected
Enable NPCS27 0
Enable NPCS3? 0
0

Dummy Data s

4. From the Plugins drop-down list, select Pin Configuration.

@ MICROCHIP

Figure 3-11. Plugins - Pin Configuration

X CRERE ¢| o] %

5 = Pin Configuration
Device Family P\ S tonfauration

INVIC Configuration

EFC
Peripheral Library
MEMORY

5. From the Order drop-down list, select Ports to sort the entries.

Figure 3-12. Selecting Ports from the Order Menu

‘ Order: Pins) Table View B Easy View

Pin

N Custom Name Function Mode Direction Latch Pul Up Pull Down Drive Strength

From the Plugins drop-down list, select DMA Configuration. In the DMA Configuration
property page, click Add Channel to add DMAC Channel 0, and set the trigger to SPI0_Transmit.
Repeat the same steps, but for DMAC Channel 1, set the trigger to SPI0_Receive.

Figure 3-13. Plugins - DMA Configuration

X CRERE 4| & [Frs]

DMA Configuration

Device Family Pa|”
INVIC Configuration
CMSIS Pack

Peripheral Library

SPI

@ MICROCHIP

Figure 3-14. DMA Configuration

Active Channels List Use Linked List Mode
Channel Number Trigger DMA Channel 0 Settings
DMAC Channel 0 SPIO_Transmit ~ Enable Interrupt
. S0t kg eds Increment Address After Every Transfer v
DMAC Channel 1 SPI0_Receive b
Destinstion Adressing Mode [T =

Add Channel cted Channel DMA Interface Bus To Resd Source Data DMa Interface Bus 0 P

DMA Interface Bus To Write Destination Data

DMA Interface Bus 1 ~
Data Width 8-Bits o
Ostn Transfies Per DMA Request 1 Transfer Per Request v
Burst Size For Memory To Memery Transfer | 4 o0t per Burst ~
7. Configure the pins as shown below.
Figure 3-15. Configuration of Pins
Order: |Ports v| | Table view
Y Custom Name Function Drecton lath OpenDran POIntemupt Pullp PulDomn CHoPeONeE oo
74 FD17 Avaiable v In nja O] Disabled ~ (o] 0 Disabled v Low
) D18 Avaible | In n/a O | pisabled v[O O | oisabled v Low
67 PD19 Avaiable ~ In nja (@] Disabled ~ (@] (m] Disabled ~ Low
65 PD20 SPIO_MISO ~ nfa njfa O Disabled v (@)] Disabled v Low
63 PD21 sPloMOSl v | nf nfa O | pisabled ~| O O | oisabled v Low
60 PD22 SPIO_SPCK n/a nja =] Disabled ~ 0 [m] Disabled v Low
57 PD23 Avaiable v In nja L Disabled v (@] (@] Disabled v| Low
55 PD24 Avalable ~| In n/a () | Disabled «| 0 () | Disabled | Low
52 PD25 SPIO_NPCS1 nfa n/a =] Disabled v O O Disabled v Low |
53 PD26 Avaiable ~ In nja 5 Disabled ~ [3 E] Disabled v Low
47 PD27 Available ~ In nja @ Disabled ~ O (|} Disabled ~ Low
71 PD28 Available ~ In nja O Disabled ~ ® (m] Disabled v Low
108 PD2% Available ~ In nfa @] Disabled ~ ® @] Disabled v| Low
3 PD30 Avalable ~| In nja O | pisabled M= O | isabled | Low
2 PD31 Avaiable ~ In nja O Disabled ~ m 0O Disabled v Low
4 PED Available ~ In nja G Disabled ~ @] 0O Disabled ~ Low
6 PE1 Avaiable v In nja 0O Disabled ~ O] 0O Disabled v Low
7 PE2 Avalsble ~| In nja O | Disabled «| O O | isabled v Low
10 PE3 Available ~ In nfa 0 Disabled v @] O Disabled - Low
27 PE4 Avaiable v In nja @) Disabled v O O Disabled v| Low
28 PES Available ~ In nfa O Disabled ~ (@] 0O Disabled v Low
3 VDDOUT ~ In nja O ~ m 0O v Low
VDDIN ~ In nja (0] ~ m)] (] M Low
8. Click Generate to generate the code.
Figure 3-16. Generating the Project
MCCv5.5.1
Project Resources Generate I\ Import...] Export o @
¥ Libraries
» Harmony
¥ System
£ System

