
 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 1

Introduction
In modern computing systems, efficient data transfer mechanisms are crucial for maintaining high
performance and responsiveness, especially in applications that handle large volumes of data. Direct Memory
Access (DMA) is one such mechanism that is pivotal in optimizing data movement. The DMA significantly
reduces processing bottlenecks by allowing hardware subsystems to access the system independently of the
CPU. Additionally, the use of a dedicated DMA controller ensures that data transfers are managed seamlessly
further enhancing system efficiency and performance.

This document describes how to configure and use DMA with peripherals, such as the SPI on PIC32CZ CA and
SAM E/S/V family of devices using MPLAB® Harmony v3 and MCC.

www.microchip.com
Product Page Links

 Adding DMA Support for Peripherals on PIC32CZ CA and
SAM E70/S70/V7x MCUs using MPLAB Harmony v3 and
MCC

 TB3370

https://microchip.com

 TB3370
What is DMA?

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 2

1. What is DMA?
Direct Memory Access (DMA) is an essential feature allowing specific hardware subsystems to
access the system memory (RAM) independently of the central processing unit (CPU). This capability
significantly enhances the efficiency and performance of data transfers, particularly in applications
requiring the rapid movement of large data volumes, such as multimedia, networking, and storage
systems.

The DMA process is managed by a dedicated hardware component known as the DMA controller,
which can be integrated into the CPU or exist as a separate chip. The controller typically includes
multiple channels, each capable of handling separate data transfer operations, and utilizes registers
to store memory addresses, transfer counts, and control information. The primary advantages of
the DMA include improved efficiency, faster data transfer rates, and reduced CPU overhead, making
it indispensable in applications like audio and video streaming and real-time embedded systems.

Figure 1-1. DMA Block Diagram

SPI

DMA

SRAM

C
ha

nn
el

 0
 (T

x)

C
ha

nn
el

 1
 (R

x)

C
ha

nn
el

 n

CPU

1.1 Working Principle of DMA
The DMA transfer can be started only when a DMA transfer request is detected. The transfer
requests may be software, peripheral, or an event. The DMA operation begins with the CPU
initializing the DMA controller, followed by a peripheral device requesting a transfer. The DMA
controller then arbitrates between multiple requests, if necessary, and takes control of the system
bus to perform the data transfer directly between memory and the peripheral device, thereby
freeing the CPU to perform other tasks. Upon completion, the DMA controller notifies the CPU
through an interrupt.

 TB3370
What is DMA?

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 3

1.2 Types of Data Transfers in DMA
The DMA data transfers are essential for optimizing system performance by enabling efficient
communication between different components. These data transfers are categorized based on the
source and destination of the data. It is categorized into the following four categories:

• Peripheral-to-Memory transfer
• Memory-to-Peripheral transfer
• Peripheral-to-Peripheral transfer
• Memory-to-Memory transfer

Table 1-1. Types of Data Transfers in DMA
Types Source Location Destination Location

Peripheral-to-Memory Peripheral Memory

Memory-to-Peripheral Memory Peripheral

Peripheral-to-Peripheral Peripheral Peripheral

Memory-to-Memory Memory Memory

Note: The SAM E/S/V family of devices does not support Peripheral-to-Peripheral type of data
transfer.

The DMA transfer mode can also be categorized based on the size of the data being transferred by
the components:

• Beat transfer: Size of one data bus transfer.
• Block transfer: Amount of data one transfer descriptor can transfer.
• Burst transfer: Back-to-back DMA transfer without CPU intervention.
• DMA transaction: Complete transfer of all data in a linked list of descriptors.
• Cycle Stealing: The DMA controller interrupts the CPU after every cycle to transfer data.

 TB3370
Creating the Application Using MPLAB Harmony v3 and MCC

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 4

2. Creating the Application Using MPLAB Harmony v3 and MCC
The following software and hardware tools are used for this demonstration:

• MPLAB X IDE v6.20
• MPLAB Code Configurator Plugin v5.5.1
• MPLAB XC32 Compiler v4.45
• csp v3.20.0
• PIC32CZ CA90 Curiosity Ultra Development Board
• PIC32CZ CA80 Curiosity Ultra Development Board
• SAM E70 Xplained Ultra Evaluation Kit
• SAM V71 Xplained Ultra Evaluation Kit

Note:  The updated versions of the above listed tools can also be used to create the application,
and users are not restricted to use the older versions. Also, only one of the above mentioned boards
is needed for creating the application.