15

@ MICROCHIP

4. Adding Application Logic to the Project
4.1 PIC32CZ CA90 Curiosity Ultra Development Board

To develop and run the application, follow these steps:

1. Click Projects and then under Source files open the main. c file of the project and add the

required variables outside the main () function.

uint8 t attribute ((aligned(32))) Tx[10] = {0x1F, O0x2F, 0x3F, O0x4F, O0x5F, Ox6F,

0x8F, 0x9F, OxAF};
uint8 t attribute ((aligned(32)))Rx[10];

/* transfer done flag */
volatile bool Rx transfer done
volatile bool Tx transfer done

false;
false;

2. Add the DMA Event Handler for both Tx and Rx outside the main () function.

/* This is called after transfer is done */
void Tx DMA EventHandler (DMA TRANSFER EVENT event, uintptr t context)

{
if (event == DMA TRANSFER EVENT BLOCK TRANSFER COMPLETE)
{
Tx transfer done = true;
}
}
void Rx DMA EventHandler (DMA TRANSFER EVENT event, uintptr t context)
{
if (event == DMA TRANSFER EVENT BLOCK TRANSFER COMPLETE)
{
Rx_ transfer done = true;
}
}

Figure 4-1. Adding Macros, Variables, and Event Handlers

37 uint8_t __ attribute__ ((aligned(32))) tx[10] = {O0x1F, Ox2F, Ox3F, Ox4F, OxS5F, Ox6F, Ox7F,
38 uinté t _ attribute_ ((aligned(32)))zx[10]:

41 volatile bool rx_transfer done

42 volatile bool tx_transfer done

0x8F,

0x9F, OxAF}

45 void TX DMA EventHandler (DMA TRANSFER _EVENT event, uintptr_t context)
46 [¢

47 if (event == DMA TRI

48 {

49 tx_transfer done = true;
50 }

51 }

53 void RX DMA EventHandler (DA
LTINE I

55 if (event == DMA
56 {

57 rx_transfer_done = true;
58 }

EVENT event, uintptr_t cCOntext)

@ MICROCHIP

16

3. Add the DMA Callback register function, cache invalidate function, and DMA Channel transfer

function.

DMA ChannelCallbackRegister (DMA CHANNEL O,
DMA ChannelCallbackRegister (DMA CHANNEL 1, Rx DMA EventHandler,

DCACHE INVALIDATE BY ADDR((uint32 t *)Tx,
DCACHE_INVALIDATE BY ADDR((uint32 t *)Rx,

DMA ChannelTransfer (DMA_CHANNEL 1,

sizeof (Rx));

DMA ChannelTransfer (DMA CHANNEL O,

sizeof (Tx));

Tx DMA EventHandler, (uintptr t)NULL);

(uintptr t)NULL);

10) ;
10) ;

(void *) &SERCOM2 REGS->SPIM.SERCOM DATA, Rx,

Tx, (void *)&SERCOM2 REGS->SPIM.SERCOM DATA,

Note: Cache invalidation is crucial for maintaining data consistency and accuracy, especially in
dynamic systems where data frequently changes. By invalidating the cache, it ensures that the

next time the data is requested, it will be fetched from the original source rather than the cache.