2.1 Creating Demo Application Using PIC32CZ CA90 Curiosity Ultra Development
Board
To create an MPLAB Harmony v3-based project, follow these steps:

1. From the Start menu launch MPLAB X IDE.
2. On the File menu, click New Project or click on the New Project icon.
3. The New Project window will be displayed. From the Steps navigation pane, click Choose

Project.
4. In the right Choose Project property page:

a. Categories select Microchip Embedded.
b. Projects select Application Project(s).

5. Click Next.

Figure 2-1. New Project Window

https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide
https://www.microchip.com/en-us/tools-resources/configure/mplab-code-configurator
https://www.microchip.com/en-us/tools-resources/develop/mplab-xc-compilers
https://github.com/Microchip-MPLAB-Harmony/csp/tree/master
https://www.microchip.com/en-us/development-tool/ev16w43a
https://www.microchip.com/en-us/development-tool/ev51s73a
https://www.microchip.com/en-us/development-tool/dm320113
https://www.microchip.com/en-us/development-tool/atsamv71-xult

 TB3370
Creating the Application Using MPLAB Harmony v3 and MCC

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 5

6. Click Select Device and in the right Select Device property page, for Device select
PIC32CZ8110CA90208 for creating the project on the PIC32CZ CA90 Curiosity Ultra Development
Board (the selected device will be reflected under the Target Device).

Figure 2-2. Device Selection

7. Click Next.
8. Click Select Compiler, and in the right Select Compiler property page, under Compiler

Toolchains click and expand XC32, and then select XC32 (v4.45).

Figure 2-3. Select Compiler

9. Click Next.
10. Click Select Project Name and Folder and in the right Select Project Name and Folder

property page:
a. Project Name: Enter pic32cz_ca90_cult (Indicates the name of the project that will be shown

in MPLAB X IDE to set the project's name).

 TB3370
Creating the Application Using MPLAB Harmony v3 and MCC

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 6

b. Project Location: Enter C:\microchip\h3\tech_brief\dma_support\firmware (Indicates the path
to the root folder of the new project. All project files will be placed in this folder. The project
location can be any valid path).

c. Project Folder: Read-only content (Automatically updates when users make changes to the
above entries).

Figure 2-4. Project Name and Folder Settings

11. Click Finish to launch MCC.
12. The MCC plugin will open in a new window as shown in the following figure:

Figure 2-5. MPLAB Code Configurator Window

 TB3370
Creating the Application Using MPLAB Harmony v3 and MCC

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 7

2.2 Creating Demo Application Using SAM E70 Xplained Ultra Evaluation Kit
To create an MPLAB Harmony v3-based project, follow these steps:

1. From the Start menu launch MPLAB X IDE.
2. On the File menu, click New Project or click on the New Project icon.
3. The New Project window will be displayed. From the Steps navigation pane, click Choose

Project.
4. In the right Choose Project property page:

a. Categories select Microchip Embedded.
b. Projects select Application Project(s).

5. Click Next.

Figure 2-6. New Project Window

6. Click Select Device, and in the right Select Device property page, for Device select
ATSAME70Q21B for creating the project on the SAM E70 Xplained Ultra Evaluation Kit (the
device entry will be reflected under the Target Device).

 TB3370
Creating the Application Using MPLAB Harmony v3 and MCC

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 8

Figure 2-7. Device Selection

7. Click Next.
8. Click Select Compiler, and in the right Select Compiler property page, under Compiler

Toolchains click and expand XC32 and then select XC32 (v4.45).

Figure 2-8. Selecting Compiler

9. Click Next.
10. Click Select Project Name and Folder, and in the right Select Project Name and Folder

property page:
a. Project Name: Enter sam_e70_xult (Indicates the name of the project that will be shown in

MPLAB X IDE to set the project's name).
b. Project Location: Enter C:\microchip\h3\tech_brief\dma_support\firmware (Indicates the path

to the root folder of the new project. All project files will be placed in this folder. The project
location can be any valid path).

 TB3370
Creating the Application Using MPLAB Harmony v3 and MCC

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 9

c. Project Folder: Read-only content (Automatically updates when users make changes to the
above entries).

Figure 2-9. Project Name and Folder Settings

11. Click Finish to launch the MCC.
12. The MCC plugin will open in a new window as shown in the following figure:

Figure 2-10. MPLAB Code Configurator Window

 TB3370
Adding and Configuring MPLAB Harmony Components

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 10

3. Adding and Configuring MPLAB Harmony Components
3.1 PIC32CZ CA90 Curiosity Ultra Development Board

To add and configure MPLAB Harmony components using MCC, follow these steps:

1. In the MCC window, under Device Resources, click and expand the list of options Harmony >
Peripherals > SERCOM.

2. Click SERCOM2 and observe that the SERCOM2 Peripheral Library block is added in the Project
Graph section.

Figure 3-1. SERCOM Module

3. Click SERCOM2 and in the Configuration Options property page, click and expand SERCOM2
and configure SERCOM2 module as SPI Master as shown below.

Figure 3-2. SERCOM2 Configuration

 TB3370
Adding and Configuring MPLAB Harmony Components

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 11

4. From the Plugins drop-down list, select Pin Configuration.

Figure 3-3. Plugins - Pin Configuration

5. Click Pin Settings and then sort entries by selecting Ports from the Order list.

Figure 3-4. Selecting Ports from the Order Menu

6. Configure the pins as shown below:

Figure 3-5. Configuration of Pins

7. In the Plugins drop-down list, select DMA Configuration.

 TB3370
Adding and Configuring MPLAB Harmony Components

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 12

Figure 3-6. Plugins - DMA Configuration

8. In the DMA Configuration, click Add Channel to add DMAC Channel 0 and choose the trigger as
SERCOM2_Transmit. Repeat the same steps, but for DMAC Channel 1 choose SERCOM2_Receive
as the trigger.

Figure 3-7. DMA Configuration

9. Click Generate to generate the code.

Figure 3-8. Generating the Code

 TB3370
Adding and Configuring MPLAB Harmony Components

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 13

3.2 SAM E70 Xplained Ultra Evaluation Kit
To add and configure MPLAB Harmony components using MCC, follow these steps:

1. In the MCC window, under Device Resources, click and expand the list of options Harmony >
Peripherals > SPI.

2. Click SPI0 and observe that the SPI0 Peripheral Library block is added in the Project Graph
section.

Figure 3-9. SPI Module

3. Click SPI0, and to configure SPI0 module, click and expand SP10 and then configure it as shown
below.

Figure 3-10. SPI0 Configuration

4. From the Plugins drop-down list, select Pin Configuration.

 TB3370
Adding and Configuring MPLAB Harmony Components

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 14

Figure 3-11. Plugins - Pin Configuration

5. From the Order drop-down list, select Ports to sort the entries.

Figure 3-12. Selecting Ports from the Order Menu

6. From the Plugins drop-down list, select DMA Configuration. In the DMA Configuration
property page, click Add Channel to add DMAC Channel 0, and set the trigger to SPI0_Transmit.
Repeat the same steps, but for DMAC Channel 1, set the trigger to SPI0_Receive.

Figure 3-13. Plugins - DMA Configuration

 TB3370
Adding and Configuring MPLAB Harmony Components

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 15

Figure 3-14. DMA Configuration

7. Configure the pins as shown below.

Figure 3-15. Configuration of Pins

8. Click Generate to generate the code.

Figure 3-16. Generating the Project

 TB3370
Adding Application Logic to the Project

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 16

4. Adding Application Logic to the Project
4.1 PIC32CZ CA90 Curiosity Ultra Development Board

To develop and run the application, follow these steps:

1. Click Projects and then under Source files open the main.c file of the project and add the
required variables outside the main() function.
uint8_t __attribute__ ((aligned(32))) Tx[10] = {0x1F, 0x2F, 0x3F, 0x4F, 0x5F, 0x6F, 0x7F,
0x8F, 0x9F, 0xAF};
uint8_t __attribute__ ((aligned(32)))Rx[10];

/* transfer done flag */
volatile bool Rx_transfer_done = false;
volatile bool Tx_transfer_done = false;

2. Add the DMA Event Handler for both Tx and Rx outside the main() function.
/* This is called after transfer is done */
void Tx_DMA_EventHandler(DMA_TRANSFER_EVENT event, uintptr_t context)
{
 if (event == DMA_TRANSFER_EVENT_BLOCK_TRANSFER_COMPLETE)
 {
 Tx_transfer_done = true;
 }
}

void Rx_DMA_EventHandler(DMA_TRANSFER_EVENT event, uintptr_t context)
{
 if (event == DMA_TRANSFER_EVENT_BLOCK_TRANSFER_COMPLETE)
 {
 Rx_transfer_done = true;
 }
}