Figure 4-2. Application Logic

61 int main (wvoid)
62| & ¢

63

€4 SYS_Initialize (LL):

€5

(13 DMA_ChannelCallbackRegister (DMA CHANNEL 0, TX_DMA EventHandler, (uintptr tT)NULL);
67 DMA_ChannelCallbackRegister (DMA_CHANNEL_1, RX DMA EventHandler, (uintptr_t)NULL);

BY_ADDR((uint32

© *)rx, 10);

E_BY ADDR((uint32_t *)tx, 10);|

72 DMA_ChannelTransfer (DMA_CHANNEL_1, (void *)&SERCOM2_REGS->SP sizeof(rx))
73 DMA_ChannelTransfer (DMA_CHANNEL 0, tx, (void *)&SERCOM2 RE sizeof (tx)
74

75 while (true)

76 {

77

78 _T {)s

79 1

80

81

82

83 return (T_F E):

4.2

SAM E70 Xplained Ultra Evaluation Kit

To develop and run the application, follow these steps:

1. Openthemain.c file of the project and add the required variables outside the main () function.

uint8 t attribute ((aligned(32))) Tx[10] = {0x1F, 0x2F, O0x3F, Ox4F, O0x5F, Ox6F, Ox7F,
0x8F, 0x9F, OxAF};

uint8 t attribute ((aligned(32)))Rx[10];

/* transfer done flag */

volatile bool Rx_transfer done = false;

volatile bool Tx transfer done = false;

2. Add the DMA Event Handler for both Tx and Rx outside of themain () function.

/* This is called after transfer is done */
void Tx_DMA EventHandler (XDMAC TRANSFER EVENT event, uintptr t context)

{
if
{

(event ==
Tx_transfer done =
}
}

true;

XDMAC TRANSFER COMPLETE)

void Rx DMA EventHandler (XDMAC TRANSFER EVENT event, uintptr t context)

{
if
{
Rx_transfer_ done =

}

@ MICROCHIP

true;

(event == XDMAC TRANSFER COMPLETE)

Figure 4-3. Adding Macros, Variables, and Event Handlers

#include

25 #include
26 #include
#include "

_ attribute__ ((aligned(32))) tx([10] = {O0x1F, Ox2F, 0x3F, O0x4F, OxSF, OX6F, 0x7F, Ox8F, OXSF, OxAF};
__attribute__ ((aligned(32)))rx[10];:

40 * transfer done fla
4 volatile
42 volatile

44 * This

_T context)
a6] «

47 if (event == XDMAC_TRANSFER_COMPLETE)

48 {

49 r.x_l:ransfer_done = True;

50 }

s1| 41

53 void RX DMA EventHandler (XDMAC TRANSE]
s4|] ¢

55 if (event == XDMAC_ TRANSFER COMPLETE)
5S¢ {

57 rx_l:ransfer_dnne = True;

sg }

_T contexct)

3. Add the DMA Callback register function, cache invalidate function, and DMA Channel transfer
function.

XDMAC ChannelCallbackRegister (XDMAC CHANNEL 0, Tx DMA EventHandler, (uintptr t)NULL);
XDMAC ChannelCallbackRegister (XDMAC CHANNEL 1, Rx DMA EventHandler, (uintptr t)NULL);

DCACHE INVALIDATE BY ADDR ((uint32 t *)Tx, 10);
DCACHE_INVALIDATE BY ADDR((uint32 t *)Rx, 10);
XDMAC_ChannelTransfer (XDMAC_CHANNEL_I, (void *) &SPIO_REGS—>SPI_RDR, Rx, sizeof (Rx));
XDMAC ChannelTransfer (XDMAC CHANNEL 0, Tx, (void *)&SPIO0 REGS->SPI_TDR, sizeof (Tx));

Figure 4-4. Application Logic

60

€l int main (void)

62 [¢

63 * Initialize all modules
64 SYS Initialize (NU
€5
€6 XDMAC ChannelCallbackRegister (XDMAC_CHANNEL 0, TX_DMA EventHandler,
€7 XDMAC ChannelCallbackRegister (XDMAC CHANNEL_1, RX_DMA EventHandler,
€3
€9
70
71
72 XDMAC ChannelTransfer (XDMAC_CHANNEL_1, (void *)&SPIO_

|3 XDMAC ChannelTransfer (XDMAC CHANNEL 0, tx, (void *)&S5PIO
74
5 while (true)
76 {

77
78
79 }
80
gl
82
83
84| - }
85

->SPI_RDR, rx, sizeof(rx)):

@ MICROCHIP

5.

Building and Debugging the Application

1. The PIC32CZ CA90 Curiosity Ultra Development Board supports debugging using an Embedded
Debugger (EDBG). Connect the Type-A male to micro-B USB cable to the micro-B USB port on the
PIC32CZ CA90 Curiosity Ultra Development Board and connect the Type-A male end to the PC.
Additionally, connect an external power supply (6.5V-14V) to power up the board.

Figure 5-1. Hardware - PIC32CZ CA90 Curiosity Ultra Development Board

External power supply
(6.5V to 14V)

Debug USB

2. Short the MISO (PC11 - Pin 17) and MOSI (PC08 - Pin 16) pins present in EXT1 in the PIC32CZ
CA90 Curiosity Ultra Development Board using a wire.

Figure 5-2. Hardware Setup - PIC32CZ CA90 Curiosity Ultra Development Board

@ MICROCHIP

19

3. Connect the Type-A male to the micro-B USB cable to the micro-B debug USB port to power and
debug the SAM E70 Xplained Ultra Evaluation Kit.

Figure 5-3. Hardware - SAM E70 Xplained Ultra Evaluation Kit

ONIONId LN3Lvd |

4. Short the MISO (PD20 - Pin 17) and MOSI (PD21 - Pin 16) pins present in EXT1 in the SAM E70
Xplained Ultra Evaluation Kit using a wire.

Figure 5-4. Hardware Setup - SAM E70 Xplained Ultra Evaluation Kit

@ MICROCHIP

20

5. Select the Tx variable in the code and right-click on the selected text, then select New Watch.

Note: Follow the same for Rx.

Figure 5-5. Adding a New Watch

© _ attzibute (rangmd(zzn)m | oxsF
© __actribute__ ((aligned(32)})rx(

Goto Program Memory View

wolatile bool rx_transfer_dene = fa

Send To >
wolatile bool tx_transfer_done =
Navigate >
woid TX_DMA_EventHandler (D - | New Watch.. cut-shi-Fs |
{ | Cerl+Shift+F10
if (event = DMA_TRANS New Data Breskpoint Carl-Shift+F11
i Teggle Line Breakpoint Crl+F8

tx_transfer_done = trus:

¥

Rernove All Breakpoints

Show Call Graph

i PR TR Find Usages. Alt+F7
woid RX DMA EventBandler (DM TRANSFER E
t Find in Projects... Ctrl+Shift+F
if (evemt == DMA Refactor >
[Format Alt-ShifteF
rx_transfer_done = true; 2 5
3
3
int main (void)
t Cut Ctrl+X
= Copy e
SYS_Tnivialize (HULL) Paste eV
DMA_ChannelCallbackRegister (DMA_CHAN Code Folds LRI
DMA_ChannelCallbackRegister (DMA CHAN Selectin Projects [erma

6. Inthe MPLAB X IDE Project Properties window perform these actions.

a. Under the left Categories section, select Conf: [default], and in the right Configuration
properties page, select the Connected Hardware Tool and Compiler Toolchain as shown
below.

Figure 5-6. Project Properties - PIC32CZ CA90 Curiosity Ultra Development Board

ﬂ Project Properties - pic32cz_ca90_cult X
Categories: Configuration
O General Family: Device:
@ Fle Indusion/Exdhusian Al Families v | Pic3xczsiiocasozos v
= o Conf: [default]
o PKoB4 Connected Hardware Tool: Suppor ted Debug Header:
© Loadng No Tool | Oshowat [rione
@ Libraries =
o Bl o Te ool
&9 X2 (clobal Optiors) PIC32CZ CA90 Curiosity Ultra -SN: 020061504RYND00045
o xc32as e
> xc32gee @540
@ xc32g++ = i
o xe3dd = PIC32CZ-CA%0_DFP
5 xcizar | et
; &
@ Analysis
icrochip\nc32\y4.45\bin}
WWHCrOCNID WX 32 V. 40 i)
Manage Configurations...
Manage Network Tools...