Figure 4-1. Adding Macros, Variables, and Event Handlers

 TB3370
Adding Application Logic to the Project

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 17

3. Add the DMA Callback register function, cache invalidate function, and DMA Channel transfer
function.
DMA_ChannelCallbackRegister(DMA_CHANNEL_0, Tx_DMA_EventHandler, (uintptr_t)NULL);
 DMA_ChannelCallbackRegister(DMA_CHANNEL_1, Rx_DMA_EventHandler, (uintptr_t)NULL);

 DCACHE_INVALIDATE_BY_ADDR((uint32_t *)Tx, 10);
 DCACHE_INVALIDATE_BY_ADDR((uint32_t *)Rx, 10);

 DMA_ChannelTransfer(DMA_CHANNEL_1, (void *)&SERCOM2_REGS->SPIM.SERCOM_DATA, Rx,
sizeof(Rx));
 DMA_ChannelTransfer(DMA_CHANNEL_0, Tx, (void *)&SERCOM2_REGS->SPIM.SERCOM_DATA,
sizeof(Tx));

Note: Cache invalidation is crucial for maintaining data consistency and accuracy, especially in
dynamic systems where data frequently changes. By invalidating the cache, it ensures that the
next time the data is requested, it will be fetched from the original source rather than the cache.

Figure 4-2. Application Logic

4.2 SAM E70 Xplained Ultra Evaluation Kit
To develop and run the application, follow these steps:

1. Open the main.c file of the project and add the required variables outside the main() function.
uint8_t __attribute__ ((aligned(32))) Tx[10] = {0x1F, 0x2F, 0x3F, 0x4F, 0x5F, 0x6F, 0x7F,
0x8F, 0x9F, 0xAF};
uint8_t __attribute__ ((aligned(32)))Rx[10];

/* transfer done flag */
volatile bool Rx_transfer_done = false;
volatile bool Tx_transfer_done = false;

2. Add the DMA Event Handler for both Tx and Rx outside of the main() function.
/* This is called after transfer is done */
void Tx_DMA_EventHandler(XDMAC_TRANSFER_EVENT event, uintptr_t context)
{
 if (event == XDMAC_TRANSFER_COMPLETE)
 {
 Tx_transfer_done = true;
 }
}

void Rx_DMA_EventHandler(XDMAC_TRANSFER_EVENT event, uintptr_t context)
{
 if (event == XDMAC_TRANSFER_COMPLETE)
 {
 Rx_transfer_done = true;
 }
}

 TB3370
Adding Application Logic to the Project

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 18

Figure 4-3. Adding Macros, Variables, and Event Handlers

3. Add the DMA Callback register function, cache invalidate function, and DMA Channel transfer
function.
 XDMAC_ChannelCallbackRegister(XDMAC_CHANNEL_0, Tx_DMA_EventHandler, (uintptr_t)NULL);
 XDMAC_ChannelCallbackRegister(XDMAC_CHANNEL_1, Rx_DMA_EventHandler, (uintptr_t)NULL);

 DCACHE_INVALIDATE_BY_ADDR((uint32_t *)Tx, 10);
 DCACHE_INVALIDATE_BY_ADDR((uint32_t *)Rx, 10);

 XDMAC_ChannelTransfer(XDMAC_CHANNEL_1, (void *)&SPI0_REGS->SPI_RDR, Rx, sizeof(Rx));
 XDMAC_ChannelTransfer(XDMAC_CHANNEL_0, Tx, (void *)&SPI0_REGS->SPI_TDR, sizeof(Tx));

Figure 4-4. Application Logic

 TB3370
Building and Debugging the Application

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 19

5. Building and Debugging the Application
1. The PIC32CZ CA90 Curiosity Ultra Development Board supports debugging using an Embedded

Debugger (EDBG). Connect the Type-A male to micro-B USB cable to the micro-B USB port on the
PIC32CZ CA90 Curiosity Ultra Development Board and connect the Type-A male end to the PC.
Additionally, connect an external power supply (6.5V-14V) to power up the board.

Figure 5-1. Hardware - PIC32CZ CA90 Curiosity Ultra Development Board

Debug USB

External power supply
(6.5V to 14V)

2. Short the MISO (PC11 – Pin 17) and MOSI (PC08 – Pin 16) pins present in EXT1 in the PIC32CZ
CA90 Curiosity Ultra Development Board using a wire.

Figure 5-2. Hardware Setup - PIC32CZ CA90 Curiosity Ultra Development Board

 TB3370
Building and Debugging the Application

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 20

3. Connect the Type-A male to the micro-B USB cable to the micro-B debug USB port to power and
debug the SAM E70 Xplained Ultra Evaluation Kit.

Figure 5-3. Hardware - SAM E70 Xplained Ultra Evaluation Kit

Debug USB

4. Short the MISO (PD20 – Pin 17) and MOSI (PD21 – Pin 16) pins present in EXT1 in the SAM E70
Xplained Ultra Evaluation Kit using a wire.

Figure 5-4. Hardware Setup - SAM E70 Xplained Ultra Evaluation Kit

 TB3370
Building and Debugging the Application

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 21

5. Select the Tx variable in the code and right-click on the selected text, then select New Watch.
Note: Follow the same for Rx.

Figure 5-5. Adding a New Watch

6. In the MPLAB X IDE Project Properties window perform these actions.
a. Under the left Categories section, select Conf: [default], and in the right Configuration

properties page, select the Connected Hardware Tool and Compiler Toolchain as shown
below.

Figure 5-6. Project Properties - PIC32CZ CA90 Curiosity Ultra Development Board

 TB3370
Building and Debugging the Application

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 22

7. For SAM E70 Xplained Ultra Evaluation Kit, the hardware tool needs to be changed as follows.

Figure 5-7. Project Properties - SAM E70 Xplained Ultra Evaluation Kit

Note: The following steps are applicable for both the boards (the PIC32CZ CA90 Curiosity Ultra
Development Board and the SAM E70 Xplained Ultra Evaluation Kit).

8. Click Apply and then click OK.
9. Click on the highlighted position as shown below to put a breakpoint.

Note: Breakpoint is used in the reception transfer handler to visualize the received data.

Figure 5-8. Adding the Breakpoint in Reception Complete

Figure 5-9. Breakpoint on Receive Complete Callback

 TB3370
Building and Debugging the Application

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 23

10. Click on the Debug main Project button.

Figure 5-10. Debug Main Project

Note: If the Variable window does not appear, go to Window > Debugging > Variables to open the
Variable window.

Figure 5-11. Window Menu details

Figure 5-12. Variables Window

 TB3370
Building and Debugging the Application

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 24

11. The transmitted data (Tx) matches with the received data (Rx).

Figure 5-13. Output

 TB3370
References

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 25

6. References
• PIC32CZ CA90 Curiosity Ultra Development Board
• SAM E70 Xplained Ultra Evaluation Kit
• PIC32CZ CA80/CA90 Curiosity Ultra User Guide (DS70005522)
• SAM E70 Xplained Ultra User Guide (DS70005389)
• Demonstrating Application Development with PIC32CZ CA90 Curiosity Ultra Evaluation Board
• Getting Started Extended Application on PIC32CZ CA90 Curiosity Ultra Development Board
• Create Your First Project with SAM E70 using MPLAB® Harmony v3
• Getting Started with MPLAB® Harmony v3 Drivers and System Services on SAM E70/S70/V70/V71

MCUs
• For additional information about 32-bit Microcontroller Collaterals and Solutions, refer to: 32-bit

Microcontroller Collateral and Solutions Reference Guide (DS70005534)
• For additional information on MPLAB® Harmony v3, refer to the Microchip web site:

https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony and https://
developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/

• For more information on various applications, refer to:
github.com/Microchip-MPLAB-Harmony/reference_apps

• For other relevant information, refer to the Microchip web site: www.microchip.com/

https://www.microchip.com/en-us/development-tool/ev16w43a
https://www.microchip.com/en-us/development-tool/dm320113
https://youtu.be/xnCO4RbpIho?si=keTCX8rykL09GFXI
https://microchip-mplab-harmony.github.io/reference_apps/apps/pic32cz_ca90_cult/pic32cz_ca90_getting_started_ext/readme.html
https://youtu.be/xW7pwAQG-vI?si=xB8KPaIVYPV76YuZ
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/archive/same70-getting-started-training-module-drivers/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/archive/same70-getting-started-training-module-drivers/
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
https://github.com/Microchip-MPLAB-Harmony/reference_apps
https://www.microchip.com/

 TB3370
Revision History

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 26

7. Revision History
7.1 Revision A - January 2025

This is the initial release of this document.