| ok | concel [f amoly | unio Help

@ MICROCHIP

21

7. For SAM E70 Xplained Ultra Evaluation Kit, the hardware tool needs to be changed as follows.

Figure 5-7. Project Properties - SAM E70 Xplained Ultra Evaluation Kit

B3 Project Properties - pic32cz_cad0_cult X

Categories: Configuration
o General Family: Device:
@ File Indusion/Exdusion
- & Conf: [default]
2 PKoB4 Connected Hardware Tool: Supported Debug Header:
@ Loading
@ Libraries
)
]

All Families v PIC32CZ8110CAS0208 v

No Tool ~ | [Jshow Al None

Buiding

XC32 (Global Options)
- O xc32-as =
xc32-gec & 5.4.0
x€32-9++
xc324d =] PIC32CZ-CAS0_DFP
& 1.3.152

xc32-ar
Analysis

© e 000

. 45'bin]
. %0 pir

Manage Configurations...

Manage Network Tools...

] o Urlod Hep

Note: The following steps are applicable for both the boards (the PIC32CZ CA90 Curiosity Ultra
Development Board and the SAM E70 Xplained Ultra Evaluation Kit).

8. Click Apply and then click OK.

9. Click on the highlighted position as shown below to put a breakpoint.
Note: Breakpointis used in the reception transfer handler to visualize the received data.

Figure 5-8. Adding the Breakpoint in Reception Complete

si| Ly
52
53
54
S5
56 {

rx _transfer done = true;
58 }

59 }

€0

€l int main (void)

62| & ¢

Figure 5-9. Breakpoint on Receive Complete Callback

53 void RX DMA EventHandler (DMA TRANSFER EVENT event, uintptr_t C
54|

55 if (event == DMA TRANSFER EVENT BLOCK TRANSFER COMPLETE)

{
|I =] rx transfer done = trus; I
| 58 ¥

@ MICROCHIP

10. Click on the Debug main Project button.

Figure 5-10. Debug Main Project

Team Tools Window Help

BhH & 0229y

Note: If the Variable window does not appear, go to Window > Debugging > Variables to open the
Variable window.

Figure 5-11. Window Menu details

| Iool Window help
——

B TS M Conenonse XY TEEEE
b MPLAB® Code Configurator v5 >
StartPi kit Window Kl
".lﬂ_'ﬁlpmjects Ctrl+1 E!?J'@ E]ﬂd@
if (ev 2 MPLAB Discover FER_COMPLETE)
. [Files Ctrl+2
IX -
; @) Classes Ctrl+9
Fayorites Ctrl+3
B Services Ctrl+5
main (%2 pashboard
_ _71® Navigator Ctrl+7
SYS;Ir m Action ltems Ctrl+6
Tasks Ctrl+Shift+6
DMA_CH[E Output Ctrl+4 TX DMA EventHandler,
DMA_CH Editor Ctrl+0 RX DMA EventHandler,
== —
e i 4 o utput
Web i Yorsbles _____awoshifio1]
IDE Tools)l@ Watches Alt+Shift+2
DA CY Target Memory Views 3y Call Stack Alt+Shift+3 77
DMA_CH Cimulatnr 1 Rrastnninte AaShifeas -
Figure 5-12. Variables Window
Variables x | =
&> | Name Type Address Value ﬁ
& & @ rx; file:.. fsrc/main. uints_t[10] ... 0x20020080 .| "W001f/20_o \0O08H
® = @ Q tx; file:../src/main. uint8_t[10] .. 0x200200E0 ... WO001ff?20_o \WOOBA.. |
D <Enter new watch>
& rx_transfer_done; file: bool ... 0x20020088 .. 0x00

@ MICROCHIP

11. The transmitted data (Tx) matches with the received data (Rx).

Figure 5-13. Output

Variables x |

] | Name Type Address Value

& Ea! D rx; file:.. fsrc uint8_t[10] R 0x20020080 ... "w001f?0 0 ...
@ rx[0) uints_t . 0x20020080 ... US; ox1f