 TB3370

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 27

Microchip Information
Trademarks
The “Microchip” name and logo, the “M” logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks”). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-0498-0

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

 TB3370

 Technical Brief
© 2025 Microchip Technology Inc. and its subsidiaries

DS90003370A - 28

Product Page Links
ATSAME51G18A, ATSAME51G19A, ATSAME51J18A, ATSAME51J19A, ATSAME51J20A, ATSAME51N19A,
ATSAME51N20A, ATSAME53J18A, ATSAME53J19A, ATSAME53J20A, ATSAMS70J19, ATSAMS70J20,
ATSAMS70J21, ATSAMS70N19, ATSAMS70N20, ATSAMS70N21, ATSAMS70Q19, ATSAMS70Q20,
ATSAMS70Q21, ATSAMV70J19, ATSAMV70J20, ATSAMV70N19, ATSAMV70N20, ATSAMV70Q19,
ATSAMV70Q20, ATSAMV71J19, ATSAMV71J20, ATSAMV71J21, ATSAMV71N19, PIC32CZ2051CA70064,
PIC32CZ2051CA70100, PIC32CZ2051CA70144, PIC32CZ2051CA80100, PIC32CZ2051CA80144,
PIC32CZ2051CA80176, PIC32CZ2051CA80208, PIC32CZ2051CA90100, PIC32CZ2051CA90144,
PIC32CZ2051CA90176

https://www.microchip.com/en-us/product/ATSAME51G18A
https://www.microchip.com/en-us/product/ATSAME51G19A
https://www.microchip.com/en-us/product/ATSAME51J18A
https://www.microchip.com/en-us/product/ATSAME51J19A
https://www.microchip.com/en-us/product/ATSAME51J20A
https://www.microchip.com/en-us/product/ATSAME51N19A
https://www.microchip.com/en-us/product/ATSAME51N20A
https://www.microchip.com/en-us/product/ATSAME53J18A
https://www.microchip.com/en-us/product/ATSAME53J19A
https://www.microchip.com/en-us/product/ATSAME53J20A
https://www.microchip.com/en-us/product/ATSAMS70J19
https://www.microchip.com/en-us/product/ATSAMS70J20
https://www.microchip.com/en-us/product/ATSAMS70J21
https://www.microchip.com/en-us/product/ATSAMS70N19
https://www.microchip.com/en-us/product/ATSAMS70N20
https://www.microchip.com/en-us/product/ATSAMS70N21
https://www.microchip.com/en-us/product/ATSAMS70Q19
https://www.microchip.com/en-us/product/ATSAMS70Q20
https://www.microchip.com/en-us/product/ATSAMS70Q21
https://www.microchip.com/en-us/product/ATSAMV70J19
https://www.microchip.com/en-us/product/ATSAMV70J20
https://www.microchip.com/en-us/product/ATSAMV70N19
https://www.microchip.com/en-us/product/ATSAMV70N20
https://www.microchip.com/en-us/product/ATSAMV70Q19
https://www.microchip.com/en-us/product/ATSAMV70Q20
https://www.microchip.com/en-us/product/ATSAMV71J19
https://www.microchip.com/en-us/product/ATSAMV71J20
https://www.microchip.com/en-us/product/ATSAMV71J21
https://www.microchip.com/en-us/product/ATSAMV71N19
https://www.microchip.com/en-us/product/PIC32CZ2051CA70064
https://www.microchip.com/en-us/product/PIC32CZ2051CA70100
https://www.microchip.com/en-us/product/PIC32CZ2051CA70144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80100
https://www.microchip.com/en-us/product/PIC32CZ2051CA80144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80176
https://www.microchip.com/en-us/product/PIC32CZ2051CA80208
https://www.microchip.com/en-us/product/PIC32CZ2051CA90100
https://www.microchip.com/en-us/product/PIC32CZ2051CA90144
https://www.microchip.com/en-us/product/PIC32CZ2051CA90176

	Introduction
	1. What is DMA?
	1.1. Working Principle of DMA
	1.2. Types of Data Transfers in DMA

	2. Creating the Application Using MPLAB Harmony v3 and MCC
	2.1. Creating Demo Application Using PIC32CZ CA90 Curiosity Ultra Development Board
	2.2. Creating Demo Application Using SAM E70 Xplained Ultra Evaluation Kit

	3. Adding and Configuring MPLAB Harmony Components
	3.1. PIC32CZ CA90 Curiosity Ultra Development Board
	3.2. SAM E70 Xplained Ultra Evaluation Kit

	4. Adding Application Logic to the Project
	4.1. PIC32CZ CA90 Curiosity Ultra Development Board
	4.2. SAM E70 Xplained Ultra Evaluation Kit

	5. Building and Debugging the Application
	6. References
	7. Revision History
	7.1. Revision A - January 2025

	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