© @1 uint8_t | 0x20020081 L of
@ (2 uint8_t | 0x20020082 "7 ox3f
& rx[3] uint8_t | 020020083 'O 0x4f
@ rx[4] uints_t . 0x20020084 ' oxsf
@ rx[s) uints_t .. 0x20020085 ... ‘o' ox6f
@ rxe] uint8_t | 0x20020086 |7 ox7f
@ (7 uint8_t . 0x20020087 7 0xBf
@ rx[g] uint8_t | 0x20020088 7 oxof
@ rx[9] uint8_t | 020020089 .| '?; Oxaf

._(Iab(; file:../fsrc uint8_t[10] - 0x200200E0 _"'\JTIFI?O_O u
-<0>:x[01 uint8_t - 0x200200E0 W
@ 1 uints_t . OX200200E1 T ox2f
@2 uint8_t | 020020052 7 oxaf
@ &3] uints_t . Ox200200E3 .| ‘0 oxaf
@4 uint8_t | Dx200200E4)" oxsf
& 5] uint8_t | 0x200200E5 "o Ox6f
@ (6] uints_t . Ox200200E6 5 ox7f
@ (7 uint8_t | 020020057 7 oxaf
@ (8] uint8_t | 0x200200E8 7 oxof
@ t[9) uint8_t | 0x200200E9 "7 Oxaf
j <Enter new watc 0 [

@ MICROCHIP

6. References

PIC32CZ CA90 Curiosity Ultra Development Board

SAM E70 Xplained Ultra Evaluation Kit

PIC32CZ CA80/CA90 Curiosity Ultra User Guide (DS70005522)

SAM E70 Xplained Ultra User Guide (DS70005389)

Demonstrating Application Development with PIC32CZ CA90 Curiosity Ultra Evaluation Board
Getting Started Extended Application on PIC32CZ CA90 Curiosity Ultra Development Board
Create Your First Project with SAM E70 using MPLAB® Harmony v3

Getting Started with MPLAB® Harmony v3 Drivers and System Services on SAM E70/S70/V70/V71
MCUs

For additional information about 32-bit Microcontroller Collaterals and Solutions, refer to: 32-bit
Microcontroller Collateral and Solutions Reference Guide (DS70005534)

For additional information on MPLAB® Harmony v3, refer to the Microchip web site:
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony and https://
developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/

For more information on various applications, refer to:
github.com/Microchip-MPLAB-Harmony/reference_apps

For other relevant information, refer to the Microchip web site: www.microchip.com/

@ MICROCHIP

25

https://www.microchip.com/en-us/development-tool/ev16w43a
https://www.microchip.com/en-us/development-tool/dm320113
https://youtu.be/xnCO4RbpIho?si=keTCX8rykL09GFXI
https://microchip-mplab-harmony.github.io/reference_apps/apps/pic32cz_ca90_cult/pic32cz_ca90_getting_started_ext/readme.html
https://youtu.be/xW7pwAQG-vI?si=xB8KPaIVYPV76YuZ
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/archive/same70-getting-started-training-module-drivers/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/archive/same70-getting-started-training-module-drivers/
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
https://github.com/Microchip-MPLAB-Harmony/reference_apps
https://www.microchip.com/

7. Revision History
7.1 Revision A - January 2025

This is the initial release of this document.

@ MICROCHIP

26

Microchip Information

Trademarks

The “Microchip” name and logo, the “M" logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks"). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-0498-0

Legal Notice

This publication and the information herein may be used only with Microchip products, including

to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

+ Microchip products meet the specifications contained in their particular Microchip Data Sheet.

« Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

« Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

+ Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

@ MICROCHIP

27

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

Product Page Links

ATSAMES51G18A, ATSAMES51G19A, ATSAMES1J18A, ATSAMES1)19A, ATSAMES1)20A, ATSAMESTN19A,
ATSAMES1TN20A, ATSAMES3)18A, ATSAMES3)19A, ATSAMES3J20A, ATSAMS70J19, ATSAMS70)20,
ATSAMS70J21, ATSAMS70N19, ATSAMS70N20, ATSAMS70N21, ATSAMS70Q19, ATSAMS70Q20,
ATSAMS70Q21, ATSAMV70J19, ATSAMV70J20, ATSAMV70N 19, ATSAMV70N20, ATSAMV70Q19,
ATSAMV70Q20, ATSAMV71J19, ATSAMV71)20, ATSAMV71J21, ATSAMV71N19, PIC32CZ2051CA70064,
PIC32CZ2051CA70100, PIC32CZ2051CA70144, PIC32CZ2051CA80100, PIC32CZ2051CA80144,

PIC32CZ2051CA80176, PIC32CZ2051CA80208, PIC32CZ2051CA90100, PIC32CZ2051CA90144,
PIC32CZ2051CA90176

@ MICROCHIP

28

https://www.microchip.com/en-us/product/ATSAME51G18A
https://www.microchip.com/en-us/product/ATSAME51G19A
https://www.microchip.com/en-us/product/ATSAME51J18A
https://www.microchip.com/en-us/product/ATSAME51J19A
https://www.microchip.com/en-us/product/ATSAME51J20A
https://www.microchip.com/en-us/product/ATSAME51N19A
https://www.microchip.com/en-us/product/ATSAME51N20A
https://www.microchip.com/en-us/product/ATSAME53J18A
https://www.microchip.com/en-us/product/ATSAME53J19A
https://www.microchip.com/en-us/product/ATSAME53J20A
https://www.microchip.com/en-us/product/ATSAMS70J19
https://www.microchip.com/en-us/product/ATSAMS70J20
https://www.microchip.com/en-us/product/ATSAMS70J21
https://www.microchip.com/en-us/product/ATSAMS70N19
https://www.microchip.com/en-us/product/ATSAMS70N20
https://www.microchip.com/en-us/product/ATSAMS70N21
https://www.microchip.com/en-us/product/ATSAMS70Q19
https://www.microchip.com/en-us/product/ATSAMS70Q20
https://www.microchip.com/en-us/product/ATSAMS70Q21
https://www.microchip.com/en-us/product/ATSAMV70J19
https://www.microchip.com/en-us/product/ATSAMV70J20
https://www.microchip.com/en-us/product/ATSAMV70N19
https://www.microchip.com/en-us/product/ATSAMV70N20
https://www.microchip.com/en-us/product/ATSAMV70Q19
https://www.microchip.com/en-us/product/ATSAMV70Q20
https://www.microchip.com/en-us/product/ATSAMV71J19
https://www.microchip.com/en-us/product/ATSAMV71J20
https://www.microchip.com/en-us/product/ATSAMV71J21
https://www.microchip.com/en-us/product/ATSAMV71N19
https://www.microchip.com/en-us/product/PIC32CZ2051CA70064
https://www.microchip.com/en-us/product/PIC32CZ2051CA70100
https://www.microchip.com/en-us/product/PIC32CZ2051CA70144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80100
https://www.microchip.com/en-us/product/PIC32CZ2051CA80144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80176
https://www.microchip.com/en-us/product/PIC32CZ2051CA80208
https://www.microchip.com/en-us/product/PIC32CZ2051CA90100
https://www.microchip.com/en-us/product/PIC32CZ2051CA90144
https://www.microchip.com/en-us/product/PIC32CZ2051CA90176

	Introduction
	1. What is DMA?
	1.1. Working Principle of DMA
	1.2. Types of Data Transfers in DMA

	2. Creating the Application Using MPLAB Harmony v3 and MCC
	2.1. Creating Demo Application Using PIC32CZ CA90 Curiosity Ultra Development Board
	2.2. Creating Demo Application Using SAM E70 Xplained Ultra Evaluation Kit

	3. Adding and Configuring MPLAB Harmony Components
	3.1. PIC32CZ CA90 Curiosity Ultra Development Board
	3.2. SAM E70 Xplained Ultra Evaluation Kit

	4. Adding Application Logic to the Project
	4.1. PIC32CZ CA90 Curiosity Ultra Development Board
	4.2. SAM E70 Xplained Ultra Evaluation Kit

	5. Building and Debugging the Application
	6. References
	7. Revision History
	7.1. Revision A - January 2025

	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

